Detection of Crop Damage in Maize Using Red–Green–Blue Imagery and LiDAR Data Acquired Using an Unmanned Aerial Vehicle
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Acquisition
2.2. Data Analysis
3. Results
- Accuracy = (TP + TN)/(TP + TN + FP + FN);
- Precision (Positive Predictive Value) = TP/(TP + FP);
- Sensitivity (True Positive Rate) = TP/(TP + FN);
- Specificity = TN/(TN + FP).
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrero, J.; García-Serrano, A.; Couto, S.; Ortuño, V.M.; García-González, R. Diet of Wild Boar Sus scrofa L. and Crop Damage in an Intensive Agroecosystem. Eur. J. Wildl. Res. 2006, 52, 245–250. [Google Scholar] [CrossRef]
- Schley, L.; Roper, T.J. Diet of Wild Boar Sus scrofa in Western Europe, with Particular Reference to Consumption of Agricultural Crops. Mammal Rev. 2003, 33, 43–56. [Google Scholar] [CrossRef]
- Amici, A.; Serrani, F.; Rossi, C.M.; Primi, R. Increase in Crop Damage Caused by Wild Boar (Sus scrofa L.): The “Refuge Effect”. Agron. Sustain. Dev. 2012, 32, 683–692. [Google Scholar] [CrossRef]
- Mackin, R. Dynamics of Damage Caused by Wild Boar to Different Agricultural Crops. Acta Theriol. 1970, 15, 447–458. [Google Scholar] [CrossRef]
- Schley, L.; Dufrêne, M.; Krier, A.; Frantz, A.C. Patterns of Crop Damage by Wild Boar (Sus scrofa) in Luxembourg over a 10-Year Period. Eur. J. Wildl. Res. 2008, 54, 589–599. [Google Scholar] [CrossRef]
- Frackowiak, W.; Gorczyca, S.; Merta, D.; Wojciuch-Ploskonka, M. Factors Affecting the Level of Damage by Wild Boar in Farmland in North-eastern Poland. Pest Manag. Sci. 2013, 69, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Laznik, Ž.; Trdan, S. Evaluation of Different Soil Parameters and Wild Boar (Sus scrofa [L.]) Grassland Damage. Ital. J. Anim. Sci. 2014, 13, 3434. [Google Scholar] [CrossRef]
- Rutten, A.; Casaer, J.; Vogels, M.F.A.; Addink, E.A.; Vanden Borre, J.; Leirs, H. Assessing Agricultural Damage by Wild Boar Using Drones. Wildl. Soc. Bull. 2018, 42, 568–576. [Google Scholar] [CrossRef]
- Fischer, J.W.; Greiner, K.; Lutman, M.W.; Webber, B.L.; Vercauteren, K.C. Use of Unmanned Aircraft Systems (UAS) and Multispectral Imagery for Quantifying Agricultural Areas Damaged by Wild Pigs. Crop Prot. 2019, 125, 104865. [Google Scholar] [CrossRef]
- Michez, A.; Morelle, K.; Lehaire, F.; Widar, J.; Authelet, M.; Vermeulen, C.; Lejeune, P. Use of Unmanned Aerial System to Assess Wildlife (Sus scrofa) Damage to Crops (Zea mays). J. Unmanned Veh. Syst. 2016, 4, 266–275. [Google Scholar] [CrossRef]
- Drimaj, J.; Skoták, V.; Kamler, J.; Plhal, R.; Adamec, Z.; Mikulka, O.; Janata, P. Comparison of Methods for Estimating Damage by Wild Ungulates on Field Crops. Agriculture 2023, 13, 1184. [Google Scholar] [CrossRef]
- Kuželka, K.; Surový, P. Automatic Detection and Quantification of Wild Game Crop Damage Using an Unmanned Aerial Vehicle (UAV) Equipped with an Optical Sensor Payload: A Case Study in Wheat. Eur. J. Remote Sens. 2018, 51, 241–250. [Google Scholar] [CrossRef]
