Residue Characteristics and Ecological Risks of Glyphosate and Aminomethylphosphonic Acid in a Karst Watershed: A Case Study of the Yangmei River Sub-Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sample Collection and Preservation
2.3. Measurement Methods
- (1)
- Physicochemical Parameters of Water Samples
- (2)
- Measurement of Soil Basic Physicochemical Properties
- (3)
- Determination Methods for GLY and AMPA
2.4. GLY Risk Assessment Method
- (1)
- Water GLY Pollution Risk Diagnosis Method
- (2)
- Soil GLY Pollution Risk Diagnosis Method
2.5. Data Processing and Analysis
3. Results and Discussion
3.1. Characteristics of Changes in the Physicochemical Properties of Water
3.2. Basic Physicochemical Properties of Soil
3.3. Glyphosate and AMPA Concentrations and Spatial Distribution in Surface Waters
3.3.1. Spatial Distribution Characteristics of Glyphosate in Surface Waters
3.3.2. Spatial Distribution Characteristics of AMPA in Surface Waters
3.4. Concentrations and Spatial Distribution of Glyphosate and AMPA in Soils
3.5. Glyphosate Pollution Risk Assessment
3.5.1. Risk Assessment of Glyphosate Pollution in Surface Waters
3.5.2. Zonation of Ecological Risk from Glyphosate Pollution in Soils
4. Discussion
4.1. Impacts of Glyphosate and AMPA on the Aquatic Environment
4.2. Spatiotemporal Distribution Characteristics of Glyphosate Pollution
4.3. Limitations and Future Perspectives
5. Conclusions
- (1)
- In the study area, the concentration of GLY in surface water ranged from 0 to 204.0 μg/L, with a mean value of 50.91 μg/L, while the concentration of its primary degradation product AMPA ranged from 0 to 127.26 μg/L, with an average of 26.51 μg/L. The maximum GLY concentration was observed in June. The spatiotemporal distribution of GLY in the aquatic environment exhibited significant heterogeneity. During months with higher precipitation (April, June, and August), elevated GLY concentrations were predominantly found at the confluences of tributaries, whereas in October—a month with lower rainfall—concentration hotspots shifted to the upstream sections of the river. The spatial distribution patterns of GLY and AMPA were found to be consistent. Risk assessment based on the aquatic GLY concentrations indicated a moderate level of ecological risk in the study area.
- (2)
- In soils, GLY concentrations ranged from 0 to 8.89 mg/kg, with a mean of 2.63 mg/kg, while AMPA concentrations varied from 0.48 to 21.02 mg/kg, with an average of 4.66 mg/kg. High concentrations of GLY were primarily observed in the mid- and downstream regions of the watershed, showing a declining gradient from the center outward. Risk diagnostics revealed that both GLY and AMPA contamination in the soil posed moderate to high ecological risks and could have adverse impacts on adjacent aquatic ecosystems due to potential leaching and runoff.
