Research Trends in Evaluation of Crop Water Use Efficiency in China: A Bibliometric Analysis
Abstract
1. Introduction
2. Data Sources and Methodology
2.1. Data Sources
2.2. Methodology
3. Results and Discussion
3.1. Analysis of Publication and Collaboration Networks
3.1.1. Trends in Publication Output
3.1.2. Institutional Collaboration Network Characteristics
3.1.3. Productive Authors and Collaboration Networks
3.1.4. Citation Analysis
| Ranking | NCP | NWC | ||||||
|---|---|---|---|---|---|---|---|---|
| Author | DOI | Citations | TC/Y | Author | DOI | Citations | TC/Y | |
| 1 | [26] | 10.1016/j.agwat.2006.04.008 | 372 | 19.58 | [31] | 10.1016/j.agwat.2016.05.007 | 587 | 73.38 |
| 2 | [37] | 10.1016/j.agwat.2009.06.004 | 292 | 19.47 | [36] | 10.1093/nsr/nwu017 | 493 | 44.82 |
| 3 | [28] | 10.1016/j.agwat.2010.01.008 | 263 | 17.53 | [34] | 10.1016/j.agwat.2012.10.001 | 367 | 30.58 |
| 4 | [38] | 10.1007/s00271-002-0059-x | 230 | 10.45 | [33] | 10.1016/j.fcr.2014.02.013 | 313 | 28.45 |
| 5 | [39] | 10.1016/j.agwat.2015.12.026 | 202 | 22.44 | [32] | 10.1093/jxb/erv034 | 286 | 28.60 |
| 6 | [27] | 10.1016/j.agwat.2020.106002 | 200 | 40.00 | [40] | 10.1016/bs.agron.2018.08.003 | 241 | 34.43 |
| 7 | [41] | 10.2134/agronj2004.0194 | 199 | 9.95 | [42] | 10.1016/j.fcr.2018.02.002 | 211 | 30.14 |
| 8 | [43] | 10.1016/j.agwat.2008.11.012 | 198 | 13.20 | [44] | 10.1016/j.agwat.2013.09.015 | 203 | 18.45 |
| 9 | [45] | 10.1016/j.fcr.2018.02.011 | 192 | 27.43 | [46] | 10.1093/nsr/nwaa146 | 178 | 35.60 |
| 10 | [47] | 10.1016/j.fcr.2016.07.009 | 186 | 20.67 | [48] | 10.1016/j.agwat.2010.03.008 | 175 | 11.67 |
| 11 | [49] | 10.1016/j.agwat.2009.02.012 | 177 | 11.80 | [50] | 10.1016/j.agwat.2015.07.019 | 171 | 17.10 |
| 12 | [51] | 10.1016/j.agwat.2020.106238 | 176 | 35.20 | [35] | 10.1016/j.agrformet.2016.01.142 | 152 | 16.89 |
| 13 | [29] | 10.1016/j.agwat.2011.02.003 | 169 | 12.07 | [52] | 10.1016/j.ecolind.2016.06.022 | 148 | 16.44 |
| 14 | [53] | 10.1016/j.agwat.2019.03.011 | 146 | 24.33 | [54] | 10.1016/j.fcr.2017.05.026 | 146 | 18.25 |
| 15 | [55] | 10.1016/j.agwat.2009.06.003 | 142 | 9.47 | [56] | 10.1016/j.agwat.2019.105986 | 146 | 29.20 |
| 16 | [57] | 10.1016/j.eja.2005.06.001 | 142 | 7.47 | [58] | 10.1016/j.fcr.2019.01.002 | 139 | 23.17 |
| 17 | [59] | 10.1016/j.scitotenv.2018.06.157 | 138 | 19.71 | [60] | 10.1016/j.still.2017.04.008 | 137 | 17.12 |
| 18 | [30] | 10.1016/j.agwat.2016.05.004 | 137 | 17.12 | [61] | 10.1016/j.agwat.2016.05.029 | 133 | 16.63 |
| 19 | [62] | 10.1016/j.scitotenv.2017.10.284 | 115 | 16.43 | [63] | 10.1016/j.agwat.2016.05.031 | 132 | 16.50 |
| 20 | [64] | 10.1016/j.jhydrol.2015.01.010 | 111 | 11.10 | [65] | 10.1016/j.agwat.2016.08.019 | 121 | 15.12 |
3.2. Keyword Co-Occurrence and Cluster Analysis
3.3. Analysis of Thematic Evolution Trends
3.4. Keyword Burst Analysis
3.5. Thematic Content Analysis
| Cluster | NCP | NWC | ||
|---|---|---|---|---|
| Keyword | Representative Cited References | Keyword | Representative Cited References | |
| #0 | NCP | [41,59,84,105,106,107,130] | Crop Coefficient | [31,120,121,131,132,133,134] |
| #1 | Drip Irrigation | [73,82,108,109,110,135,136]; | Grain Yield | [69,137,138] |
| #2 | Climate Change | [122,139,140,141,142,143,144] | Water Use Efficiency | [31,99,122,123,124,136,145] |
| #3 | Winter Wheat | [59,110,111,112,113,139,146,147,148] | Transpiration | [122,149,150,151] |
| #4 | Nitrogen Use Efficiency | [59,106,111,114,115,116,146,147,152] | Soil Temperature | [153,154,155,156,157] |
| #5 | Eddy Covariance | [106,112,125,142,158,159] | NWC | [31,125,126,160,161] |
| #6 | Tillage Practices | [73,146,147,162] | Environmental Flows | [162,163,164,165] |
| #7 | Agricultural Irrigation Management | [73,117,118,119,129,139,166,167] | Arid Region | [168,169,170,171,172] |
| #8 | Water ManagementSoil | [167,170,173,174,175] | Water Balance | [137,170,176,177,178] |
| #9 | NA | NA | Carbon Isotope Discrimination | [122,127,128,129,179] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, M.; Wang, X.; Jia, B. Driving factors and spatiotemporal differentiation of irrigation water use efficiency in China. Resour. Sci. 2019, 41, 2032–2042. [Google Scholar] [CrossRef]
- Jia, Z.; Liu, P.; Ma, Y.; Zheng, F. Analysis of the current situation and trends of water resources development and utilization in China. Water Resour. Power 2023, 41, 27–30. [Google Scholar]
- Holloway-Phillips, M. Improving Crop Water-Use Efficiency Requires Optimizing the Circadian Clock. Plant Physiol. 2020, 183, 29–30. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56. 2020. Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements (FAO Irrigation and Drainage Paper No. 56). Food and Agriculture Organization of the United Nations. 1998. Available online: https://www.fao.org/3/x0490e/x0490e00.htm (accessed on 4 October 2025).
