Organic Fertilization vs. the Quality of Basil Raw Material
Abstract
1. Introduction
1.1. Organic Fertilizers
1.2. Basil Essential Oil
2. Materials and Methods
Analysis of Plant Material
3. Results
3.1. Fresh Weight Yield and Height of Basil Plants
3.2. Essential Oil Content
3.3. Content of L-Ascorbic Acid, Protein, Extract and Nitrates V in Fresh Basil Herb
3.4. Chemical Composition of the Raw Material of Common Basil
4. Discussion
5. Conclusions
- An increase in the fresh weight yield of both lemon and cinnamon basil was noted with the increase in the manure dose.
- Cinnamon basil had a significantly higher essential oil content than lemon basil. The highest essential oil content was determined in cinnamon basil fertilizer with of 5 g of manure·dm−3 of substrate.
- The highest content of L-ascorbic acid was determined upon basil fertilization with 10 g of manure·dm−3 of substrate, i.e., 70.05 mg·100 g−1 f.w. in lemon basil and 133.17 mg·100 g−1 f.w. un cinnamon basil.
- The nitrate content of fresh basil herb varied depending on both factors studied. The cinnamon basil had significantly higher nitrate levels than the lemon basil. After fertilization with the highest manure dose tested, the nitrate content of the basil herb was significantly lower compared to the treatment with the initial fertilizer dose.
- The chemical composition of basil plants was dependent on the manure dose. Increases in N, P, and K contents and decreases in Ca and Mg contents were observed in both lemon and cinnamon basil plants with increasing manure doses.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Król, S.; Skalicka-Woźniak, K.; Kandefer-Szerszeń, M.; Stepulak, A. Aktywność biologiczna i farmakologiczna olejków eterycznych w leczeniu i profilaktyce chorób infekcyjnych. Postęp. Hig. Med. Dośw. 2013, 67, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Güez, C.M.; Souza, R.; Fischer, P.; Leão, M.; Duarte, J.; Boligon, A.; Athayde, M.; Zuravski, L.; Oliveira, L.; Machado, M. Evaluation of basil extract (Ocimum basilicum L.) on oxidative, anti-genotoxic and anti-inflammatory effects in human leukocytes cell cultures exposed to challenging agents. Braz. J. Pharm. Sci. 2017, 53, e15098. [Google Scholar] [CrossRef]
- Purushothaman, B.; PrasannaSrinivasan, R.; Suganthi, P.; Ranganathan, B.; Gimbun, J.; Shanmugam, K. A Comprehensive Review on Ocimum basilicum. J. Nat. Rem. 2018, 18, 71–85. [Google Scholar] [CrossRef]
- Hohenberger, E. Gleba, Kompost, Nawożenie: Urodzajny Ogród Dzięki Odpowiedniej Uprawie Gleby; Diogenes Publisher: Warsaw, Poland, 1999. [Google Scholar]
- Jarosz, Z. Przewodnik po Nawozach; Działkowiec Publisher: Warsaw, Poland, 2009. [Google Scholar]
- Sharafzadeh, S.; Esmaeili, M.; Mohammadi, A.H. Interaction effects of nitrogen, phosphorus and potassium on growth, essential oil and total phenolic content of sweet basil. Adv. Environ. Biol. 2011, 5, 1285–1289. [Google Scholar]
- Kłapeć, T.; Cholewa, A. Zagrożenia dla zdrowia związane ze stosowanie nawozów organicznych i organiczno—Mineralnych. Med. Ogólna I Nauk. Zdrowiu 2012, XVIII, 131–136. [Google Scholar]