- (3)
- Given that glyphosate contamination in soils of the study area has reached a moderate to high risk level and has adversely affected surrounding water quality, preventing its further diffusion into adjacent aquatic ecosystems has become an urgent priority. Effective control and mitigation measures should be tailored to regional characteristics, focusing on promoting the rational use of glyphosate through precision agriculture, establishing vegetative buffer zones to intercept surface runoff, and strengthening monitoring networks in karst regions to identify potential subsurface transport and groundwater contamination risks. The integrated implementation of these measures can effectively reduce the environmental persistence and ecological risks of glyphosate while promoting the sustainable management of agricultural ecosystems in karst watersheds.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Raús, M.E.; Genki, T.; Joji, I.; Nicholas, C.; Michael, D. Globally consistent assessment of coastal eutrophication. Nat. Commun. 2021, 12, 6142. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Zhang, R.; Liu, X.; Peng, Q.; Wang, L. Agricultural nonpoint source pollutant loads into water bodies in a typical basin in the middle reach of the yangtze river. Ecotoxicol. Environ. Saf. 2023, 268, 115728. [Google Scholar] [CrossRef] [PubMed]
- Delhomme, O.; Rodrigues, A.; Hernandez, A.; Chimjarn, S.; Bertrand, C.; Bourdat-Deschamps, M.; Fritsch, C.; Pelosi, C.; Nelieu, S.; Millet, M. A method to assess glyphosate, glufosinate and aminomethylphosphonic acid in soil and earthworms. J. Chromatogr. A 2021, 1651, 462339. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef]
- Yaah, V.B.K.; Ahmadi, S.; Quimbayo, J.M.; Morales-Torres, S.; Ojala, S. Recent technologies for glyphosate removal from aqueous environment: A critical review. Environ. Res. 2024, 240, 117477. [Google Scholar] [CrossRef]
- Xin, L.; Wu, W.; Xue, X.; Fu, G.; Chen, Y.; Wang, X.; Liu, D.; Yang, X. Effects of aggregate size on kinetics of glyphosate degradation in red soil. Chin. J. Eco-Agric. 2021, 29, 910–921. [Google Scholar] [CrossRef]
- García-Pérez, J.A.; Alarcón-Gutiérrez, E.; Perroni, Y.; Barois, I. Earthworm communities and soil properties in shaded coffee plantations with and without application of glyphosate. Appl. Soil Ecol. 2014, 83, 230–237. [Google Scholar] [CrossRef]
- Villamar-Ayala, C.A.; Carrera-Cevallos, J.V.; Vasquez-Medrano, R.; Espinoza-Montero, P.J. Fate, eco-toxicological characteristics, and treatment processes applied to water polluted with glyphosate: A critical review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1476–1514. [Google Scholar] [CrossRef]
- Mahler, B.J.; Metre, P.C.V.; Burley, T.E.; Loftin, K.A.; Meyer, M.T.; Nowell, L.H. Similarities and differences in occurrence and temporal fluctuations in glyphosate and atrazine in small midwestern streams (USA) during the 2013 growing season. Sci. Total Environ. 2017, 579, 149–158. [Google Scholar] [CrossRef]
- Villeneuve, A.; Larroudé, S.; Humbert, J.F. Herbicide Contamination of Freshwater Ecosystems: Impact on Microbial Communities//Herbicides: Properties, Synthesis and Control of Weeds; Intech Open: London, UK, 2011. [Google Scholar]
- Lyndsay, S.; Reza, P. Glyphosate in runoff waters and in the root-zone: A review. Toxics 2015, 3, 462–480. [Google Scholar] [CrossRef]