- Gómez-Bellot, M.J.; Parra, A.; Nortes, P.; Alarcón, J.J.; Ortuño, M.F. Searching for a deficit irrigation strategy to save water and improve fruit quality without compromising pomegranate production. Sci. Hortic. 2024, 324, 112631. [Google Scholar] [CrossRef]
- Kang, S.; Chen, Y.; Gong, D.; Mei, X.; Wang, S.; Du, T.; Huang, F. Current Situation and Future Security of Agricultural Water Resources in North China. Chin. J. Eng. Sci. 2019, 21, 28–37. [Google Scholar] [CrossRef]
- Zhang, Z. Research on Pressure Measurement and Decoupling Effect of China’s Carbon Footprint-Based Oncounty Panel Data; Northwest A&F University: Xianyang, China, 2024. [Google Scholar]
- Wang, H.; Ren, H.; Zhang, L.; Zhao, Y.; Liu, Y.; He, Q.; Li, G.; Han, K.; Zhang, J.; Zhao, B.; et al. A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain. Agric. Syst. 2023, 204, 103541. [Google Scholar] [CrossRef]
- Sun, Z.; Jia, J.; Li, X. Evolution characteristics and provincial convergence of pesticide application density in China: An empirical study based on the provincial data from 1991 to 2014. Res. Agric. Mod. 2017, 38, 792–800. [Google Scholar]
- Gao, X. InSAR Monitoring of Glacial Mass Balance in Typical Alpine Basins; Henan Polytechnic University: Jiaozuo, China, 2023. [Google Scholar]
- Khatei, G.; Rinaldo, T.; Van Pelt, R.S.; D’Odorico, P.; Ravi, S. Wind Erodibility and Particulate Matter Emissions of Salt-Affected Soils: The Case of Dry Soils in a Low Humidity Atmosphere. J. Geophys. Res. Atmos. 2024, 129, e2023JD039576. [Google Scholar] [CrossRef]
- Kang, S.; Huo, Z.; Li, W. High-efficiency water use and eco-environmental impacts in agriculture in arid regions: Advances and future strategies. Sci. Found. China 2016, 30, 208–212. [Google Scholar]
- Wang, J.; Yuan, C.; Zhang, Y. Research progress on reference crop evapotranspiration calculation at different scales. J. Irrig. Drain 2017, 36, 78–81. [Google Scholar]
- Feng, Z.; Du, C.; Zhang, J.; Xu, W.; Xu, F. Research advances of water-saving irrigation technology and water use efficiency in China and Europe. Plant Physiol. J. 2023, 59, 1735–1748. [Google Scholar]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Dong, B.; Liu, H.; Wang, Y.; Qiao, Y.; Zhang, M.; Yang, H.; Jin, L.; Liu, M. Physio-ecological regulating mechanisms for highly efficient water use of crops. Chin. J. Eco-Agric. 2018, 26, 1465–1475. [Google Scholar]
- Pritchard, A. Statistical Bibliography. In An Interim Bibliography; ERIC: Washington, DC, USA, 1969. [Google Scholar]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Small, H. Tracking and predicting growth areas in science. Scientometrics 2006, 68, 595–610. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2005, 57, 359–377. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Bibliometric Mapping of the Computational Intelligence Field. World Sci. 2007, 15, 011–035. [Google Scholar] [CrossRef]
- Li, J.; Chen, C. CiteSpace: Scientific Text Mining and Visualization, 3rd ed.; Capital University of Economics and Business Press: Beijing, China, 2023. [Google Scholar]
- Wang, Z.; Li, G.; Li, C.; Li, A. Research on the semantic-based co-word analysis. Scientometrics 2011, 90, 855–875. [Google Scholar] [CrossRef]
- Fraley, C.; Raftery, A.E. Model-Based Clustering, Discriminant Analysis, and Density Estimation. J. Am. Stat. Assoc. 2002, 97, 611–631. [Google Scholar] [CrossRef]
- Boshoff, N.; Ngwenya, S. Agricultural Research in Zimbabwe: An Author-level Bibliometric Analysis of Publication Outlets and Research Collaboration. Sci. Technol. Soc. 2022, 27, 404–428. [Google Scholar] [CrossRef]
- Sun, H.; Liu, C.; Zhang, X.; Shen, Y.; Zhang, Y. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric. Water Manag. 2006, 85, 211–218. [Google Scholar] [CrossRef]
- Si, Z.; Zain, M.; Mehmood, F.; Wang, G.; Gao, Y.; Duan, A. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric. Water Manag. 2020, 231, 106002. [Google Scholar] [CrossRef]
- Fang, Q.; Ma, L.; Green, T.R.; Yu, Q.; Wang, T.; Ahuja, L.R. Water resources and water use efficiency in the North China Plain: Current status and agronomic management options. Agric. Water Manag. 2010, 97, 1102–1116. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Sun, H.; Shao, L.; Wang, Y. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades. Agric. Water Manag. 2011, 98, 1097–1104. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, W.; Chen, S.; Shao, L.; Sun, H. Responses of yield and WUE of winter wheat to water stress during the past three decades-A case study in the North China Plain. Agric. Water Manag. 2017, 179, 47–54. [Google Scholar] [CrossRef]
- Kang, S.; Hao, X.; Du, T.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, R.-Y.; Ma, B.-L.; Xiong, Y.-C.; Qiang, S.-C.; Wang, C.-L.; Liu, C.-A.; Li, F.-M. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crop. Res. 2014, 161, 137–148. [Google Scholar] [CrossRef]
- Li, R.; Hou, X.; Jia, Z.; Han, Q.; Ren, X.; Yang, B. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agric. Water Manag. 2013, 116, 101–109. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhu, J.; Fan, C.; Kong, X.; Turner, N.C.; Siddique, K.H.M.; Li, F. Multi-site assessment of the effects of plastic-film mulch on dryland maize productivity in semiarid areas in China. Agric. For. Meteorol. 2016, 220, 160–169. [Google Scholar] [CrossRef]
- Cheng, G.; Li, X.; Zhao, W.; Xu, Z.; Feng, Q.; Xiao, S.; Xiao, H. Integrated study of the water–ecosystem–economy in the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef]
- Sun, H.; Shen, Y.; Yu, Q.; Flerchinger, G.N.; Zhang, Y.; Liu, C.; Zhang, X. Effect of precipitation change on water balance and WUE of the winter wheat–summer maize rotation in the North China Plain. Agric. Water Manag. 2010, 97, 1139–1145. [Google Scholar] [CrossRef]
