Enhanced Formation and Stability of Water-Stable Aggregates in Rhizosphere Soil over Bulk Soil with Exopolysaccharide from Rhizobium tropici: Insights from a Pot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sample Collection and Pre-Treatment
2.2. EPS Preparation
2.3. Experimental Design and Pot Control
2.4. Soil Aggregates Fractionation and Measurement of Other Properties
2.5. Indexes of Soil Aggregates Stability Calculation
2.6. Data Processing and Analysis
3. Results
3.1. Basic Physico-Chemical Properties of the Soil
3.2. Distribution of Water-Stable Aggregates in Rhizosphere and Bulk Soils with EPS Addition
3.3. Stability of Water-Stable Aggregates in Rhizosphere and Bulk Soils with EPS Addition
3.4. Biomass Accumulation and Its Relationship with Soil Aggregate Fractions Under EPS Addition
4. Discussion
4.1. EPS Promote the Formation of Macro-Aggregates and Larger Soil Aggregates
4.2. Multiple Indicators Confirmed Enhanced Stability of Soil Aggregates
4.3. Plant Root Interactions Enhance the Role of EPS in Soil Aggregation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Soil Zone | Aggregate Size Fraction (mm) | EPS Concentration (‰) | Mean ± SD | ANOVA p-Value | Post Hoc (Tukey) |
|---|---|---|---|---|---|
| Rhizosphere soil | >2000 μm | 0 | 0.7350 ± 0.0354 | 0.013 | b |
| 0.25 | 1.0500 ± 0.2687 | b | |||
| 0.5 | 1.2350 ± 0.1344 | b | |||
| 1 | 1.8650 ± 0.1909 | a | |||
| 250–2000 μm | 0 | 8.1500 ± 0.9334 | 0.001 | d | |
| 0.25 | 16.1700 ± 0.3253 | c | |||
| 0.5 | 22.4300 ± 0.8768 | b | |||
| 1 | 34.9550 ± 0.2051 | a | |||
| 53–250 μm | 0 | 39.3600 ± 0.8910 | 0.001 | b | |
| 0.25 | 43.8950 ± 0.4738 | a | |||
| 0.5 | 29.7750 ± 0.0212 | c | |||
| 1 | 23.0600 ± 2.6729 | d | |||
| <53 μm | 0 | 48.5750 ± 1.2092 | 0.002 | a | |
| 0.25 | 37.3300 ± 0.6081 | c | |||
| 0.5 | 44.6100 ± 0.5515 | b | |||
| 1 | 38.4600 ± 1.9233 | c | |||
| Bulk soil | >2000 μm | 0 | 0.1835 ± 0.0882 | 0.003 | c |
| 0.25 | 0.3021 ± 0.0126 | bc | |||
| 0.5 | 0.4047 ± 0.0234 | b | |||
| 1 | 0.6137 ± 0.0222 | a | |||
| 250–2000 μm | 0 | 5.5050 ± 0.4738 | 0.010 | b | |
| 0.25 | 14.9000 ± 1.4708 | a | |||
| 0.5 | 12.3050 ± 1.4779 | a | |||
| 1 | 15.2100 ± 2.3052 | a | |||
| 53–250 μm | 0 | 28.8550 ± 1.9021 | 0.001 | a | |
| 0.25 | 27.8950 ± 0.9687 | a | |||
| 0.5 | 29.5150 ± 1.4920 | a | |||
| 1 | 31.5500 ±1.3011 | a | |||
| <53 μm | 0 | 62.4750 ± 1.9445 | 0.05 | a | |
| 0.25 | 54.5750 ± 0.2758 | b | |||
| 0.5 | 55.7300 ± 2.4749 | ab | |||
| 1 | 50.3950 ± 4.5184 | b |
| Soil Zone | Index | η2 |
|---|---|---|
| Rhizosphere | R0.25 | 0.9980 |
| MWD | 0.9965 | |
| GMD | 0.9964 | |
| D | 0.9724 | |
| Bulk soil | R0.25 | 0.9285 |
| MWD | 0.9309 | |
| GMD | 0.8371 | |
| D | 0.9246 |
References
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Lehmann, A.; Zheng, W.; Rillig, M.C. Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 2017, 1, 1828–1835. [Google Scholar] [CrossRef]
- Young, I.M.; Crawford, J.W.; Rappoldt, C. New methods and models for characterising structural heterogeneity of soil. Soil Tillage Res. 2001, 61, 33–45. [Google Scholar] [CrossRef]
- Hinsinger, P.; Bengough, A.G.; Vetterlein, D.; Young, I.M. Rhizosphere: Biophysics, biogeochemistry, and ecological relevance. Plant Soil 2009, 321, 117–152. [Google Scholar] [CrossRef]
- Rillig, M.C.; Muller, L.A.; Lehmann, A. Soil aggregates as massively concurrent evolutionary incubators. ISME J. 2015, 11, 1943–1948. [Google Scholar] [CrossRef] [PubMed]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Mi, W.; Chen, C.; Ma, Y.; Guo, S.; Liu, M.; Gao, Q.; Wu, Q.; Zhao, H. The Combined Application of Mineral Fertilizer and Organic Amendments Improved the Stability of Soil Water-Stable Aggregates and C and N Accumulation. Agronomy 2022, 12, 469. [Google Scholar] [CrossRef]
- Costa, O.Y.; Raaijmakers, J.M.; Kuramae, E.E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef]
