Microbial Selenium-Enriched Bacterial Fertilizer: Biofortification Technology to Boost Pea Sprout Quality and Selenium Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Acquisition and Selenium Rich Cultivation
2.2. Preparation of Selenium-Enriched Bacterial Fertilizer HJ
2.3. Experimental Design
2.3.1. Effects of HJ Soaking Solution at Different Selenium Concentrations on Seed Germination and Growth Indices
2.3.2. Experimental Design for the Optimization of HJ Application Strategies in Pea Sprouts Production
2.3.3. Experimental Design for Comparative Analysis of the Effect of Application of HJ, Na2SeO3 and Three Commercial Selenium Fertilizers on Pea Sprouts
2.4. Measurement of Indicators
2.4.1. Measuring Growth Indicators
2.4.2. Determination of Total Se Content
2.4.3. Methods for Measuring Physiological Indicators
2.4.4. Determination of Antioxidant Enzymes
2.4.5. Determination of Malondialdehyde (MDA) Content
2.4.6. Methods for Determining Nutritional Quality
2.5. Statistical Analyses
3. Results and Discussion
3.1. Optimization of HJ Application Strategies in Pea Sprouts Production
3.1.1. Shoot Length, Root Length and Edibility Rate
3.1.2. Total Se Content
3.1.3. Soluble Protein and Soluble Sugar Content
3.1.4. Photosynthetic Pigment Content
3.2. Comparative Analysis of the Effect of Application of HJ, Na2SeO3 and Three Commercial Selenium Fertilizers on Pea Sprouts
3.2.1. Integrated Determination of Growth and Physiological Status and Total Se Content in Pea Sprouts
3.2.2. SOD, POD, CAT Enzyme Activity and MDA Content
3.2.3. Free Amino Acid, Vitamin C, Nitrate Nitrogen Content
3.2.4. Radar Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological Activity of Selenium and Its Impact on Human Health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef]
- Kieliszek, M. Selenium-Fascinating Microelement, Properties and Sources in Food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.H.; Sun, X.Y.; Li, P.; Shen, X.C.; Fang, Y. Selenium in cereals: Insight into species of the element from total amount. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2914–2940. [Google Scholar] [CrossRef]
- Han, M.Q.; Liu, K.L. Selenium and selenoproteins: Their function and development of selenium-rich foods. Int. J. Food Sci. Technol. 2022, 57, 7026–7037. [Google Scholar] [CrossRef]
- Zhou, F.; Peng, Q.; Wang, M.; Liu, N.N.; Dinh, Q.T.; Zhai, H.; Xue, M.Y.; Liang, D.L. Influence of processing methods and exogenous selenium species on the content and in vitro bioaccessibility of selenium in Pleurotus eryngii. Food Chem. 2021, 338, 127661. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.-Y.; Rao, S.; Gou, Y.; Xu, F.; Cheng, S. Comparative study of the effects of selenium yeast and sodium selenite on selenium content and nutrient quality in broccoli florets (Brassica oleracea L. var. italica). J. Sci. Food Agric. 2021, 102, 1707–1718. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, C.; Zhang, T. Selenium transformation and selenium-rich foods. Food Biosci. 2021, 40, 100875. [Google Scholar] [CrossRef]
- Sun, Y.H.; Wang, H.Z.; Zhou, L.; Chang, M.J.; Yue, T.L.; Yuan, Y.H.; Shi, Y.H. Distribution characteristics of organic selenium in Se-enriched Lactobacillus (Lactobacillus paracasei). LWT-Food Sci. Technol. 2022, 165, 113699. [Google Scholar] [CrossRef]