- Zhang, X.; Pei, D.; Hu, C. Conserving groundwater for irrigation in the North China Plain. Irrig. Sci. 2003, 21, 159–166. [Google Scholar] [CrossRef]
- Liu, E.; Mei, X.R.; Yan, C.R.; Gong, D.Z.; Zhang, Y.Q. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agric. Water Manag. 2016, 167, 75–85. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The Effects of Mulch and Nitrogen Fertilizer on the Soil Environment of Crop Plants. Adv. Agron. 2019, 153, 121–173. [Google Scholar]
- Zhang, X.; Chen, S.; Liu, M.; Pei, D.; Sun, H. Improved Water Use Efficiency Associated with Cultivars and Agronomic Management in the North China Plain. Agron. J. 2005, 97, 783–790. [Google Scholar] [CrossRef]
- Wang, H.; Wu, L.; Cheng, M.; Fan, J.; Zhang, F.; Zou, Y.; Chau, H.W.; Gao, Z.; Wang, X. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China. Field Crop. Res. 2018, 219, 169–179. [Google Scholar] [CrossRef]
- Chen, C.; Wang, E.; Yu, Q. Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agric. Water Manag. 2010, 97, 1175–1184. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, J.; Dai, H.; Wang, D.; Li, D. Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agric. Water Manag. 2014, 131, 87–94. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, M.; Li, J.; Liu, Z.; Zhao, Z.; Zhang, Y.; Zhou, S.; Wang, Z. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crop. Res. 2018, 221, 219–227. [Google Scholar] [CrossRef]
- Sun, D. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. Natl. Sci. Rev. 2020, 7, 1523–1526. [Google Scholar] [CrossRef]
- Xu, C.; Tao, H.; Tian, B.; Gao, Y.; Ren, J.; Wang, P. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat. Field Crop. Res. 2016, 196, 268–275. [Google Scholar] [CrossRef]
- Chen, W.; Hou, Z.; Wu, L.; Liang, Y.; Wei, C. Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agric. Water Manag. 2010, 97, 2001–2008. [Google Scholar] [CrossRef]
- Fang, Q.; Ma, L.; Yu, Q.; Ahuja, L.R.; Malone, R.W.; Hoogenboom, G. Irrigation strategies to improve the water use efficiency of wheat–maize double cropping systems in North China Plain. Agric. Water Manag. 2010, 97, 1165–1174. [Google Scholar] [CrossRef]
- Wang, X.; Zhanbin, L.; Yingying, X. Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China. Agric. Water Manag. 2015, 161, 53–64. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, D.L.; Wang, B.; Feng, P.; Bai, H.; Tang, J. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Lausch, A.; Bannehr, L.; Beckmann, M.; Boehm, C.; Feilhauer, H.; Hacker, J.M.; Heurich, M.; Jung, A.; Klenke, R.; Neumann, C.; et al. Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecol. Indic. 2016, 70, 317–339. [Google Scholar] [CrossRef]
- Kumar Jha, S.; Ramatshaba, T.S.; Wang, G.; Liang, Y.; Liu, H.; Gao, Y.; Duan, A. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric. Water Manag. 2019, 217, 292–302. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, C.; Xiao, C.; Xie, R.; Ming, B.; Hou, P.; Liu, G.; Xu, W.; Shen, D.; Wang, K.; et al. Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China. Field Crop. Res. 2017, 211, 137–146. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Sun, H.; Wang, Y.; Shao, L. Water use efficiency and associated traits in winter wheat cultivars in the North China Plain. Agric. Water Manag. 2010, 97, 1117–1125. [Google Scholar] [CrossRef]
- Zou, H.; Fan, J.; Zhang, F.; Xiang, Y.; Wu, L.; Yan, S. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric. Water Manag. 2020, 230, 105986. [Google Scholar] [CrossRef]
- Wu, D.; Yu, Q.; Lu, C.; Hengsdijk, H. Quantifying production potentials of winter wheat in the North China Plain. Eur. J. Agron. 2006, 24, 226–235. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Xue, X.; Kamran, M.; Ahmad, I.; Dong, Z.; Liu, T.; Jia, Z.; Zhang, P.; Han, Q. Plastic film mulching stimulates soil wet-dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region. Field Crop. Res. 2019, 233, 101–113. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Lin, G.; Wang, Y.; Liu, Y.; Zhang, M.; Zhou, J.; Wang, Z.; Zhang, Y. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain. Sci. Total Environ. 2018, 643, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Li, Y.; Du, Y. Biodegradable film mulching improves soil temperature, moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil Tillage Res. 2017, 171, 42–50. [Google Scholar] [CrossRef]
- Yang, H.; Du, T.; Qiu, R.; Chen, J.; Wang, F.; Li, Y.; Wang, C.; Gao, L.; Kang, S. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agric. Water Manag. 2017, 179, 193–204. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhang, R.; Li, J.; Zhang, M.; Zhou, S.; Wang, Z. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain. Sci. Total. Environ. 2018, 618, 112–120. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Zhang, X.; Zhang, L.; Li, Y.; Huang, G. Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China. Agric. Water Manag. 2017, 179, 144–157. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Pacenka, S.; Gao, W.; Ma, L.; Wang, G.; Yan, P.; Sui, P.; Steenhuis, T.S. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. J. Hydrol. 2015, 522, 428–438. [Google Scholar] [CrossRef]
- Fan, Y.; Ding, R.; Kang, S.; Hao, X.; Du, T.; Tong, L.; Li, S. Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland. Agric. Water Manag. 2017, 179, 122–131. [Google Scholar] [CrossRef]
- Moore, A.D.; Robertson, M.J.; Routley, R. Evaluation of the water use efficiency of alternative farm practices at a range of spatial and temporal scales: A conceptual framework and a modelling approach. Agric. Syst. 2011, 104, 162–174. [Google Scholar] [CrossRef]