- Politycka, B.; Golcz, A. Content of chloroplast pigments and anthocyanins in the leaves of Ocimum basilicum L. depending on nitrogen doses. Folia Hortic. 2004, 16, 23–29. [Google Scholar]
- Golcz, A.; Seidler-Łożykowska, K. Bazylia Pospolita (Ocimum basilicum L.); University of Life Sciences: Poznań, Poland, 2008. [Google Scholar]
- Rao, E.V.P.; Puttanna, K.; Ganesha Rao, R.S.; Ramesh, S. Nitrogen and potassium nutrition of French basil (Ocimum basilicum Linn.). J. Spices Aromat. Crops 2007, 16, 99–105. [Google Scholar]
- Boroomand, N.; Sadat, H.G.M. Macroelements nutrition (NPK) of medicinal plants: A review. J. Med. Plants Res. 2012, 6, 2249–2255. [Google Scholar] [CrossRef]
- Sodré, A.C.B.; Luzl, J.M.Q.; Haber, L.L.; Marques, M.O.M.; Rodrigues, C.R.; Blank, A.F. Organic and mineral fertilization and chemical composition of lemon balm (Melissa officinalis) essential oil. Braz. J. Pharmacogn. 2011, 22, 40–44. [Google Scholar] [CrossRef]
- Matsumoto, S.N.; Araujo, G.S.; Viana, A.E.S. Growth of sweet basil depending on nitrogen and potassium doses. Hortic. Bras. 2013, 31, 489–493. [Google Scholar] [CrossRef]
- Omer, E.A.; Elsayed, A.-G.A.; El-Lathy, A.; Khattab, M.E.; Sabra, A.S. Effect of the nitrogen fertilizer forms and time of their application on the yield of herb and essential oil from Ocimum americanum L. Herba Pol. 2008, 54, 34–46. [Google Scholar]
- Zheljazkov, V.D.; Cantrell, C.L.; Ebelhar, M.W.; Rowe, D.E.; Coker, C. Productivity, oil content, and oil composition of sweet basil as a function of nitrogen and sulfur fertilization. Hort. Sci. 2008, 43, 1415–1422. [Google Scholar] [CrossRef]
- Kandil, M.A.M.; Khatab, M.E.; Ahmed, S.S.; Schnug, E. Herbal and essential oil yield of Genovese basil (Ocimum basilicum L.) grown with mineral and organic fertilizer sources in Egypt. J. Kulturpflanz. 2009, 61, 443–449. [Google Scholar]
- Taie, H.A.A.; Salama, Z.A.-E.R.; Radwan, S. Potential activity of basil plants as a source of antioxidants and anticancer agents as affected by organic and bio-organic fertilization. Not. Bot. Hort. Agrobot. Cluj-Napoca 2010, 38, 119–127. [Google Scholar]
- Argyropoulou, K.; Salahas, G.; Hela, D.; Papasavvas, A. Impact of nitrogen deficiency on biomas production, morphological and biochemical characteristics of sweet basil (Ocimum basilicum L.) plants, cultivated aeroponically. Agric. Food 2015, 3, 32–42. [Google Scholar]
- Starck, J.R. (Ed.) Uprawa Roli i Nawożenie Roślin Ogrodniczych; Powszechne Wydawnictwo Rolnicze i Lesne: Warsaw, Poland, 1997. [Google Scholar]
- Politeo, O.; Jukic, M.; Milos, M. Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil. Food Chem. 2007, 101, 379–385. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R. Ocimum basilicum L.—Wartościowa roślina przyprawowa, lecznicza i olejkodajna. Praca przeglądowa. Ann. UMCS 2012, XXII, 21–30. [Google Scholar]
- Hołubowicz-Kliza, G. Alternatywna Uprawa ziół na Przyprawy; Wyd. IUN: Puławy, Poland, 2007. [Google Scholar]
- Dzida, K. Nutrients contents in sweet basil (Ocimum basilicum L.) herb depending on calcium carbonate dose and cultivar. Acta Sci. Pol. Hortorum Cultus 2010, 9, 143–151. [Google Scholar]