- Deng, X.; Li, Y. Effect of Glyphosate on Soil Microorganisms. Agrochemicals 2005, 44, 59–62. [Google Scholar] [CrossRef]
- Defarge, N.; Spiroux De Vendômois, J.; Séralini, G.E. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol. Rep. 2018, 5, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Antoniou, M.N. Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Front. Public Health 2018, 5, 361. [Google Scholar] [CrossRef] [PubMed]
- Jungers, G.; Portet-Koltalo, F.; Cosme, J.; Séralini, G.E. Petroleum in pesticides: A need to change regulatory toxicology. Toxics 2022, 10, 670. [Google Scholar] [CrossRef]
- Ferrante, M.; Rapisarda, P.; Grasso, A.; Favara, C.; Oliveri Conti, G. Glyphosate and environmental toxicity with “one health” approach, a review. Environ. Res. 2023, 235, 116678. [Google Scholar] [CrossRef]
- Jaime, R.; Ricardo, D.C. Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: A survey in hopelchén, campeche, mexico. Int. J. Environ. Res. Public Health 2017, 14, 595. [Google Scholar] [CrossRef]
- Ferreira, N.G.C.; da Silva, K.A.; Guimarães, A.T.B.; de Oliveira, C.M.R. Hotspots of soil pollution: Possible glyphosate and aminomethylphosphonic acid risks on terrestrial ecosystems and human health. Environ. Int. 2023, 179, 108135. [Google Scholar] [CrossRef]
- Wang, C.; Lin, X.; Li, L.; Lin, L.; Lin, S. Glyphosate shapes a dinoflagellate-associated bacterial community while supporting algal growth as sole phosphorus source. Front. Microbiol. 2017, 8, 2530. [Google Scholar] [CrossRef]
- An, J.; Jiang, Y.; Cao, H.; Yi, C.; Li, S.; Qu, M.; Liu, G. Photodegradation of glyphosate in water and stimulation of by-products on algae growth. Ecotoxicol. Environ. Saf. 2023, 263, 115211. [Google Scholar] [CrossRef]
- Hartmann, A.; Jasechko, S.; Gleeson, T.; Wada, Y.; Andreo, B.; Barberá, J.A.; Brielmann, H.; Bouchaou, L.; Charlier, J.; Darling, W.G.; et al. Risk of groundwater contamination widely underestimated because of fast flow into aquifers. Proc. Natl. Acad. Sci. USA 2021, 118, e2024492118. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley & Sons Inc.: New York, NY, USA, 2007. [Google Scholar]
- Qiu, Y.; Yin, J.; Zhang, T.; Du, Y.; Zhang, B. Spatiotemporal dynamic analysis of a-level scenic spots in Guizhou Province, China. ISPRS Int. J. Geo Inf. 2021, 10, 568. [Google Scholar] [CrossRef]
- Yang, W.P.; Wei, C.; Lu, T.Y. Survey on pesticide use and the status of pesticide pollution in water sources in rural Guizhou. Adm. Tech. Environ. Monit. 2015, 27, 34–37. [Google Scholar]
- Bexfield, L.M.; Belitz, K.; Lindsey, B.D.; Toccalino, P.L.; Nowell, L.H. Pesticides and pesticide degradates in groundwater used for public supply across the United States: Occurrence and human-health context. Environ. Sci. Technol. 2020, 55, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.X.; Zhou, Y.C.; Zhou, X.W.; Zhang, C.L. ChunlaiDifferentiating Karst soil and soil in Karst region—A case study of Houzhai river watershed in puding county of Guizhou province. Soils 2020, 52, 414–420. [Google Scholar] [CrossRef]