- Song, H.; Li, T.; Liu, Y.; Huang, L.; Yang, L. Temporal variation of main grain crop yield, import and export, and fertilizer consumption in China over the past 20 years. J. Soil Water Conserv. 2023, 37, 332–339. [Google Scholar]
- Yin, W.; Chai, Q.; Zhao, L.; Fan, Z.; Hu, F.; Zhao, C.; Yu, A. Research progress on water regulation effects and ecological benefits of different mulching measures in the arid regions of Northwest China. J. Irrig. Drain 2025, 6, 1–11. [Google Scholar]
- Zhao, Z.; Li, Z.; Li, Y.; Yu, L.; Gu, X.; Cai, H. Supplementary irrigation and reduced nitrogen application improve the productivity, water and nitrogen use efficiency of maize-soybean intercropping system in the semi-humid drought-prone region of China. Agric. Water Manag. 2024, 305, 109126. [Google Scholar] [CrossRef]
- Nsabiyeze, A.; Ma, R.; Li, J.; Luo, H.; Zhao, Q.; Tomka, J.; Zhang, M.J. Tackling climate change in agriculture: A global evaluation of the effectiveness of carbon emission reduction policies. J. Clean. Prod. 2024, 468, 142973. [Google Scholar] [CrossRef]
- Keichinger, O.; Viguier, L.; Hellou, G.C.; Messéan, A.; Angevin, F.; Bockstaller, C. I-DRo: A new indicator to assess spatiotemporal diversity and ecosystem services of crop rotations. Eur. J. Agron. 2025, 164, 127531. [Google Scholar] [CrossRef]
- Luo, J. Research hotspots and evolutionary pathways of university counselors’ competence: A scientometric analysis based on CiteSpace. West. China Qual. Educ. 2024, 10, 25–29. [Google Scholar]
- Wang, J.; Dong, X.; Zhang, X.; Zhang, X.; Tian, L.; Lou, B.; Liu, X.; Sun, H. Comparing water related indicators and comprehensively evaluating cropping systems and irrigation strategies in the North China Plain for sustainable production. Ecol. Indic. 2023, 147, 110014. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Li, B.; Wu, Z. Evaluation and application of regional water saving based on water quota. S. N. Water Transf. Water Sci. Technol. 2023, 21, 95–106. [Google Scholar]
- Zhou, Q.; Zhang, Y.; Wu, F. Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China. Agric. Water Manag. 2021, 246, 106671. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Y.; Malik, I.; Wistuba, M.; Sun, L.; Yang, M.; Wang, Q.; Yu, R. Water Resources Evaluation in Arid Areas Based on Agricultural Water Footprint—A Case Study on the Edge of the Taklimakan Desert. Atmosphere 2022, 14, 67. [Google Scholar] [CrossRef]
- Teng, A.; Wang, Z. Using fuzzy matter-element model and weighted game theory to optimize deficit irrigation scheduling for sunflower. J. Irrig. Drain 2023, 42, 22–29. [Google Scholar]
- Zhao, M.; Shi, R. Agricultural green development under carbon peak and carbon neutrality goals: Implications, challenges and pathways selection. Soc. Sci. J. 2024, 162–171+239+241. [Google Scholar]
- Xu, R.; Cheng, G.; Wang, R.; Wang, X. Sustainability Assessment of China’s Food System—Based on Historical Dimension Analysis from 1981 to 2022; Chinese Journal of Agricultural Resources and Regional Planning: Beijing, China, 2025; pp. 1–18. [Google Scholar]
- Liu, C.; Yu, J.; Eloise, K. Groundwater Exploitation and Its Impact on the Environment in the North China Plain. Water Int. 2001, 26, 265–272. [Google Scholar] [CrossRef]
- Zhang, Y.; Kendy, E.; Qiang, Y.; Changming, L.; Yanjun, S.; Hongyong, S. Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain. Agric. Water Manag. 2004, 64, 107–122. [Google Scholar] [CrossRef]
- Wang, F.; Kang, Y.; Liu, S.; Hou, X. Effects of soil matric potential on potato growth under drip irrigation in the North China Plain. Agric. Water Manag. 2007, 88, 34–42. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Wang, E.; Chen, S.; Shao, L. Quantifying the impact of irrigation on groundwater reserve and crop production—A case study in the North China Plain. Eur. J. Agron. 2015, 70, 48–56. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Shen, Y.; Stricevic, R.; Pei, H.; Sun, H.; Amiri, E.; Penas, A.; del Rio, S. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agric. Water Manag. 2014, 135, 61–72. [Google Scholar] [CrossRef]
- Ma, S.; Yu, Z.; Shi, Y.; Gao, Z.; Luo, L.; Chu, P.; Guo, Z. Soil water use, grain yield and water use efficiency of winter wheat in a long-term study of tillage practices and supplemental irrigation on the North China Plain. Agric. Water Manag. 2015, 150, 9–17. [Google Scholar] [CrossRef]
- Dai, X.; Li, Y.; Ouyang, Z.; Wang, H.; Wilson, G.V. Organic manure as an alternative to crop residues for no-tillage wheat–maize systems in North China Plain. Field Crop. Res. 2013, 149, 141–148. [Google Scholar] [CrossRef]
- Bai, H.; Wang, J.; Fang, Q.; Huang, B. Does a trade-off between yield and efficiency reduce water and nitrogen inputs of winter wheat in the North China Plain? Agric. Water Manag. 2020, 233, 106095. [Google Scholar] [CrossRef]
- Tao, Z.; Ma, S.; Chang, X.; Wang, D.; Wang, Y.; Yang, Y.; Zhao, G.; Yang, J. Effects of tridimensional uniform sowing on water consumption, nitrogen use, and yield in winter wheat. Crop. J. 2019, 7, 480–493. [Google Scholar] [CrossRef]
- Hamani, A.K.M.; Abubakar, S.A.; Si, Z.; Kama, R.; Gao, Y.; Duan, A. Responses of grain yield and water-nitrogen dynamic of drip-irrigated winter wheat (Triticum aestivum L.) to different nitrogen fertigation and water regimes in the North China Plain. Agric. Water Manag. 2023, 288, 108494. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, X.; Qi, J.; Sun, D.; Marek, G.W.; Feng, P.; Li, B.; Liu, D.L.; Li, B.; Srinivasan, R.; et al. Assessment of the sustainability of groundwater utilization and crop production under optimized irrigation strategies in the North China Plain under future climate change. Sci. Total Environ. 2023, 899, 165619. [Google Scholar] [CrossRef]