- Polskie Towarzystwo Farmaceutyczne. Farmakopea Polska VII; Polskie Towarzystwo Farmaceutyczne: Warsaw, Poland, 2006. [Google Scholar]
- Hirzel, J.; Donnay, D.; Fernández, C.; Meier, S.; Lagos, O.; Mejias-Barrera, P.; Rodríguez, F. Evolution of nutrients and soil chemical properties of seven organic fertilizers in two contrasting soils under controlled conditions. Chil. J. Agric. Anim. Sci. 2018, 34, 77–88. [Google Scholar] [CrossRef]
- Priya, E.; Sarkar, S.; Maji, P.K. A Review on Slow-Release Fertilizer: Nutrient Release Mechanism and Agricultural Sustainability. J. Environ. Chem. Eng. 2024, 12, 113211. [Google Scholar] [CrossRef]
- Ipsilandis, C.G.; Greveniotis, V.; Deligeorgidis, N.P.; Pampouktsi, P.; Tsakiropoulos, I.; Boudouroglou, N. Fertilizer application in basil (Ocimum basilicum) cultivation in Greece. Med. Aromat. Plants 2020, 9, 345. [Google Scholar] [CrossRef]
- Lima, J.C.; Nascimento, M.N.; Oliveira, U.C.; Santos, A.R.; Silva, A.L. Macronutrient fertilizers on basil growth and yield. Comun. Sci. 2020, 11, e3200. [Google Scholar] [CrossRef]
- Gavrić, T.; Jurković, J.; Gadžo, D.; Čengić, L.; Sijahović, E.; Bašić, F. Fertilizer effect on some basil bioactive compounds and yield. Sci. Agrotechnol. 2021, 45, e003121. [Google Scholar] [CrossRef]
- Migliaccio, K.W.; Olczyk, T.; Qian, Y.; Li, Y.; Hochmuth, G.J.; Hochmuth, R.C.; Treadwell, D.D.; Simonne, E.H.; Osborne, L.S.; Sprenkel, R.K. Organic Greenhouse Container Herb Production in South Florida: Fertilizer and Potting Media; University of Florida, IFAS Extension: Gainesville, FL, USA, 2007. [Google Scholar] [CrossRef]
- Toaima, W.I.M.; Badawy, M.Y.M.A.; Hamed, E.S. Effect of organic fertilization on productivity of some newly introduced basil varieties under Siwa Oasis conditions. J. Appl. Biol. Biotechnol. 2022, 10, 74–88. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Fujita, M.; Oku, H.; Nahar, K.; Hawrylak-Nowak, B. Plant Nutrients and Abiotic Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Naiji, M.; Souri, M.K. Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Acta Sci. Pol. Hortorum Cultus 2018, 17, 167–175. [Google Scholar] [CrossRef]
- Sirousmehr, A.; Arbabi, J.; Asgharipour, M.R. Effect of drought stress levels and organic manures on yield, essential oil content and some morphological characteristics of sweet basil (Ocimum basilicum). Adv. Environ. Biol. 2014, 8, 880–885. [Google Scholar]
- El-Naggar, A.H.M.; Hassan, M.R.A.; Shaban, E.H.; Mohamed, M.E.A. Effect of organic and biofertilizers on growth, oil yield and chemical composition of the essential oil of Ocimum basilicum L. plants. Alex. J. Agric. Sci. 2015, 60, 1–16. [Google Scholar]
- Esmaielpour, B.; Rahmanian, M.; Heidarpour, O.; Shahriari, M.H. Effect of vermicompost and spent mushroom compost on the nutrient and essential oil composition of basil (Ocimum basilicum L.). J. Essent. Oil Bear. Plants 2017, 20, 1283–1292. [Google Scholar] [CrossRef]