- Ruan, Y.L.; Li, X.D.; Li, T.Y.; Chen, P.; Lian, B. Heavy metal pollution in agricultural aoils of the Karst areas and its harm to human health. Earth Environ. 2015, 43, 92–107. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Zhou, Q.W.; Zhang, S.Q.; Wei, X.C.; Ma, L.S. Comparing and analyzing different spatial interpolation methods for soil-moisture estimation in karst areas. Trop. Geogr. 2019, 39, 770–779. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Yang, X.; Wang, F.; Bento, C.P.M.; Meng, L.; van Dam, R.; Mol, H.; Liu, G.; Ritsema, C.J.; Geissen, V. Decay characteristics and erosion-related transport of glyphosate in chinese loess soil under field conditions. Sci. Total Environ. 2015, 530–531, 87–95. [Google Scholar] [CrossRef]
- Li, Z.M.; Kannan, K. A method for the analysis of glyphosate, aminomethylphosphonic acid, and glufosinate in human urine using liquid chromatography-tandem mass spectrometry. Int. J. Environ. Res. Public Health 2022, 19, 4966. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, X.; Zhang, B.; Bi, J.; Zhang, H.; Wang, J.; Fu, J.; Wang, Y. Screening of characteristic pollutants and risk pollutants in different media in the Yangtze River Basin based on comprehensive scoring and risk quotient methods. Environ. Sci. 2024, 45, 5214–5226. [Google Scholar] [CrossRef]
- Liu, S.; Wang, T.; Wang, Z.; Miao, F.; Wang, F.; Li, Z. Water quality criteria derivation and ecological risk assessment for glyphosate. Asian J. Ecotoxicol. 2023, 18, 335–350. [Google Scholar]
- Pérez, D.J.; Iturburu, F.G.; Calderon, G.; Oyesqui, L.A.E.; De Gerónimo, E.; Aparicio, V.C. Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the pampas region, argentina. Chemosphere 2021, 263, 128061. [Google Scholar] [CrossRef]
- Vryzas, Z.; Alexoudis, C.; Vassiliou, G.; Galanis, K.; Papadopoulou-Mourkidou, E. Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern greece. Ecotoxicol. Environ. Saf. 2011, 74, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.D.; He, X.Y.; Liang, Y.F.; Zhu, S.P.; Cui, Y.M.; Wu, C. Residual characteristics and ecological risk of glyphosate and aminomethylphosphonic acid residues in surface soils from Nandu River Basin, China. Agrochemicals 2022, 61, 894–899. [Google Scholar] [CrossRef]
- Artigas, J.; Batisson, I.; Carles, L. Dissolved organic matter does not promote glyphosate degradation in auto-heterotrophic aquatic microbial communities. Environ. Pollut. 2020, 259, 113951. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.Y.; Peng, Z.R.; Dai, Z. Advances in aquatic biotoxicity, environmental behavior and detection of glyphosate. Agrochemicals 2020, 59, 6–10. [Google Scholar] [CrossRef]
- Zhou, C.F.; Lin, J.W.; Li, Y.; Liu, A.Q. Effects of Glyphosate on Inorganic Phosphorus Transformation in Soil. J. Northwest For. Univ. 2016, 31, 71–77. [Google Scholar]
- Xu, Y.G.; Li, J.; Qin, J.H.; Li, Q.; Li, H.S. Joint toxicity of glyphosate and As(III) to Daphnia magna in aquatic environments. J. Agro-Environ. Sci. 2015, 34, 2076–2082. [Google Scholar]
- Wang, B.; Jiang, L.; Pan, B.; Lin, Y. Acute toxicity of Cu2+, Pb2+ and their combined contamination with two herbicides to earthworms. Agrochemicals 2020, 59, 425–429. [Google Scholar] [CrossRef]
- Paerl, H.W.; Hall, N.S.; Calandrino, E.S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 2011, 409, 1739–1745. [Google Scholar] [CrossRef]
- Sun, M.; Li, H.; Jaisi, D.P. Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. Water 2019, 163, 114840. [Google Scholar] [CrossRef]