- Chenu, C. Clay or sand-polysaccharide associations as models for the interface between micro-organisms and soil: Water related properties and microstructure. Geoderma 1993, 56, 143–156. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, Y.; Qu, C.; Huang, Q.; Cai, P. Microbial extracellular polymeric substances (EPS) in soil: From interfacial behaviour to ecological multifunctionality. Geo-Bio Interfaces 2024, 1, e4. [Google Scholar] [CrossRef]
- Cheng, C.; Shang-Guan, W.; He, L.; Sheng, X. Effect of exopolysaccharide-producing bacteria on water-stable macro-aggregate formation in soil. Geomicrobiol. J. 2020, 37, 738–745. [Google Scholar] [CrossRef]
- Xiao, Y.; Xie, X.; Larson, S.L.; Ballard, J.H.; Zhang, Q.; Nie, J.; Zhang, H.; Yuan, G.; Han, F.X. Exopolysaccharides from Rhizobium tropici improve flooding tolerance of Zea mays seedlings: Insights from a controlled pot study. Plant Soil 2025, 13, 1529482. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Metuge, J.A.; Havugimana, E.; Rugandirababisha, J.; Senwo, Z.N.; Mutimawurugo, M.C. Evaluation of Rhizobium tropici-Derived Extracellular Polymeric Substances on Selected Soil Properties, Seed Germination, and Growth of Black-Eyed Peas (Vigna unguiculata). Agric. Sci. 2024, 15, 548–564. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. Particle-size analysis. In Methods of Soil Analysis: Part 4—Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommer, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 3—Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar] [CrossRef]
- Larson, S.L.; Martin, W.A.; Şengör, S.S.; Wade, R.; Altamimi, F. Amendment for increased methane production rate in municipal solid waste landfill gas collection systems. Sci. Total Environ. 2021, 772, 145574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, S.; Chen, S.; Ren, T.; Yang, Z.; Zhao, H.; Liang, Y.; Han, X. Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe. Sci. Rep. 2016, 6, 19990. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Deng, Y.; Yang, G.; Jiang, D.; Liu, D.; Xu, Z.; Huang, Z.; Wang, L. Using Le Bissonnais method to study the stability of soil aggregates in plantations and its influence mechanism. Arch. Agron. Soil Sci. 2022, 68, 209–225. [Google Scholar] [CrossRef]
- Xiao, L.; Huang, Q.X.; Chen, S.J.; Yuan, G.D. Soil Carbon Sequestration in Ponds of Gordon Euryale Seed in the Pear River Delta. In Environment and Sustainable Development, Proceedings of the ACESD 2023, Sapporo, Japan, 3–5 November 2023; Ujikawa, K., Ishiwatari, M., Hullebusch, E.V., Eds.; Environmental Science and Engineering; Springer: Singapore, 2024; pp. 181–192. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Nimmo, J.R.; Perkins, K.S. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 4 Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 317–328. [Google Scholar] [CrossRef]
- Jin, H.; Huang, S.; Shi, D.; Li, J.; Li, J.; Li, Y.; Zhu, H. Effects of Different Tillage Practices on Soil Stability and Erodibility for Red Soil Sloping Farmland in Southern China. Agronomy 2023, 13, 1310. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Shen, S. Response of soil aggregate stability and distribution of organic carbon to alpine grassland degradation in Northwest Sichuan. Geoderma Reg. 2020, 22, e00309. [Google Scholar] [CrossRef]
- Tyler, S.W.; Wheatcraft, S.W. Fractal scaling of soil particle-size distributions: Analysis and limitations. Soil Sci. Soc. Am. J. 1992, 56, 362–369. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Chenu, C.; Cosentino, D. Microbial regulation of soil structural dynamics. In Handbook of Soil Sciences: Properties and Processes, 2nd ed.; Huang, P.M., Li, Y., Sumner, M.E., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 37–70. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Q.S.; He, X.H. Exogenous easily extractable glomalin-related soil protein promotes soil aggregation, relevant soil enzyme activities and plant growth in trifoliate orange. Plant Soil Environ. 2015, 61, 66–71. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Redmile-Gordon, M.A.; Brookes, P.C.; Evershed, R.P.; Goulding, K.W.T.; Hirsch, P.R. Measuring the soil-microbial interface: Extraction of extracellular polymeric substances (EPS) from soil biofilms. Soil Biol. Biochem. 2014, 72, 163–171. [Google Scholar] [CrossRef]