- Friesenhahn, B.A.; Massey, L.D.; DeYoung, R.W.; Cherry, M.J.; Fischer, J.W.; Snow, N.P.; VerCauteren, K.C.; Perotto-Baldivieso, H.L. Using Drones to Detect and Quantify Wild Pig Damage and Yield Loss in Corn Fields throughout Plant Growth Stages. Wildl. Soc. Bull. 2023, 47, e1437. [Google Scholar] [CrossRef]
- Jełowicki, Ł.; Sosnowicz, K.; Ostrowski, W.; Osińska-Skotak, K.; Bakuła, K. Evaluation of Rapeseed Winter Crop Damage Using UAV-Based Multispectral Imagery. Remote Sens. 2020, 12, 2618. [Google Scholar] [CrossRef]
- Dobosz, B.; Gozdowski, D.; Koronczok, J.; Žukovskis, J.; Wójcik-Gront, E. Evaluation of Maize Crop Damage Using UAV-Based RGB and Multispectral Imagery. Agriculture 2023, 13, 1627. [Google Scholar] [CrossRef]
- Garcia Millan, V.E.; Rankine, C.; Sanchez-Azofeifa, G.A. Crop Loss Evaluation Using Digital Surface Models from Unmanned Aerial Vehicles Data. Remote Sens. 2020, 12, 981. [Google Scholar] [CrossRef]
- Debnath, S.; Paul, M.; Debnath, T. Applications of LiDAR in Agriculture and Future Research Directions. J. Imaging 2023, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Puig Garcia, E.; Gonzalez, F.; Hamilton, G.; Grundy, P. Assessment of Crop Insect Damage Using Unmanned Aerial Systems: A Machine Learning Approach; Modelling and Simulation Society of Australia and New Zealand Inc. (MSSANZ): Gold Coast, Australia, 2015; pp. 1420–1426. [Google Scholar]
- Zhang, M.; Wu, B.; Yu, M.; Zou, W.; Zheng, Y. Crop Condition Assessment with Adjusted NDVI Using the Uncropped Arable Land Ratio. Remote Sens. 2014, 6, 5774–5794. [Google Scholar] [CrossRef]
- Marino, S.; Alvino, A. Detection of Homogeneous Wheat Areas Using Multi-Temporal UAS Images and Ground Truth Data Analyzed by Cluster Analysis. Eur. J. Remote Sens. 2018, 51, 266–275. [Google Scholar] [CrossRef]
- Kwak, G.-H.; Park, N.-W. Impact of Texture Information on Crop Classification with Machine Learning and UAV Images. Appl. Sci. 2019, 9, 643. [Google Scholar] [CrossRef]
- Bouguettaya, A.; Zarzour, H.; Kechida, A.; Taberkit, A.M. Deep Learning Techniques to Classify Agricultural Crops Through UAV Imagery: A Review. Neural Comput. Appl. 2022, 34, 9511–9536. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, I.; Morais, R.; Sousa, J.J.; Cunha, A. Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review. Agriculture 2023, 13, 965. [Google Scholar] [CrossRef]
- Aszkowski, P.; Ptak, B.; Kraft, M.; Pieczyński, D.; Drapikowski, P. Deepness: Deep Neural Remote Sensing Plugin for QGIS. SoftwareX 2023, 23, 101495. [Google Scholar] [CrossRef]
- Aszkowski, P.; Ptak, B. Deepness Model ZOO 2022. Available online: https://qgis-plugin-deepness.readthedocs.io/en/latest/main/main_model_zoo.html (accessed on 3 December 2024).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Aszkowski, P.; Kraft, M.; Drapikowski, P.; Pieczyński, D. Estimation of Corn Crop Damage Caused by Wildlife in UAV Images. Precis. Agric. 2024, 25, 2505–2530. [Google Scholar] [CrossRef]
- Samiappan, S.; Prince Czarnecki, J.M.; Foster, H.; Strickland, B.K.; Tegt, J.L.; Moorhead, R.J. Quantifying Damage from Wild Pigs with Small Unmanned Aerial Systems. Wildl. Soc. Bull. 2018, 42, 304–309. [Google Scholar] [CrossRef]
- Sarwar, M. Raiding of Agricultural Crops and Forests by Wild Boar (Sus scrofa L.) and Its Mitigation Tricks. J. Sci. Agric. 2019, 3, 01–05. [Google Scholar] [CrossRef]