- Zhong, B.; Xu, W.J.; Xie, H.Y.; Wu, Z.Q. Biosynthesis and characterization of selenium nanoparticles by Se-tolerant Lactiplantibacillus plantarum. Food Biosci. 2024, 59, 104061. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Y.; Li, J.; Wang, Y.; Huang, Q.; Guo, Y.; Li, H. Effects of Different Forms of Selenium Fertilizers on Se Accumulation, Distribution, and Residual Effect in Winter Wheat-Summer Maize Rotation System. J. Agric. Food Chem. 2017, 65, 1116–1123. [Google Scholar] [CrossRef]
- Hesam, S.M.; Wenli, S.; Qi, C. Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 26. [Google Scholar]
- Luo, L.P.; Zhang, J.P.; Zhang, K.Y.; Wen, Q.Y.; Ming, K.; Xiong, H.; Ning, F.J. Peanut selenium distribution, concentration, speciation, and effects on proteins after exogenous selenium biofortification. Food Chem. 2021, 354, 129515. [Google Scholar] [CrossRef]
- Rocha, L.; Silva, E.; Pavia, I.; Ferreira, H.; Matos, C.; Osca, J.M.; Moutinho-Pereira, J.; Lima-Brito, J. Seed Soaking with Sodium Selenate as a Biofortification Approach in Bread Wheat: Effects on Germination, Seedling Emergence, Biomass and Responses to Water Deficit. Agronomy 2022, 12, 1975. [Google Scholar] [CrossRef]
- Tang, Y.F.; Hou, S.M.; Yang, Y.C.; Cheng, D.D.; Gao, B.; Wan, Y.S.; Li, Y.C.; Yao, Y.Y.; Zhang, S.G.; Xie, J.Z. Activation of Humic Acid in Lignite Using Molybdate-Phosphorus Hierarchical Hollow Nanosphere Catalyst Oxidation: Molecular Characterization and Rice Seed Germination-Promoting Performances. J. Agric. Food Chem. 2020, 68, 13620–13631. [Google Scholar] [CrossRef] [PubMed]
- Li, J.C.; Han, A.H.; Zhang, L.; Meng, Y.; Xu, L.; Ma, F.X.; Liu, R.Q. Chitosan oligosaccharide alleviates the growth inhibition caused by physcion and synergistically enhances resilience in maize seedlings. Sci. Rep. 2022, 12, 162. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, M.; Zhao, M.; Li, C.; Shang, L.; Zhang, S.; Wang, P.; Gao, X. Study on the Effect of Pharmaceutical Excipient PEG400 on the Pharmacokinetics of Baicalin in Cells Based on MRP2, MRP3, and BCRP Efflux Transporters. Pharmaceutics 2024, 16, 731. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.Z.; Li, J.X.; Zhu, F.M.; Chen, X.N.; Du, B.; Tian, H.L.; Li, J. Plant sprout foods: Biological activities, health benefits, and bioavailability. J. Food Biochem. 2022, 46, e13777. [Google Scholar] [CrossRef]
- Jerse, A.; Kacjan-Marsic, N.; Sircelj, H.; Germ, M.; Kroflic, A.; Stibilj, V. Seed soaking in I and Se solutions increases concentrations of both elements and changes morphological and some physiological parameters of pea sprouts. Plant Physiol. Biochem. 2017, 118, 285–294. [Google Scholar] [CrossRef]
- Chen, Y.D.; Liu, Z.H.; Zeng, W.M.; Liu, Y.; Zhao, D.D.; Zhang, Y.L.; Jia, X.Q. Screening and Identification of Soil Selenium-Enriched Strains and Application in Auricularia auricula. Microorganisms 2024, 12, 1136. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, R.; Kumari, S.; Kumari, A. Enhancing wheat crop production with eco-friendly chitosan encapsulated nickel oxide nanocomposites: A safe and sustainable solution for higher yield. Int. J. Biol. Macromol. 2023, 253, 127413. [Google Scholar] [CrossRef]
- Zhang, Z.; Dou, G.; Zhao, X.; Gao, Y.; Liu, S.; Qin, A. Inversion of Crop Water Content Using Multispectral Data and Machine Learning Algorithms in the North China Plain. Agronomy 2024, 14, 2361. [Google Scholar] [CrossRef]