- Bauer, S.; Liedl, R.; Sauter, M. Modeling the influence of epikarst evolution on karst aquifer genesis: A time-variant recharge boundary condition for joint karst-epikarst development. Water Resour. Res. 2005, 41, W09409. [Google Scholar] [CrossRef]
- Rodríguez, A.G.P.; López, M.I.R.; Casillas, Á.D.; León, J.A.A.; Banik, S.D. Impact of pesticides in karst groundwater: Review of recent trends in Yucatan, Mexico. Groundw. Sustain. Dev. 2018, 7, 20–29. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Concentrations of Glyphosate, Its Degradation Product (AMPA) and Other Herbicides in the Mississippi River Basin, 2001–2003. SIR 2007-5122. Available online: https://pubs.usgs.gov/sir/2007/5122/pdf/SIR2007-5122.pdf (accessed on 15 September 2025).
- Medalie, L.; Baker, N.T.; Shoda, M.E.; Stone, W.W.; Meyer, M.T.; Stets, E.G.; Wilson, M. Influence of land use and region on glyphosate and aminomethylphosphonic acid in streams in the USA. Sci. Total Environ. 2020, 707, 136008. [Google Scholar] [CrossRef]
- Qiao, C.; Wang, C.; Pang, R.; Tian, F.; Han, L.; Guo, L.; Luo, J.; Li, J.; Pang, T.; Xie, H.; et al. Environmental behavior and influencing factors of glyphosate in peach orchard ecosystem. Ecotoxicol. Environ. Saf. 2020, 206, 111209. [Google Scholar] [CrossRef]
- Lutri, V.F.; Matteoda, E.; Blarasin, M.; Aparicio, V.; Giacobone, D.; Maldonado, L.; Becher Quinodoz, F.; Cabrera, A.; Giuliano Albo, J. Hydrogeological features affecting spatial distribution of glyphosate and AMPA in groundwater and surface water in an agroecosystem. Córdoba, Argentina. Sci. Total Environ. 2020, 711, 134557. [Google Scholar] [CrossRef]
- Melendez-Pastor, I.; Hernández, E.I.; Navarro-Pedreño, J.; Almendro-Candel, M.B.; Gómez Lucas, I.; Jordán Vidal, M.M. Occurrence of Pesticides Associated with an Agricultural Drainage System in a Mediterranean Environment. Appl. Sci. 2021, 11, 10212. [Google Scholar] [CrossRef]
- Montiel-León, J.M.; Munoz, G.; Vo Duy, S.; Do, D.T.; Vaudreuil, M.; Goeury, K.; Guillemette, F.; Amyot, M.; Sauvé, S. Widespread Occurrence and Spatial Distribution of Glyphosate, Atrazine, and Neonicotinoids Pesticides in the St. Lawrence and Tributary Rivers. Environ. Pollut. 2019, 250, 29–39. [Google Scholar] [CrossRef]
- Morrás, H.; Behrends Kraemer, F.; Sainz, D.; Fernández, P.; Chagas, C. Soil Structure and Glyphosate Fate under No-Till Management in the Pampa Region. II. Glyphosate and AMPA Persistence and Spatial Distribution in the Long-Term: A Conceptual Model. Soil Tillage Res. 2022, 223, 105471. [Google Scholar] [CrossRef]
- Silva, V.; Montanarella, L.; Jones, A.; Fernandez-Ugalde, O.; Mol, H.; Ritsema, C.J.; Geissen, V. Distribution of Glyphosate and Aminomethylphosphonic Acid (AMPA) in Agricultural Topsoils of the European Union. Sci. Total Environ. 2018, 621, 1352–1359. [Google Scholar] [CrossRef]
- Wei, C.; Song, L.; Yang, W.; Zhao, Y. Research on Glyphosate Pesticide Residue in Surface Water in Guiyang. Environ. Sci. Technol. 2016, 39, 126–130. [Google Scholar]
- Fan, J.; Geng, J.; Wang, X. Determination of Glyphosate in Taihu Lake Water by Ion Chromatography. In Proceedings of the 6th National Conference on Environmental Chemistry and Exhibition on Environmental and Analytical Instruments, Shanghai, China, 21 September 2011; p. 2. [Google Scholar]
- Li, X.; Qi, J.; Chen, Y. Determination of Dichloroacetic Acid, Trichloroacetic Acid and Glyphosate in Environmental Water by Ion Chromatography with Large Volume Direct Injection. Chin. J. Appl. Chem. 2009, 26, 447–450. [Google Scholar]