- Kleijkers, Y.I.M. Wild Boar Damage Mapping in Agricultural Grass and Wheatlands Using Unmanned Aerial Vehicle (UAV) Data. Master’s Thesis, Lund University, Lund, Sweden, 2024. [Google Scholar]
- Rutten, A.; Casaer, J.; Strubbe, D.; Leirs, H. Agricultural and Landscape Factors Related to Increasing Wild Boar Agricultural Damage in a Highly Anthropogenic Landscape. Wildl. Biol. 2019, 2020, 1–11. [Google Scholar] [CrossRef]
- Cai, J.; Jiang, Z.; Zeng, Y.; Li, C.; Bravery, B.D. Factors Affecting Crop Damage by Wild Boar and Methods of Mitigation in a Giant Panda Reserve. Eur. J. Wildl. Res. 2008, 54, 723–728. [Google Scholar] [CrossRef]
- Morelle, K.; Lejeune, P. Seasonal Variations of Wild Boar Sus scrofa Distribution in Agricultural Landscapes: A Species Distribution Modelling Approach. Eur. J. Wildl. Res. 2015, 61, 45–56. [Google Scholar] [CrossRef]
- Bobek, B.; Furtek, J.; Bobek, J.; Merta, D.; Wojciuch-Ploskonka, M. Spatio-Temporal Characteristics of Crop Damage Caused by Wild Boar in North-Eastern Poland. Crop Prot. 2017, 93, 106–112. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Bonardi, A.; Mairota, P.; Leronni, V.; Padoa-Schioppa, E. Predicting Wild Boar Damages to Croplands in a Mosaic of Agricultural and Natural Areas. Curr. Zool. 2014, 60, 170–179. [Google Scholar] [CrossRef]
- Johenneken, M.; Drak, A.; Herpers, R. Damage Analysis of Grassland from Aerial Images Applying Convolutional Neural Networks. In Proceedings of the 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 17–19 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Soner, A.; Chourasiya, D.; Rathore, P.; Nikam, G. A Survey on Automatic Crops Damage Assessment Using Remote Sensing. In Proceedings of the 2020 International Conference on Innovative Computing & Communications, Delhi, India, 21–23 February 2020. [Google Scholar] [CrossRef]
- Mitra, A.; Singhal, A.; Mohanty, S.P.; Kougianos, E.; Ray, C. eCrop: A Novel Framework for Automatic Crop Damage Estimation in Smart Agriculture. SN Comput. Sci. 2022, 3, 319. [Google Scholar] [CrossRef]
- Karimzadeh, R.; Naharki, K.; Park, Y.-L. Detection of Bean Damage Caused by Epilachna varivestis (Coleoptera: Coccinellidae) Using Drones, Sensors, and Image Analysis. J. Econ. Entomol. 2024, 117, 2143–2150. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Vieira, C.C.; Zhou, J.; Zhou, J.; Chen, P. Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning. Sensors 2023, 23, 3241. [Google Scholar] [CrossRef]
- Azizi, A.; Zhang, Z.; Rui, Z.; Li, Y.; Igathinathane, C.; Flores, P.; Mathew, J.; Pourreza, A.; Han, X.; Zhang, M. Comprehensive Wheat Lodging Detection after Initial Lodging Using UAV RGB Images. Expert Syst. Appl. 2024, 238, 121788. [Google Scholar] [CrossRef]
- Jurado, J.M.; Pádua, L.; Feito, F.R.; Sousa, J.J. Automatic Grapevine Trunk Detection on UAV-Based Point Cloud. Remote Sens. 2020, 12, 3043. [Google Scholar] [CrossRef]
- Sibanda, M.; Ndlovu, H.S.; Brewer, K.; Buthelezi, S.; Matongera, T.N.; Mutanga, O.; Odidndi, J.; Clulow, A.D.; Chimonyo, V.G.P.; Mabhaudhi, T. Remote Sensing Hail Damage on Maize Crops in Smallholder Farms Using Data Acquired by Remotely Piloted Aircraft System. Smart Agric. Technol. 2023, 6, 100325. [Google Scholar] [CrossRef]