- Mohamed, S.M.; Abou El-Ghait, E.M.; Mohamed, Y.F.Y.; Eman, G.M.E. Integrated management of fertilizer (NPK, chicken manure and yeast) to improve the growth, oil productivity and the volatile oil constituents of Ocimum basilicum, L. var. genoves plant. Middle East J. Agric. Res. 2017, 6, 1155–1170. [Google Scholar]
- Rahmanian, M.; Esmaielpour, B.; Hadian, J.; Shahriari, M.; Fatemi, H. The effect of organic fertilizers on morphological traits, essential oil content and components of basil (Ocimum basilicum L.). J. Agric. Sci. Sustain. Prod. 2017, 27, 103–118. [Google Scholar]
- El-Sheref, G.F.H.; Awadalla, H.A.; Mohamed, G.A. Influence of organic manure, natural rocks and putrescine on yield and quality of sweet basil (Ocimum basilicum L.) grown in sand soil. J. Soil Sci. Agric. Eng. 2019, 10, 747–758. [Google Scholar] [CrossRef]
- Yaldız, G.; Çamlıca, M.; Özen, F.; Eratalar, S.A. Effect of poultry manure on yield and nutrient composition of sweet basil (Ocimum basilicum L.). Commun. Soil Sci. Plant Anal. 2019, 50, 838–852. [Google Scholar] [CrossRef]
- Bergstrand, K.J.; Lövist, K.; Asp, H. Dynamics of nitrogen availability in pot grown crops with organic fertilization. Biol. Agric. Hortic. 2019, 35, 143–150. [Google Scholar] [CrossRef]
- Teliban, G.C.; Stoleru, V.; Burducea, M.; Lobiuc, A.; Munteanu, N.; Popa, L.D.; Caruso, G. Biochemical, physiological and yield characteristics of red basil as affected by cultivar and fertilization. Agriculture 2020, 10, 48. [Google Scholar] [CrossRef]
- Bufalo, J.; Cantrell, C.L.; Astatkie, T.; Zheljazkov, V.D.; Gawde, A.; Boaro, C.S.F. Organic versus conventional fertilization effects on sweet basil (Ocimum basilicum L.) growth in a greenhouse system. Ind. Crops Prod. 2015, 74, 249–254. [Google Scholar] [CrossRef]


| Variety | Manure Dose (g·dm−3 Substrate) | N-NO3 | P | K | Ca | Mg | pH | EC (g NaCl·dm3) |
|---|---|---|---|---|---|---|---|---|
| Lemon basil | 5 | 6.32 | 97.2 | 31.8 | 4291 | 220 | 5.59 | 1.02 |
| 10 | 3.83 | 123 | 32.8 | 2984 | 236 | 5.93 | 1.18 | |
| 15 | 2.30 | 127 | 33.8 | 2380 | 263 | 5.75 | 0.92 | |
| 20 | 1.80 | 136 | 27.9 | 2107 | 314 | 6.13 | 1.02 | |
| Mean for variety | 3.56 | 120.8 | 31.58 | 2941 | 258 | |||
| Cinnamon basil | 5 | 5.20 | 87.4 | 35.8 | 4096 | 243 | 6.35 | 0.99 |
| 10 | 4.70 | 110 | 49.7 | 4096 | 268 | 6.07 | 1.30 | |
| 15 | 2.52 | 108 | 37.8 | 3413 | 275 | 6.28 | 1.55 | |
| 20 | 2.14 | 149 | 25.9 | 2926 | 335 | 5.85 | 1.30 | |
| Mean for variety | 3.64 | 113.6 | 37.3 | 3632 | 280 | |||
| Mean for dose | 5 | 5.76 | 92.3 | 33.80 | 4193 | 231.5 | ||
| 10 | 4.26 | 116.5 | 41.25 | 3540 | 252.0 | |||
| 15 | 2.41 | 117.5 | 35.80 | 2896 | 269.0 | |||
| 20 | 1.97 | 142.5 | 26.90 | 2516 | 324.5 | |||
| Variety (A) | Manure Dose (g·dm−3 Substrate) (B) | Plant Height (cm) | Fresh Weight Yield (g/Plant−1) |
|---|---|---|---|
| Lemon basil | 5 | 40.00 | 42.79 |
| 10 | 49.50 | 84.22 | |
| 15 | 52.16 | 121.18 | |
| 20 | 52.58 | 157.39 | |
| Mean for variety | 48,56 | 101.40 | |
| Cinnamon basil | 5 | 53.00 | 77.65 |
| 10 | 63.33 | 126.53 | |
| 15 | 67.66 | 175.85 | |
| 20 | 67.33 | 203.95 | |
| Mean for variety | 62.83 | 146.0 | |
| Mean for dose | 5 | 46.50 | 60.22 |