- Fan, L.; Chen, S.; Cai, Z.; Guo, Z.; Yang, J.; Zheng, R.; Hu, R. Expansion of Pleioblastus amarus in tea plantations significantly enhances the appearance and nutritional composition of bamboo shoots but adversely affects palatability. BMC Plant Biol. 2024, 24, 1161. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Zhang, L.; Duan, X.; Chai, X.; Huang, R.; Kang, Y.; Yang, X. Effects of exogenous sucrose and selenium on plant growth, quality, and sugar metabolism of pea sprouts. J. Sci. Food Agric. 2022, 102, 2855–2863. [Google Scholar] [CrossRef] [PubMed]
- Abbas, T.; Fan, R.; Hussain, S.; Sattar, A.; Khalid, S.; Butt, M.; Shahzad, U.; Atif, H.M.; Batool, M.; Ullah, S.; et al. Protective effect of jasmonic acid and potassium against cadmium stress in peas (Pisum sativum L.). Saudi J. Biol. Sci. 2022, 29, 2626–2633. [Google Scholar] [CrossRef]
- Kanwal, R.; Maqsood, M.F.; Shahbaz, M.; Naz, N.; Zulfiqar, U.; Ali, M.F.; Jamil, M.; Khalid, F.; Ali, Q.; Sabir, M.A.; et al. Exogenous ascorbic acid as a potent regulator of antioxidants, osmo-protectants, and lipid peroxidation in pea under salt stress. BMC Plant Biol. 2024, 24, 247. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Guo, X.L.; Li, J.Y.; Zhang, Y.H.; Yang, Y.M.; Zheng, W.A.; Xue, X.Z. Effects of light-emitting diode spectral combinations on growth and quality of pea sprouts under long photoperiod. Front. Plant Sci. 2022, 13, 978462. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Wu, H.; Yuan, Q.; Wang, J.; Cui, J.; Lin, A. Effects of selenium fertilizer application and tomato varieties on tomato fruit quality: A meta-analysis. Sci. Hortic. 2022, 304, 111242. [Google Scholar] [CrossRef]
- Du, Q.J.; Xiao, H.J.; Li, J.Q.; Zhang, J.X.; Zhou, L.Y.; Wang, J.Q. Effects of different fertilization rates on growth, yield, quality and partial factor productivity of tomato under non-pressure gravity irrigation. PLoS ONE 2021, 16, e0247578. [Google Scholar] [CrossRef]
- He, R.; Gao, M.F.; Shi, R.; Song, S.W.; Zhang, Y.T.; Su, W.; Liu, H.C. The Combination of Selenium and LED Light Quality Affects Growth and Nutritional Properties of Broccoli Sprouts. Molecules 2020, 25, 4788. [Google Scholar] [CrossRef]
- Wang, C.A.X.; Yue, L.; Cheng, B.X.; Chen, F.R.; Zhao, X.L.; Wang, Z.Y.; Xing, B.S. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: Beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ. Sci. Nano 2022, 9, 302–312. [Google Scholar] [CrossRef]
- Somagattu, P.; Chinnannan, K.; Yammanuru, H.; Reddy, U.K.; Nimmakayala, P. Selenium dynamics in plants: Uptake, transport, toxicity, and sustainable management strategies. Sci. Total Environ. 2024, 949, 175033. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ali, F.; Qi, M.X.; Peng, Q.; Wang, M.K.; Bañuelos, G.S.; Miao, S.Y.; Li, Z.; Dinh, Q.T.; Liang, D.L. Insights into uptake, accumulation, and subcellular distribution of selenium among eight wheat (Triticum aestivum L.) cultivars supplied with selenite and selenate. Ecotoxicol. Environ. Saf. 2021, 207, 111544. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xiong, Y.Z.; Wang, Y.; Wu, S.; Xiao, C.M.; Wang, S.Y.; Cheng, S.Y.; Cheng, H. Effect of Nano-Selenium on Nutritional Quality of Cowpea and Response of ABCC Transporter Family. Molecules 2023, 28, 1398. [Google Scholar] [CrossRef]
