Quantifying Grazing Intensity from Aboveground Biomass Differences Using Satellite Data and Machine Learning
Abstract
1. Introduction
- Identify the optimal combination of VIs, ML algorithms, and ecological zoning strategies for reconstructing VIp.
- Derive AGBp and AGBs from 2000 to 2024 and calculate GI as their proportional difference.
- Analyze the spatiotemporal dynamics of GI across Inner Mongolia and evaluate its implications for grass–livestock balance and sustainable rangeland management.
2. Materials and Methods
2.1. Study Area
2.2. Data Usage
2.2.1. Satellite Data
2.2.2. Regional Subareas Data
2.2.3. Climatic Data
2.2.4. Topographical Data
2.2.5. Ground Observation Data
2.3. Research Methods
2.3.1. Reconstruction of VIp
2.3.2. AGB Conversion
- (1)
- AGBp—potential biomass estimated from reconstructed VIp, representing vegetation growth capacity under ungrazed and climate-constrained conditions;
- (2)
- AGBs—remaining biomass derived from observed VIs, representing vegetation conditions after grazing disturbance.
2.3.3. Grazing Intensity Estimation and Spatiotemporal Analysis
2.3.4. Validation and Accuracy Assessment
3. Results
3.1. Importance of Driving Variables
3.2. Performance of the ML Models
3.3. Effect of Spatial Stratification on Model Performance
3.4. Quantitative Estimation of Grazing Intensity
3.5. Characterization of the Spatiotemporal Evolution of the Grassland Grazing Intensity
4. Discussion
4.1. Spatial Heterogeneity of Grazing Intensities
4.2. Future Research Directions and Management Implications for Sustainable Grassland Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AGB | Aboveground Biomass |
| AGBp | Potential Aboveground Biomass |
| AGBs | Satellite-Derived Aboveground Biomass |
| AP | Precipitation Anomaly |
| AT | Temperature Anomaly |
| DEM | Digital Elevation Model |
| DTM | Digital Terrain Model |
| ENET | Elastic Net Regression |
| GEE | Google Earth Engine |
| GI | Grazing Intensity |
| GPR | Gaussian Process Regression |
| H | Hurst Exponent |
| LSBoost | Least Squares Boosting |
| MAP | Mean Annual Precipitation |
| MAT | Mean Annual Temperature |
| ML | Machine Learning |
| MLR | Multiple Linear Regression |
| NASA | National Aeronautics and Space Administration |
| NDVI | Normalized Difference Vegetation Index |
| NIRv | Near-Infrared Reflectance of Vegetation |
| OLS | Ordinary Least Squares |
| QC | Quality Control |
| RF | Random Forest |
| RMSE | Root Mean Square Error |
| R2 | Coefficient of Determination |
| SAVI | Soil-Adjusted Vegetation Index |
| SRTM | Shuttle Radar Topography Mission |
| SVM | Support Vector Machine |
| UAV | Unmanned Aerial Vehicle |
| VI | Vegetation Index |
| VIp | Potential Vegetation Index |
| VIs | Satellite-Observed Vegetation Indices |
References
- Yu, Q.; Xu, C.; Wu, H.; Ke, Y.; Zuo, X.; Luo, W.; Ren, H.; Gu, Q.; Wang, H.; Ma, W.; et al. Contrasting drought sensitivity of Eurasian and North American grasslands. Nature 2025, 639, 114–118. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Y.; Wu, J.; Zhang, X.; Yu, G.; Shen, Z.; Yang, X.; He, Y.; Jiang, L.; Hautier, Y. Herbivore exclusion stabilizes alpine grassland biomass production across spatial scales. Glob. Change Biol. 2024, 30, e17155. [Google Scholar] [CrossRef]
- MacDougall, A.S.; Esch, E.; Chen, Q.; Carroll, O.; Bonner, C.; Ohlert, T.; Siewert, M.; Sulik, J.; Schweiger, A.K.; Borer, E.T.; et al. Widening global variability in grassland biomass since the 1980s. Nat. Ecol. Evol. 2024, 8, 1877–1888. [Google Scholar] [CrossRef]
- Sha, Z.; Bai, Y.; Lan, H.; Liu, X.; Li, R.; Xie, Y. Can more carbon be captured by grasslands? A case study of Inner Mongolia, China. Sci. Total Environ. 2020, 723, 138085. [Google Scholar] [CrossRef]
- Bai, Y.; Cotrufo, M.F. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science 2022, 377, 603–608. [Google Scholar] [CrossRef]
- Purevjav, A.-O.; Avirmed, T.; Wilcox, S.W.; Barrett, C.B. Climate Rather Than Overgrazing Explains Most Rangeland Primary Productivity Change in Mongolia. Science 2025, 389, 1229–1233. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Cao, M.; Zhao, X.; Liu, X.; Liu, Z.; Liu, L.; Huang, Z.; Tao, S.; Tang, Z.; Guo, Y.; et al. High-Resolution Mapping of Grassland Canopy Cover in China through the Integration of Extensive Drone Imagery and Satellite Data. J. Photogramm. Remote Sens. 2024, 218, 69–83. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, H.; Qiu, X.; Sun, H.; Song, P.; Yang, W. China’s grassland ecological compensation policy achieves win-win goals in Inner Mongolia. Environ. Res. Commun. 2023, 5, 031007. [Google Scholar] [CrossRef]