- Liu, B.; Li, G.; Zhang, Y.; Zhang, L.; Lu, D.; Yan, P.; Yue, S.; Hoogenboom, G.; Meng, Q.; Chen, X. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change. J. Integr. Agric. 2025, 24, 2989–3003. [Google Scholar] [CrossRef]
- Yang, L.; Cheng, L.; Wang, P.; Zhao, H.; Zhao, J.; Zang, H.; Yang, Y.; Zeng, Z. Diversified rotation systems improve grain yield and water use efficiency of winter wheat under limited irrigation in the North China Plain. Crop J. 2025, 13, 1271–1280. [Google Scholar] [CrossRef]
- Huang, G.; Chai, Q.; Feng, F.; Yu, A. Effects of Different Tillage Systems on Soil Properties, Root Growth, Grain Yield, and Water Use Efficiency of Winter Wheat (Triticum aestivum L.) in Arid Northwest China. J. Integr. Agric. 2012, 11, 1286–1296. [Google Scholar] [CrossRef]
- Huang, C.; Zong, L.; Buonanno, M.; Xue, X.; Wang, T.; Tedeschi, A. Impact of saline water irrigation on yield and quality of melon (Cucumis melo cv. Huanghemi) in northwest China. Eur. J. Agron. 2012, 43, 68–76. [Google Scholar] [CrossRef]
- Wang, G.; Chen, J.; Wu, F.; Li, Z. An integrated analysis of agricultural water-use efficiency: A case study in the Heihe River Basin in Northwest China. Phys. Chem. Earth Parts 2015, 89–90, 3–9. [Google Scholar] [CrossRef]
- Zhou, L.; He, J.; Qi, Z.; Dyck, M.; Zou, Y.; Zhang, T.; Feng, H. Effects of lateral spacing for drip irrigation and mulching on the distributions of soil water and nitrate, maize yield, and water use efficiency. Agric. Water Manag. 2018, 199, 190–200. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Singh, V.P.; Fu, Q.; Liu, D.; Yang, G. Efficient allocation of agricultural land and water resources for soil environment protection using a mixed optimization-simulation approach under uncertainty. Geoderma 2019, 353, 55–69. [Google Scholar] [CrossRef]
- Han, C.; Zhang, B.; Liu, Y. Efficient water-saving irrigation based on regional irrigation schedule optimisation. Desalination Water Treat. 2020, 187, 30–41. [Google Scholar] [CrossRef]
- Gu, X.; Cai, H.; Zhang, Z.; Fang, H.; Chen, P.; Huang, P.; Li, Y.; Li, Y.; Zhang, L.; Zhou, J.; et al. Ridge-furrow full film mulching: An adaptive management strategy to reduce irrigation of dryland winter rapeseed (Brassica napus L.) in northwest China. Agric. For. Meteorol. 2019, 266–267, 119–128. [Google Scholar] [CrossRef]
- Yang, J.; Mao, X.; Wang, K.; Yang, W. The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China. Agric. Water Manag. 2018, 201, 232–245. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, J.; Zhang, J.; Li, W.; Ayantobo, O.O.; Wang, Z. Effects of macro-plastics on soil hydrothermal environment, cotton yield, and fiber quality under mulched drip irrigation in the arid region of Northwest China. Field Crop. Res. 2023, 302, 109060. [Google Scholar] [CrossRef]
- Chen, S.; Liu, W.; Morel, J.; Parsons, D.; Du, T. Improving yield, quality, and environmental co-benefits through optimized irrigation and nitrogen management of hybrid maize in Northwest China. Agric. Water Manag. 2023, 290, 108577. [Google Scholar] [CrossRef]
- Xiao, C.; Xu, X.; Li, Y.; Zhang, F.; Fan, J. Enhancing cotton field productivity in arid northwest China through improved farm-level nitrogen balance and reduced nitrogen footprint. Field Crop. Res. 2025, 327, 109891. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, Y.; Liao, Z.; Wang, X.; Zhang, X.; Huang, X.; Zhang, F.; Feng, L. Integrated assessment of water-nitrogen management for winter oilseed rape production in Northwest China. Agric. Water Manag. 2024, 298, 109891. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, L.; Shen, X.; Li, X.; Sun, J.; Duan, A.; Wu, L. Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency. Agric. Water Manag. 2014, 146, 1–10. [Google Scholar] [CrossRef]
- Li, H.; Mei, X.; Nangia, V.; Guo, R.; Liu, Y.; Hao, W.; Wang, J. Effects of different nitrogen fertilizers on the yield, water- and nitrogen-use efficiencies of drip-fertigated wheat and maize in the North China Plain. Agric. Water Manag. 2021, 243, 106474. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Sun, H.; Ren, T.; Wang, Y. Effects of winter wheat row spacing on evapotranpsiration, grain yield and water use efficiency. Agric. Water Manag. 2010, 97, 1126–1132. [Google Scholar] [CrossRef]
- Zhai, L.; Lu, L.; Dong, Z.; Zhang, L.; Zhang, J.; Jia, X.; Zhang, Z. The water-saving potential of using micro-sprinkling irrigation for winter wheat production on the North China Plain. J. Integr. Agric. 2021, 20, 1687–1700. [Google Scholar] [CrossRef]
- Wang, J.; Gong, S.; Xu, D.; Yu, Y.; Zhao, Y. Impact of drip and level-basin irrigation on growth and yield of winter wheat in the North China Plain. Irrig. Sci. 2012, 31, 1025–1037. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Gong, S.; Xu, D.; Snyder, R.; Chen, Y.; Zhao, Y.; Yan, Q. Effects of straw mulching on microclimate characteristics and evapotranspiration of drip-irrigated winter wheat in North China Plain. Int. J. Agric. Biol. Eng. 2018, 11, 122–131. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Mei, X.; Nangia, V.; Guo, R.; Hao, W.; Wang, J. An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study. Agric. Water Manag. 2023, 276, 108053. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Fang, Q.; Jia, B.; Li, D.; He, J.; Li, R. Effects of irrigation and nitrogen application on NO3--N distribution in soil, nitrogen absorption, utilization and translocation by winter wheat. Agric. Water Manag. 2023, 276, 108058. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Fischer, G.; Sun, L.; Tan, M.; Xin, L.; Liang, Z. Impact of the changing area sown to winter wheat on crop water footprint in the North China Plain. Ecol. Indic. 2015, 57, 100–109. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, F.; Li, H.; Wang, L.; Wu, S.; Xiao, G.; Wu, W. Optimized fertigation maintains high yield and mitigates N2O and NO emissions in an intensified wheat-maize cropping system. Agric. Water Manag. 2019, 211, 26–36. [Google Scholar] [CrossRef]