- Xing, M.; Li, C.; Jiang, J.; Wang, Y.; Yang, J. Influence analysis for the behavior of dewaterability of excess sludge in a two-stage vermifilter. Appl. Microbiol. Biotechnol. 2017, 101, 1643–1652. [Google Scholar] [CrossRef]
- Ding, W.; He, H.; Zheng, F.; Liu, X.; Wu, X.; Jiang, Y.; Zhang, J. Assessing the impacts of fertilization regimes on soil aggregate dynamics in Northeast China. Agronomy 2022, 12, 2101. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Q.; Jiang, C.; Lan, Y.; Zhang, H.; Ye, S. Mixed planting improves soil aggregate stability and aggregate-associated C-N-P accumulation in subtropical China. Front. For. Glob. Change 2023, 6, 1141953. [Google Scholar] [CrossRef]
- Xu, L.; Xing, X.; Bai, J.; Li, D. Soil aggregate structure, stability, and stoichiometric characteristics in a smelter-impacted soil under phytoremediation. Front. Environ. Sci. 2022, 10, 900147. [Google Scholar] [CrossRef]
- Beare, M.H.; Bruce, R.R. A comparison of methods for measuring water-stable aggregates: Implications for determining environmental effects on soil structure. Soil Struct./Soil Biota Interrelat. 1993, 56, 87–104. [Google Scholar] [CrossRef]
- Larson, S.L.; Ballard, J.H.; Runge, K.A.; Zhang, H.; Breland, B.R.; Nick, Z.H.; Weiss, C.A., Jr.; Han, F.X. Adsorption and characterization of exopolysaccharides from Rhizobium tropici on clay minerals. Carbohydr. Polym. Technol. Appl. 2023, 5, 100314. [Google Scholar] [CrossRef]
- Zhang, H.; Larson, S.L.; Ballard, J.H.; Runge, K.A.; Xie, X.; Olafuyi, O.M.; Ma, Y.; Han, F.X. Effects of exopolysaccharides from Rhizobium tropici on transformation and aggregate sizes of iron oxides. Geoderma 2024, 452, 117119. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y.; Razavi, B.S. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol. Biochem. 2019, 135, 343–360. [Google Scholar] [CrossRef]










| Bulk Density | Capillary Porosity | Field Capacity | Soil Structure | Water-Stable Aggregates | Organic Matter | pH | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Sand | Silt | Clay | <53 μm | 53–250 μm | 250–2000 μm | >2000 μm | |||||
| (g cm−3) | % | (g·kg−1) | |||||||||
| 1.26 | 37.92 | 30.18 | 22.24 | 50.18 | 27.59 | 88.23 | 10.99 | 0.78 | 0.00 | 1.96 | 6.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L.; Xie, X.; Larson, S.L.; Ballard, J.H.; Zhang, Q.; Nie, J.; Zhang, H.; Han, F.X. Enhanced Formation and Stability of Water-Stable Aggregates in Rhizosphere Soil over Bulk Soil with Exopolysaccharide from Rhizobium tropici: Insights from a Pot Study. Agronomy 2025, 15, 2653. https://doi.org/10.3390/agronomy15112653
Xiao L, Xie X, Larson SL, Ballard JH, Zhang Q, Nie J, Zhang H, Han FX. Enhanced Formation and Stability of Water-Stable Aggregates in Rhizosphere Soil over Bulk Soil with Exopolysaccharide from Rhizobium tropici: Insights from a Pot Study. Agronomy. 2025; 15(11):2653. https://doi.org/10.3390/agronomy15112653
Chicago/Turabian StyleXiao, Liang, Xinyun Xie, Steve L. Larson, John H. Ballard, Qinku Zhang, Jing Nie, Huimin Zhang, and Fengxiang X. Han. 2025. "Enhanced Formation and Stability of Water-Stable Aggregates in Rhizosphere Soil over Bulk Soil with Exopolysaccharide from Rhizobium tropici: Insights from a Pot Study" Agronomy 15, no. 11: 2653. https://doi.org/10.3390/agronomy15112653
APA StyleXiao, L., Xie, X., Larson, S. L., Ballard, J. H., Zhang, Q., Nie, J., Zhang, H., & Han, F. X. (2025). Enhanced Formation and Stability of Water-Stable Aggregates in Rhizosphere Soil over Bulk Soil with Exopolysaccharide from Rhizobium tropici: Insights from a Pot Study. Agronomy, 15(11), 2653. https://doi.org/10.3390/agronomy15112653