- Bentoa, C.P.M.; van den Heuvel, A.S.; Yin, B.X.; Pérez, M.M.J.; Mol, H.G.J.; Ritsema, C.J.; Geissen, V. Dynamics of Glyphosate and AMPA in the Soil Surface Layer of Glyphosate-Resistant Crop Cultivations in the Loess Pampas of Argentina. Environ. Pollut. 2019, 244, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Froger, C.; Jolivet, C.; Budzinski, H.; Pierdet, M.; Caria, G.; Saby, N.P.A.; Arrouays, D.; Bispo, A. Pesticide Residues in French Soils: Occurrence, Risks, and Persistence. Environ. Sci. Technol. 2023, 57, 7818–7827. [Google Scholar] [CrossRef]
- Rose, M.T.; Zhang, P.; Rose, T.J.; Scanlan, C.A.; McGrath, G.; Van Zwieten, L. Herbicide Residues in Australian Grain Cropping Soils at Sowing and Their Relevance to Crop Growth. Sci. Total Environ. 2022, 833, 155105. [Google Scholar] [CrossRef]






| NO. | Index | Abbreviation | Determination Method |
|---|---|---|---|
| 1 | pH | pH | Potentiometric method |
| 2 | Organic carbon | SOC | Potassium dichromate external heating method |
| 3 | Total phosphorus | TP | Sodium hydroxide fusion-molybdenum-antimony anti-spectrophotometric method |
| 4 | Total nitrogen | TN | Semi-micro Kjeldahl nitrogen determination method |
| 5 | Total potassium | TK | Sodium hydroxide fusion-flame photometric method |
| 6 | Alkaline nitrogen | AN | Alkaline hydrolysis diffusion method |
| 7 | Available phosphorus | AP | Molybdenum-antimony anti-spectrophotometric method |
| 8 | Available potassium | AK | Flame photometric method |
| 9 | Electrical conductivity | EC | Conductivity meter measurement |
| Time/min | Phase A/% | Phase B/% |
|---|---|---|
| 0.00 | 90.00 | 10.00 |
| 2.00 | 90.00 | 10.00 |
| 3.00 | 70.00 | 30.00 |
| 8.00 | 30.00 | 70.00 |
| 8.10 | 90.00 | 10.00 |
| 10.00 | 90.00 | 10.00 |
| NO. | Compound | Retention Time (min) | CAS Number | Parent Ion (m/z) | Daughter Ion (m/z) |
|---|---|---|---|---|---|
| 1 | GLY | 4.839 | 1071-83-6 | 392 | 179 |
| 88 | |||||
| 2 | AMPA | 5.181 | 1066-51-9 | 334 | 179 |
| 112 |
| NO. | Compound | Linear Equation | Correlation Coefficient (r2) |
|---|---|---|---|
| 1 | GLY | y = 12.423x + 25.443 | 0.9991 |
| 2 | AMPA | y = 19.406x + 7.105 | 0.9998 |
| RQ Range | Risk Classification |
|---|---|
| RQ < 0.1 | No risk |
| 0.1 ≤ RQ < 1 | Low risk |
| 1 ≤ RQ < 10 | Medium risk |
| RQ ≥ 10 | High risk |
| Compound | Earthworm (μg/g) | |
|---|---|---|
| NOEC | PNEC | |
| GLY | >21.31 | 2.131 |
| AMPA | 28.12 | 2.812 |
| RQ Range | Risk Classification |
|---|---|
| RQ < 0.1 | Low risk |
| 0.1 ≤ RQ < 1 | Medium risk |
| RQ ≥ 1 | High risk |
| Index. | April | June | August | October | |
|---|---|---|---|---|---|
| Time | |||||
| EC (μs/cm) | 608.27 ± 149.97 a | 519.38 ± 88.89 b | 475.35 ± 42.08 b | 370.54 ± 128.17 c | |
| DO (mg/L) | 9.53 ± 2.70 a | 7.84 ± 1.52 a | 7.96 ± 1.25 a | 8.71 ± 2.76 a | |
| T (°C) | 22.25 ± 2.20 c | 26.30 ± 1.80 a | 27.00 ± 1.48 a | 24.75 ± 1.74 b | |
| pH | 7.75 ± 0.31 a | 7.57 ± 0.18 b | 7.82 ± 0.19 a | 7.77 ± 0.26 a | |
| CODMn (mg/L) | 5.82 ± 1.78 a | 4.97 ± 1.93 ab | 3.88 ± 1.09 c | 4.17 ± 1.43 c | |
| TP (mg/L) | 0.19 ± 0.14 a | 0.18 ± 0.08 a | 0.10 ± 0.13 b | 0.09 ± 0.04 b | |
| NH3-N (mg/L) | 0.72 ± 0.32 b | 1.69 ± 2.57 a | 0.37 ± 0.04 b | 2.14 ± 0.46 a | |