- Wang, F.; Fang, J.; Yao, L.; Han, D.; Zhou, Z.; Chen, B. Applications of land surface model to economic and environmental-friendly optimization of nitrogen fertilization and irrigation. Heliyon 2024, 10, e27549. [Google Scholar] [CrossRef]
- Li, Z.; Hu, K.; Li, B.; He, M.; Zhang, J. Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach. Agric. Water Manag. 2015, 159, 19–34. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Zhang, X.; Gu, X.; Yu, L.; Cai, H.; Peng, X. Using solar-induced chlorophyll fluorescence to predict winter wheat actual evapotranspiration through machine learning and deep learning methods. Agric. Water Manag. 2025, 309, 109322. [Google Scholar] [CrossRef]
- Fang, Q.; Zhang, X.; Shao, L.; Chen, S.; Sun, H. Assessing the performance of different irrigation systems on winter wheat under limited water supply. Agric. Water Manag. 2018, 196, 133–143. [Google Scholar] [CrossRef]
- Qian, B.; Shao, C.; Yang, F. Spatial suitability evaluation of the conversion and utilization of crop straw resources in China. Environ. Impact Assess. Rev. 2024, 105, 107438. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Sun, J.; Zhang, X.; Zhang, J. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agric. Water Manag. 2010, 97, 66–74. [Google Scholar] [CrossRef]
- Ding, R.; Tong, L.; Li, F.; Zhang, Y.; Hao, X.; Kang, S. Variations of crop coefficient and its influencing factors in an arid advective cropland of northwest China. Hydrol. Process. 2015, 29, 239–249. [Google Scholar] [CrossRef]
- Guo, H.; Wang, X.; Wang, Y.; Li, S. Effect of mulched drip irrigation on crop biomass and carbon fluxes in maize field. Agric. Water Manag. 2024, 303, 109016. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, F.; Guo, S.; Liu, X.; Guo, P. Inexact nonlinear improved fuzzy chance-constrained programming model for irrigation water management under uncertainty. J. Hydrol. 2018, 556, 397–408. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, P. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty. J. Hydrol. 2017, 553, 735–749. [Google Scholar] [CrossRef]
- Kang, S.; Shi, W.; Zhang, J. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crop. Res. 2000, 67, 207–214. [Google Scholar] [CrossRef]
- Wei, W.; Guo, Z.; Shi, P.; Zhou, L.; Wang, X.; Li, Z.; Pang, S.; Xie, B. Spatiotemporal changes of land desertification sensitivity in northwest China from 2000 to 2017. J. Geogr. Sci. 2021, 31, 46–68. [Google Scholar] [CrossRef]
- Cai, M.; Chen, Z.; Zhou, J.; Han, J.; Shi, Q. Effects of long-term cultivation practices and nitrogen fertilization rates on carbon stock in a calcareous soil on the Chinese Loess Plateau. J. Arid. Land 2017, 10, 129–139. [Google Scholar] [CrossRef]
- Zhu, L.; Liang, Z.S.; Xu, X.; Li, S.H.; Monneveux, P. Evidences for the association between carbon isotope discrimination and grain yield-Ash content and stem carbohydrate in spring wheat grown in Ningxia (Northwest China). Plant Sci. 2009, 176, 758–767. [Google Scholar] [CrossRef]
- Guo, C.; Wang, X.; Li, Y.; He, X.; Zhang, W.; Wang, J.; Shi, X.; Chen, X.; Zhang, Y. Carbon Footprint Analyses and Potential Carbon Emission Reduction in China’s Major Peach Orchards. Sustainability 2018, 10, 2908. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Chen, S.; Shao, L. Performance of a Double Cropping System under a Continuous Minimum Irrigation Strategy. Agron. J. 2014, 106, 281–289. [Google Scholar] [CrossRef]
- Ding, R.; Kang, S.; Li, F.; Zhang, Y.; Tong, L. Evapotranspiration measurement and estimation using modified Priestley–Taylor model in an irrigated maize field with mulching. Agric. For. Meteorol. 2013, 168, 140–148. [Google Scholar] [CrossRef]
- Li, S.; Kang, S.; Zhang, L.; Li, F.; Du, T.; Tong, L.; Wang, S.; Lu, H. Greater effect of canopy conductance in regulating the energy partition above the maize field in arid northwest China. Hydrol. Process. 2012, 27, 3452–3460. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Yan, B.; Zhang, J. Alternate Furrow Irrigation: A Practical Way to Improve Grape Quality and Water Use Efficiency in Arid Northwest China. J. Integr. Agric. 2013, 12, 509–519. [Google Scholar] [CrossRef]
- Ma, Y.; Ren, J.; Yang, S.; Ding, R.; Du, T.; Kang, S.; Tong, L. Enhancing maize yield and water productivity through coordinated root-shoot growth under mild water stress in dense planting. Field Crop. Res. 2025, 323, 109786. [Google Scholar] [CrossRef]
- Soothar, R.K.; Zhang, W.; Zhang, Y.; Tankari, M.; Mirjat, U.; Wang, Y. Evaluating the performance of SALTMED model under alternate irrigation using saline and fresh water strategies to winter wheat in the North China Plain. Environ. Sci. Pollut. Res. Int. 2019, 26, 34499–34509. [Google Scholar] [CrossRef]
- Guo, J.; Fan, J.; Zhang, F.; Yan, S.; Wu, Y.; Zheng, J.; Xiang, Y. Growth, grain yield, water and nitrogen use efficiency of rainfed maize in response to straw mulching and urea blended with slow-release nitrogen fertilizer: A two-year field study. Arch. Agron. Soil Sci. 2021, 68, 1554–1567. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, G.; Guo, Y.; Zhang, M.; Zhou, Y.; Duan, L. Optimizing irrigation and planting density of spring maize under mulch drip irrigation system in the arid region of Northwest China. Field Crop. Res. 2021, 266, 108141. [Google Scholar] [CrossRef]