- Mohammad, L.; Bandyopadhyay, J.; Sk, R.; Mondal, I.; Nguyen, T.T.; Lama, G.F.C.; Anh, D.T. Estimation of Agricultural Burned Affected Area Using NDVI and dNBR Satellite-Based Empirical Models. J. Environ. Manag. 2023, 343, 118226. [Google Scholar] [CrossRef] [PubMed]
Method of Evaluation | Total Area (in m2) | Percentage of the Field |
---|---|---|
Manual (based on visual assessment) | 8642 | 10.50% |
Based on DSM and DEM (difference below 1.5 m *) | 7781 | 9.45% |
Using deep neural networks | 3303 | 4.01% |
Method of Evaluation | Based on DSM | Using Deep Neural Networks |
---|---|---|
True positive (TP)—classified correctly as crop damage | 6037 | 3047 |
False positive (FP)—classified incorrectly as crop damage | 1744 | 256 |
True negative (TN)—correctly identified as undamaged | 71,924 | 73,412 |
False negative (FN)—incorrectly identified as undamaged | 2605 | 5595 |
Method of Evaluation | Based on DSM | Using Deep Neural Networks |
---|---|---|
Accuracy = (TP + TN)/(TP + TN + FP + FN) | 0.947 | 0.929 |
Precision (Positive Predictive Value) = TP/(TP + FP) | 0.776 | 0.922 |
Sensitivity (True Positive Rate) = TP/(TP + FN) | 0.699 | 0.353 |
Specificity = TN/(TN + FP) | 0.976 | 0.997 |
Method of Evaluation | Manual Selection | Based on DSM | Using Deep Neural Networks |
---|---|---|---|
Accuracy | high | moderate to high | low to high |
Time-consuming | very high | moderate | low |
Costs of data acquisition | low | moderate to high | low |
Costs of data analysis | high costs due to high time consumption | moderate | low (assuming that the model is already developed) |
Overall assessment of the method | easy to apply only in small areas, time-consuming on large fields | good efficiency but requires expensive LiDAR sensors | low costs, easy application but in case of atypical crop damage, accuracy can be insufficient |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobosz, B.; Gozdowski, D.; Koronczok, J.; Žukovskis, J.; Wójcik-Gront, E. Detection of Crop Damage in Maize Using Red–Green–Blue Imagery and LiDAR Data Acquired Using an Unmanned Aerial Vehicle. Agronomy 2025, 15, 238. https://doi.org/10.3390/agronomy15010238
Dobosz B, Gozdowski D, Koronczok J, Žukovskis J, Wójcik-Gront E. Detection of Crop Damage in Maize Using Red–Green–Blue Imagery and LiDAR Data Acquired Using an Unmanned Aerial Vehicle. Agronomy. 2025; 15(1):238. https://doi.org/10.3390/agronomy15010238
Chicago/Turabian StyleDobosz, Barbara, Dariusz Gozdowski, Jerzy Koronczok, Jan Žukovskis, and Elżbieta Wójcik-Gront. 2025. "Detection of Crop Damage in Maize Using Red–Green–Blue Imagery and LiDAR Data Acquired Using an Unmanned Aerial Vehicle" Agronomy 15, no. 1: 238. https://doi.org/10.3390/agronomy15010238
APA StyleDobosz, B., Gozdowski, D., Koronczok, J., Žukovskis, J., & Wójcik-Gront, E. (2025). Detection of Crop Damage in Maize Using Red–Green–Blue Imagery and LiDAR Data Acquired Using an Unmanned Aerial Vehicle. Agronomy, 15(1), 238. https://doi.org/10.3390/agronomy15010238