| TN (mg/L) | 2.16 ± 1.05 ab | 3.27 ± 4.43 a | 1.11 ± 0.62 b | 0.77 ± 0.35 c | |
| TOC (mg/L) | 6.62 ± 3.39 a | 6.08 ± 3.87 ab | 4.64 ± 1.38 b | 1.89 ± 2.58 c | |
| C/P | 45.29 ± 28.27 b | 33.20 ± 12.82 b | 73.30 ± 35.68 a | 41.02 ± 59.47 b | |
| N/P | 14.80 ± 9.3 ab | 15.60 ± 12.64 ab | 20.33 ± 15.40 a | 10.21 ± 5.59 b | |
| Index | Concentration |
|---|---|
| TP (g/kg) | 1.10 ± 0.74 |
| TK (g/kg) | 1.13 ± 0.47 |
| TN (g/kg) | 4.37 ± 1.52 |
| SOM (g/kg) | 39.34 ± 11.29 |
| AP (mg/kg) | 16.74 ± 11.22 |
| AK (mg/kg) | 2.17 ± 0.48 |
| AN (mg/kg) | 149.09 ± 33.79 |
| pH | 6.42 ± 0.74 |
| EC (μs/cm) | 172.50 ± 66.38 |
| Project | Range (mg/kg) | Mean Value (mg/kg) | Detection Rate (%) | >1 mg/kg Proportion (%) |
|---|---|---|---|---|
| GLY | 0~8.89 | 2.63 | 80 | 70 |
| AMPA | 0.48~21.02 | 4.66 | 100 | 90 |
| GLY | AMPA | |
|---|---|---|
| EC | 0.011 | 0.056 |
| DO | −0.048 | −0.080 |
| T | 0.167 | 0.179 |
| pH | 0.071 | 0.098 |
| COD | 0.334 * | 0.430 ** |
| TP | 0.266 * | 0.232 |
| NH3-N | 0.176 | 0.242 |
| TN | 0.350 * | 0.423 ** |
| TOC | 0.174 | 0.179 |
| C/P | −0.094 | −0.032 |
| N/P | −0.140 | −0.201 |
| GLY | 1.000 | 0.948 ** |
| NO. | Location | GLY (μg/L) | AMPA (μg/L) | Reference |
|---|---|---|---|---|
| 1 | Argentina (Córdoba) | 0.2–167.4 | 0.7–49.4 | [49] |
| 2 | Mediterranean Region | 6.24 | — | [50] |
| 3 | Canada (St. Lawrence River) | 470 | 1160 | [51] |
| 4 | Argentina (Pampas) | 1800 | 1900 | [52] |
| 5 | European Union | 370 | 200 | [53] |
| 6 | China (Guiyang) | 73.2 | — | [54] |
| 7 | China (Taihu Lake) | 440–15,210 | — | [55] |
| 8 | China (Pearl River Basin) | 190 | — | [56] |
| 9 | Bogue Phalia Basin (Mississippi, USA) | 0.03–73 | — | [11] |
| 10 | Present study (study region) | 0–204.0 | 0–127.26 | — |
| NO. | Location | GLY (μg/L) | AMPA (μg/L) | Reference |
|---|---|---|---|---|
| 1 | Argentina | 270–420 | 1300–1700 | [57] |
| 2 | France | 359 | 247 | [58] |
| 3 | Australia | 220 | 310 | [59] |
| 4 | China (Shanxi, Fenhe River Basin) | 11.9–153 | 71.8–362 | [33] |
| 5 | China (Hainan, Nandu River Basin) | 2.5–8402.4 | 47.3–5909.4 | [36] |
| 6 | Present study (study region) | 0–8888.5 | 47.90–21,021.0 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yan, Y.; Dai, Q.; Shi, Z.; Zhou, H.; Hu, Z. Residue Characteristics and Ecological Risks of Glyphosate and Aminomethylphosphonic Acid in a Karst Watershed: A Case Study of the Yangmei River Sub-Basin. Agronomy 2025, 15, 2636. https://doi.org/10.3390/agronomy15112636
Zhang Y, Yan Y, Dai Q, Shi Z, Zhou H, Hu Z. Residue Characteristics and Ecological Risks of Glyphosate and Aminomethylphosphonic Acid in a Karst Watershed: A Case Study of the Yangmei River Sub-Basin. Agronomy. 2025; 15(11):2636. https://doi.org/10.3390/agronomy15112636
Chicago/Turabian StyleZhang, You, Youjin Yan, Quanhou Dai, Zhengchi Shi, Hong Zhou, and Zeyin Hu. 2025. "Residue Characteristics and Ecological Risks of Glyphosate and Aminomethylphosphonic Acid in a Karst Watershed: A Case Study of the Yangmei River Sub-Basin" Agronomy 15, no. 11: 2636. https://doi.org/10.3390/agronomy15112636
APA StyleZhang, Y., Yan, Y., Dai, Q., Shi, Z., Zhou, H., & Hu, Z. (2025). Residue Characteristics and Ecological Risks of Glyphosate and Aminomethylphosphonic Acid in a Karst Watershed: A Case Study of the Yangmei River Sub-Basin. Agronomy, 15(11), 2636. https://doi.org/10.3390/agronomy15112636