- Huang, F.; Liu, Z.; Zhang, P.; Jia, Z. Hydrothermal effects on maize productivity with different planting patterns in a rainfed farmland area. Soil Tillage Res. 2021, 205, 104794. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Wang, Z.; Zhang, Y. Yield sustainability of winter wheat under three limited-irrigation schemes based on a 28-year field experiment. Crop. J. 2022, 10, 1774–1783. [Google Scholar] [CrossRef]
- Wang, D.; Qin, W.; Jia, G.; Shan, Z.; Hao, M. Assessing the effects of climate variability and vegetation conversion on variations of net primary productivity in the mountainous area of North China. For. Ecol. Manag. 2022, 506, 119957. [Google Scholar] [CrossRef]
- Wang, D.; Qin, W.; Xu, H.; Shan, Z.; Yu, X. Assessing the response of water use efficiency to climate variability and land-use changes in the mountainous area of North China. For. Ecol. Manag. 2023, 530, 120780. [Google Scholar] [CrossRef]
- Wang, X.; Lei, H.; Li, J.; Qu, Y.; Kong, D.; Huo, Z. Climate and management impacts on the spatiotemporal dynamics of water-carbon fluxes in the North China Plain. Agric. Ecosyst. Environ. 2023, 343, 108270. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, B.; Hou, Y.; Feng, P.; Liu, D.L.; Srinivasan, R.; Chen, Y. Assessing the feasibility of sprinkler irrigation schemes and their adaptation to future climate change in groundwater over-exploitation regions. Agric. Water Manag. 2024, 292, 108674. [Google Scholar] [CrossRef]
- Fang, Q.; Zhang, X.; Chen, S.; Shao, L.; Sun, H. Selecting traits to increase winter wheat yield under climate change in the North China Plain. Field Crops Res. 2017, 207, 30–41. [Google Scholar] [CrossRef]
- Qi, D.; Hu, T.; Song, X. Effects of nitrogen application rates and irrigation regimes on grain yield and water use efficiency of maize under alternate partial root-zone irrigation. J. Integr. Agric. 2020, 19, 2792–2806. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.; Shi, Y.; Zhang, Y. Effects of micro-sprinkling with different irrigation levels on winter wheat grain yield and greenhouse gas emissions in the North China Plain. Eur. J. Agron. 2023, 143, 126725. [Google Scholar]
- Latifmanesh, H.; Deng, A.; Nawaz, M.M.; Li, L.; Chen, Z.; Zheng, Y.; Wang, P.; Song, Z.; Zhang, J.; Zheng, C.; et al. Integrative impacts of rotational tillage on wheat yield and dry matter accumulation under corn-wheat cropping system. Soil Tillage Res. 2018, 184, 100–108. [Google Scholar] [CrossRef]
- Zhang, D.; Li, D.; Wang, H.; Li, H.; Li, R.; Batchelor, W.D.; Ju, H.; Li, Y. Tillage practices offset wheat yield reductions under limited irrigation regime in the North China Plain. Soil Tillage Res. 2023, 230, 105687. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Li, J.; He, X.; Gong, P.; Lin, E.; Li, K.; Li, L.; Binley, A. Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China. Agric. Water Manag. 2020, 232, 106039. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; He, Z.; Li, F.; Wang, Z.; Zhou, C.; Han, Y.; Lei, L. Effects of Regulated Deficit Irrigation on Yield and Quality of Isatis indigotica in a Cold and Arid Environment. Water 2022, 14, 1798. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Chen, Z.; Xiong, Y.; Huang, Q.; Xu, X.; Huo, Z. Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China. Agric. Water Manag. 2022, 260, 107277. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Sun, H.; Chen, S.; Shao, L.; Liu, X. Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: A case study in the North China Plain. Eur. J. Agron. 2013, 50, 52–59. [Google Scholar] [CrossRef]
- Lu, H.; Xia, Z.; Fu, Y.; Wang, Q.; Xue, J.; Chu, J. Response of Soil Temperature, Moisture, and Spring Maize (Zea mays L.) Root/Shoot Growth to Different Mulching Materials in Semi-Arid Areas of Northwest China. Agronomy 2020, 10, 453. [Google Scholar] [CrossRef]
- Qiang, S.; Zhang, F.; Zhang, Y.; Yan, S.; Fan, J.; Xiang, Y. Nitrogen application affects grain yield by altering the soil moisture and nitrate-N of maize/wheat cropping system in dryland areas of northwest China. Irrig. Drain 2020, 70, 16–26. [Google Scholar] [CrossRef]
- Dong, L.; Zeng, W.; Wu, L.; Lei, G.; Chen, H.; Srivastava, A.K.; Gaiser, T. Estimating the Pan Evaporation in Northwest China by Coupling CatBoost with Bat Algorithm. Water 2021, 13, 256. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, H.; Guo, Z.; Gong, S.; Shen, S.; Liao, S.; Wang, X.; Zhou, S.; Zhang, Z. Plastic-film-side seeding, as an alternative to traditional film mulching, improves yield stability and income in maize production in semi-arid regions. J. Integr. Agric. 2023, 22, 1021–1034. [Google Scholar] [CrossRef]
- Gu, X.; Cai, H.; Du, Y.; Li, Y. Effects of film mulching and nitrogen fertilization on rhizosphere soil environment, root growth and nutrient uptake of winter oilseed rape in northwest China. Soil Tillage Res. 2019, 187, 194–203. [Google Scholar] [CrossRef]
- Liu, J.; Si, Z.; Li, S.; Abdoul Kader, M.H.; Wu, L.; Wu, X.; Cao, H.; Gao, Y.; Duan, A. The high-low seedbed cultivation increases crop yield, economic benefit, and energy efficiency while reducing the carbon footprint of winter wheat. Energy 2024, 307, 132684. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Y.; Xu, X.; Sun, H.; Li, F.; Wang, Q. Characteristics of the water-energy-carbon fluxes of irrigated pear (Pyrus bretschneideri Rehd) orchards in the North China Plain. Agric. Water Manag. 2013, 128, 140–148. [Google Scholar] [CrossRef]