- Xue, W.T.; Kang, Y.F.; Pan, C.P.; Hu, T.T.; Yu, M.; Chen, Y.Y.; Zhang, S.J. Nano-selenium regulates the sugar metabolism in pea (Pisum sativum L.) sprouts. S. Afr. J. Bot. 2024, 167, 487–499. [Google Scholar] [CrossRef]
- Roca, M.; Pérez-Gálvez, A. Metabolomics of Chlorophylls and Carotenoids: Analytical Methods and Metabolome-Based Studies. Antioxidants 2021, 10, 1622. [Google Scholar] [CrossRef]
- Liu, H.D.; Xiao, C.M.; Qiu, T.C.; Deng, J.; Cheng, H.; Cong, X.; Cheng, S.Y.; Rao, S.; Zhang, Y. Selenium Regulates Antioxidant, Photosynthesis, and Cell Permeability in Plants under Various Abiotic Stresses: A Review. Plants 2023, 12, 44. [Google Scholar] [CrossRef]
- Fang, J.; Peng, Y.X.; Zheng, L.J.; He, C.; Peng, S.; Huang, Y.W.; Wang, L.X.; Liu, H.P.; Feng, G.F. Chitosan-Se Engineered Nanomaterial Mitigates Salt Stress in Plants by Scavenging Reactive Oxygen Species. J. Agric. Food Chem. 2023, 72, 176–188. [Google Scholar] [CrossRef]
- Hu, S.H.; Li, K.F.; Zhang, X.; Yang, C.W.; Zhang, R.; Guo, H.C. The Impact of the Foliar Application of Amino Acid Aqueous Fertilizer on the Flavor of Potato Tubers. Foods 2023, 12, 3951. [Google Scholar] [CrossRef]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in Plants: From Functions to Biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef]
- Pal, D.; Babu, B. A Review on N-nitrosamine Impurity. Curr. Pharm. Anal. 2024, 20, 2–11. [Google Scholar] [CrossRef]
- Bian, Z.H.; Wang, Y.; Zhang, X.Y.; Li, T.; Grundy, S.; Yang, Q.C.; Cheng, R.F. A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef] [PubMed]
Treatment Group | Germination Potential (%) | Germination Rate (%) | Fresh Weight (g) | Dry Weight (g) |
---|---|---|---|---|
Water | 79.8 ± 3.21 c | 93.88 ± 2.07 bc | 15.3 ± 0.81 bc | 1.98 ± 0.03 d |
4 μg/mL | 81.47 ± 0.64 c | 94.47 ± 4.01 b | 15.85 ± 0.85 bc | 2.2 ± 0.06 bc |
8 μg/mL | 83.64 ± 1.11 bc | 94.71 ± 0.61 b | 16.53 ± 0.46 b | 2.22 ± 0.2 b |
10 μg/mL | 91.05 ± 0.97 a | 99.23 ± 0.73 a | 18.14 ± 0.85 a | 2.49 ± 0.02 a |
20 μg/mL | 86.74 ± 2.57 b | 96.37 ± 1.7 ab | 15.75 ± 0.57 bc | 2.14 ± 0.1 bcd |
40 μg/mL | 72.23 ± 1.91 d | 89.87 ± 2.17 c | 14.83 ± 0.3 c | 2.01 ± 0.07 cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Y.; Wu, Y.; Liu, Y.; Chen, Y.; Zhang, Y.; Jia, X. Microbial Selenium-Enriched Bacterial Fertilizer: Biofortification Technology to Boost Pea Sprout Quality and Selenium Content. Agronomy 2025, 15, 430. https://doi.org/10.3390/agronomy15020430
Wang Y, Li Y, Wu Y, Liu Y, Chen Y, Zhang Y, Jia X. Microbial Selenium-Enriched Bacterial Fertilizer: Biofortification Technology to Boost Pea Sprout Quality and Selenium Content. Agronomy. 2025; 15(2):430. https://doi.org/10.3390/agronomy15020430
Chicago/Turabian StyleWang, Yaqi, Ying Li, Yu Wu, Yang Liu, Yadong Chen, Yanlong Zhang, and Xiangqian Jia. 2025. "Microbial Selenium-Enriched Bacterial Fertilizer: Biofortification Technology to Boost Pea Sprout Quality and Selenium Content" Agronomy 15, no. 2: 430. https://doi.org/10.3390/agronomy15020430
APA StyleWang, Y., Li, Y., Wu, Y., Liu, Y., Chen, Y., Zhang, Y., & Jia, X. (2025). Microbial Selenium-Enriched Bacterial Fertilizer: Biofortification Technology to Boost Pea Sprout Quality and Selenium Content. Agronomy, 15(2), 430. https://doi.org/10.3390/agronomy15020430