| 10 | 56.41 | 105.37 | |
| 15 | 59.91 | 148.52 | |
| 20 | 59.95 | 180.67 | |
| LSDα = 0.05 for | |||
| A | 2.041 | 4.105 | |
| B | 3.815 | 7.672 | |
| A × B | n.s. | 12.881 | |
| Variety | Manure Dose (g·dm−3/Substrate) | Essential Oil (%) |
|---|---|---|
| Lemon basil | 5 | 0.95 |
| 10 | 1.05 | |
| 15 | 1.15 | |
| 20 | 1.05 | |
| Cinnamon basil | 5 | 1.85 |
| 10 | 1.55 | |
| 15 | 1.70 | |
| 20 | 1.75 |
| Variety (A) | Manure Dose (g·dm−3/Substrate) (B) | L-Ascorbic Acid (mg·100 g−1 św.m./f.w.) | Protein (%) | Extract (%) | N-NO3 (mg·kg−1 f.w.) |
|---|---|---|---|---|---|
| Lemon basil | 5 | 63.11 | 7.13 | 5.13 | 413.11 |
| 10 | 70.05 | 8.50 | 4.25 | 300.00 | |
| 15 | 51.11 | 10.13 | 4.13 | 323.78 | |
| 20 | 37.17 | 12.63 | 3.18 | 220.00 | |
| Mean for variety | 55.36 | 9.56 | 4.17 | 313.97 | |
| Cinnamon basil | 5 | 123.17 | 8.06 | 6.19 | 636.20 |
| 10 | 133.17 | 8.06 | 6.18 | 770.00 | |
| 15 | 63.17 | 8.75 | 5.03 | 703.11 | |
| 20 | 69.00 | 9.69 | 4.29 | 460.00 | |
| Mean for variety | 97.13 | 8.63 | 5.42 | 642.33 | |
| Mean for dose | 5 | 93.14 | 7.63 | 5.66 | 524.66 |
| 10 | 101.61 | 8.31 | 5.22 | 535.00 | |
| 15 | 57.14 | 9.44 | 4.58 | 512.94 | |
| 20 | 53.08 | 11.19 | 3.73 | 340.00 | |
| NIRα = 0.05 for | |||||
| A | 1.873 | r.n. | r.n. | 1.803 | |
| B | 3.576 | 3.282 | r.n. | 3.442 | |
| A × B | 6.118 | r.n. | r.n. | 5.889 | |
| Variety (A) | Manure Dose (g·dm−3 Substrate) (B) | N-og. N-Total | P | K | Ca | Mg |
|---|---|---|---|---|---|---|
| Lemon basil | 5 | 1.14 | 0.46 | 1.70 | 1.66 | 0.42 |
| 10 | 1.36 | 0.50 | 2.00 | 1.55 | 0.42 | |
| 15 | 1.61 | 0.54 | 2.52 | 1.48 | 0.42 | |
| 20 | 2.02 | 0.63 | 2.71 | 1.22 | 0.31 | |
| Mean for variety | 1.53 | 0.53 | 2.23 | 1.48 | 0.39 | |
| Cinnamon basil | 5 | 1.29 | 0.48 | 1.24 | 2.07 | 0.52 |
| 10 | 1.29 | 0.53 | 1.42 | 1.54 | 0.50 | |
| 15 | 1.40 | 0.46 | 1.60 | 1.35 | 0.44 | |
| 20 | 1.55 | 0.50 | 1.64 | 1.32 | 0.46 | |
| Mean for variety | 1.38 | 0.49 | 1.48 | 1.57 | 0.48 | |
| Mean for dose | 5 | 1.22 | 0.47 | 1.47 | 1.87 | 0.47 |
| 10 | 1.33 | 0.52 | 1.71 | 1.55 | 0.46 | |
| 15 | 1.51 | 0.50 | 2.06 | 1.42 | 0.43 | |
| 20 | 1.79 | 0.56 | 2.18 | 1.27 | 0.39 | |
| NIRα = 0.05 for | ||||||
| A | 0.048 | 0.031 | 0.050 | 0.040 | 0.017 | |
| B | 0.092 | 0.059 | 0.096 | 0.077 | 0.033 | |
| A × B | 0.158 | 0.102 | 0.165 | 0.132 | 0.057 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzida, K.; Pitura, K.; Król, A. Organic Fertilization vs. the Quality of Basil Raw Material. Agronomy 2025, 15, 2656. https://doi.org/10.3390/agronomy15112656
Dzida K, Pitura K, Król A. Organic Fertilization vs. the Quality of Basil Raw Material. Agronomy. 2025; 15(11):2656. https://doi.org/10.3390/agronomy15112656
Chicago/Turabian StyleDzida, Katarzyna, Karolina Pitura, and Anna Król. 2025. "Organic Fertilization vs. the Quality of Basil Raw Material" Agronomy 15, no. 11: 2656. https://doi.org/10.3390/agronomy15112656
APA StyleDzida, K., Pitura, K., & Król, A. (2025). Organic Fertilization vs. the Quality of Basil Raw Material. Agronomy, 15(11), 2656. https://doi.org/10.3390/agronomy15112656