- Wang, G.; Lin, N.; Zhou, X.; Li, Z.; Deng, X. Three-Stage Data Envelopment Analysis of Agricultural Water Use Efficiency: A Case Study of the Heihe River Basin. Sustainability 2018, 10, 568. [Google Scholar] [CrossRef]
- Zhang, C.; McBean, E.A.; Huang, J. A Virtual Water Assessment Methodology for Cropping Pattern Investigation. Water Resour. Manag. 2014, 28, 2331–2349. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, T.; Zhang, F.; Ren, X.; Chen, X.; Zhao, X. Ridge cropping and furrow irrigation pattern improved spring maize (Zea mays L.) yield and water productivity in Hetao irrigation area of north-western China. J. Sci. Food Agric. 2022, 102, 6889–6898. [Google Scholar] [CrossRef] [PubMed]
- Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Duethmann, D.; Feike, T.; Frör, O.; Gärtner, P.; et al. Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change. Earth Syst. Dyn. 2015, 6, 83–107. [Google Scholar] [CrossRef]
- Xing, L.; Cui, N.; Liu, C.; Guo, L.; Zhao, L.; Wu, Z.; Jiang, X.; Wen, S.; Zhao, L.; Gong, D. Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model. Agric. Water Manag. 2024, 295, 108745. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, G.; Che, T.; Wang, S.; Xu, C.; Chen, H.; Zhang, Y.; Su, Y.; Fan, H. The ratio of transpiration to evapotranspiration and water use efficiency in an irrigated oasis agroecosystem: Different temporal-scale effects. Agric. Water Manag. 2024, 302, 108980. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Liu, X.; Shao, L.; Sun, H.; Chen, S. Improving Winter Wheat Performance by Foliar Spray of ABA and FA Under Water Deficit Conditions. J. Plant Growth Regul. 2015, 35, 83–96. [Google Scholar] [CrossRef]
- Liu, X.; Feike, T.; Shao, L.; Sun, H.; Chen, S.; Zhang, X. Effects of different irrigation regimes on soil compaction in a winter wheat–summer maize cropping system in the North China Plain. CATENA 2016, 137, 70–76. [Google Scholar] [CrossRef]
- Kang, S.; Su, X.; Tong, L.; Shi, P.; Yang, X.; Abe, Y.; Du, T.; Shen, Q.; Zhang, J. The impacts of human activities on the water–land environment of the Shiyang River basin, an arid region in northwest China. Hydrol. Sci. J. 2009, 49, 427. [Google Scholar]
- Du, T.; Kang, S.; Zhang, J.; Li, F.; Yan, B. Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation. Agric. Water Manag. 2008, 95, 659–668. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Li, F.; Hu, X. Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China. Agric. Water Manag. 2006, 84, 41–52. [Google Scholar] [CrossRef]
- Guo, H.; Li, S.; Kang, S.; Du, T.; Liu, W.; Tong, L.; Hao, X.; Ding, R. The controlling factors of ecosystem water use efficiency in maize fields under drip and border irrigation systems in Northwest China. Agric. Water Manag. 2022, 272, 107839. [Google Scholar] [CrossRef]
- Dai, Y.; Liao, Z.; Lai, Z.; Bai, Z.; Zhang, F.; Li, Z.; Fan, J. Interactive effects of planting pattern, supplementary irrigation and planting density on grain yield, water-nitrogen use efficiency and economic benefit of winter wheat in a semi-humid but drought-prone region of northwest China. Agric. Water Manag. 2023, 287, 108438. [Google Scholar] [CrossRef]
- Ayantobo, O.O.; Li, Y.; Song, S. Multivariate Drought Frequency Analysis using Four-Variate Symmetric and Asymmetric Archimedean Copula Functions. Water Resour. Manag. 2018, 33, 103–127. [Google Scholar] [CrossRef]
- Qin, X.; Li, Y.; Shi, C.; Song, D.; Wen, X.; Liao, Y.; Siddique, K.H.M. The number of cultivars in varietal winter-wheat mixtures influence aboveground biomass and grain yield in North China. Plant Soil 2019, 439, 131–143. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Wang, G.; Wang, X.; Wu, J. Impact of changes in water management on hydrology and environment: A case study in North China. J. Hydro-Environ. Res. 2020, 28, 75–84. [Google Scholar] [CrossRef]
- Ding, R.; Kang, S.; Vargas, R.; Zhang, Y.; Hao, X. Multiscale spectral analysis of temporal variability in evapotranspiration over irrigated cropland in an arid region. Agric. Water Manag. 2013, 130, 79–89. [Google Scholar] [CrossRef]
- Li, S.; Kang, S.; Zhang, L.; Du, T.; Tong, L.; Ding, R.; Guo, W.; Zhao, P.; Chen, X.; Xiao, H. Ecosystem water use efficiency for a sparse vineyard in arid northwest China. Agric. Water Manag. 2015, 148, 24–33. [Google Scholar] [CrossRef]
- Li, X.; Xia, K.; Wu, T.; Wang, S.; Tang, H.; Xiao, C.; Tang, H.; Xu, N.; Jia, D. Increased precipitation has not enhanced the carbon sequestration of afforestation in Northwest China. Commun. Earth Environ. 2024, 5, 619. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Yang, H.; Li, Y. Relationships between carbon fluxes and environmental factors in a drip-irrigated, film-mulched cotton field in arid region. PLoS ONE 2018, 13, e0192467. [Google Scholar] [CrossRef] [PubMed]






![]() |
![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Xiao, Y.; Zhao, J.; Wang, D. Research Trends in Evaluation of Crop Water Use Efficiency in China: A Bibliometric Analysis. Agronomy 2025, 15, 2549. https://doi.org/10.3390/agronomy15112549
Wang T, Xiao Y, Zhao J, Wang D. Research Trends in Evaluation of Crop Water Use Efficiency in China: A Bibliometric Analysis. Agronomy. 2025; 15(11):2549. https://doi.org/10.3390/agronomy15112549
Chicago/Turabian StyleWang, Tianci, Yutong Xiao, Jiongchang Zhao, and Di Wang. 2025. "Research Trends in Evaluation of Crop Water Use Efficiency in China: A Bibliometric Analysis" Agronomy 15, no. 11: 2549. https://doi.org/10.3390/agronomy15112549
APA StyleWang, T., Xiao, Y., Zhao, J., & Wang, D. (2025). Research Trends in Evaluation of Crop Water Use Efficiency in China: A Bibliometric Analysis. Agronomy, 15(11), 2549. https://doi.org/10.3390/agronomy15112549