- You, C.; Wang, Y.; Tan, X.; Cui, E.; Zhang, B.; Bian, C.; Chen, B.; Xu, M.; Han, X.; Xia, J.; et al. Inner Mongolia grasslands act as a weak regional carbon sink: A new estimation based on upscaling eddy covariance observations. Agric. For. Meteorol. 2023, 342, 109719. [Google Scholar] [CrossRef]
- Wang, S.; Tuya, H.; Zhang, S.; Zhao, X.; Liu, Z.; Li, R.; Lin, X. Random forest method for analysis of remote sensing inversion of aboveground biomass and grazing intensity of grasslands in Inner Mongolia, China. Int. J. Remote Sens. 2023, 44, 2867–2884. [Google Scholar] [CrossRef]
- Sun, J.; Liu, W.; Pan, Q.; Zhang, B.; Lv, Y.; Huang, J.; Han, X. Positive legacies of severe droughts in the Inner Mongolia grassland. Sci. Adv. 2022, 8, eadd6249. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, H.; Huang, H.; Yan, D.; Yu, C.; Wang, Y.; Xiong, Z. The impact of grazing activities and environmental conditions on the stability of alpine grassland ecosystems. J. Environ. Manag. 2024, 360, 121176. [Google Scholar] [CrossRef]
- Zhang, M.; Delgado-Baquerizo, M.; Li, G.; Isbell, F.; Wang, Y.; Hautier, Y.; Wang, Y.; Xiao, Y.; Cai, J.; Pan, X.; et al. Experimental impacts of grazing on grassland biodiversity and function are explained by aridity. Nat. Commun. 2023, 14, 5040. [Google Scholar] [CrossRef]
- Li, C.; Zhou, W.; Fu, B.; Wang, S.; Ren, Z.; Hu, M.; Zhang, Y.; Rodriguez-Caballero, E.; Weber, B.; Stringer, L.C.; et al. Climate-driven ecological thresholds in China’s drylands modulated by grazing. Nat. Sustain. 2023, 6, 1363–1372. [Google Scholar]
- von Keyserlingk, J.; de Hoop, M.; Mayor, A.G.; Dekker, S.C.; Rietkerk, M.; Foerster, S. Resilience of vegetation to drought: Studying the effect of grazing in a Mediterranean rangeland using satellite time series. Remote Sens. Environ. 2021, 255, 112270. [Google Scholar]
- Wang, Z.; Lv, S.; Han, G.; Wang, Z.; Li, Z.; Ren, H.; Wang, J.; Sun, H.; Zhang, G. Heavy grazing reduced the spatial heterogeneity of Artemisia frigida in desert steppe. BMC Plant Biol. 2022, 22, 337. [Google Scholar] [CrossRef]
- Liu, J.; Isbell, F.; Ma, Q.; Chen, Y.; Xing, F.; Sun, W.; Wang, L.; Li, J.; Wang, Y.; Hou, F.; et al. Overgrazing, not haying, decreases grassland topsoil organic carbon by decreasing plant species richness along an aridity gradient in northern China. Agric. Ecosyst. Environ. 2022, 332, 112270. [Google Scholar] [CrossRef]
- Ma, Q.; Chai, L.; Hou, F.; Chang, S.; Ma, Y.; Tsunekawa, A.; Cheng, Y. Quantifying grazing intensity using remote sensing in alpine meadows on Qinghai-Tibetan Plateau. Sustainability 2019, 11, 417. [Google Scholar] [CrossRef]
- Yu, R.; Evans, A.J.; Malleson, N. Quantifying grazing patterns using a new growth function based on MODIS leaf area index. Remote Sens. Environ. 2018, 209, 181–194. [Google Scholar]
- Dara, A.; Baumann, M.; Freitag, M.; Hölzel, N.; Hostert, P.; Kamp, J.; Müller, D.; Prishchepov, A.V.; Kuemmerle, T. Annual Landsat time series reveal post-Soviet changes in grazing pressure. Remote Sens. Environ. 2020, 239, 111667. [Google Scholar]
- Li, F.; Wang, H.; Luo, J.; Zhao, Y.; Zhao, R. Mapping grazing intensity using remote sensing in the Xilingol steppe region Inner Mongolia, China. Remote Sens. Lett. 2016, 7, 328–337. [Google Scholar] [CrossRef]
- Kawamura, K.; Akiyama, T.; Yokota, H.-o.; Tsutsumi, M.; Yasuda, T.; Watanabe, O.; Wang, S. Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. Agric. Ecosyst. Environ. 2005, 107, 83–93. [Google Scholar] [CrossRef]
- Li, W.; Xu, F.; Zheng, S.; Taube, F.; Bai, Y.; Wilsey, B. Patterns and thresholds of grazing—Induced changes in community structure and ecosystem functioning: Species—Level responses and the critical role of species traits. J. Appl. Ecol. 2016, 54, 963–975. [Google Scholar] [CrossRef]
- Vidaller, C.; Malik, C.; Dutoit, T. Grazing Intensity Gradient Inherited from Traditional Herding Still Explains Mediterranean Grassland Characteristics Despite Current Land-Use Changes. Agric. Ecosyst. Environ. 2022, 338, 108085. [Google Scholar] [CrossRef]
- Li, H.; Li, F.; Xiao, J.; Chen, J.; Lin, K.; Bao, G.; Liu, A.; Guo, W. A machine learning scheme for estimating fine-resolution grassland aboveground biomass over China with Sentinel-1/2 satellite images. Remote Sens. Environ. 2024, 311, 114317. [Google Scholar] [CrossRef]
- Chen, A.; Xu, C.; Zhang, M.; Guo, J.; Xing, X.; Yang, D.; Xu, B.; Yang, X. Cross-scale mapping of above-ground biomass and shrub dominance by integrating UAV and satellite data in temperate grassland. Remote Sens. Environ. 2024, 304, 114024. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, H.; Peng, C.; Liu, J.; Piao, S.; He, J.-S.; Wang, S.; Zhao, X.; Zhang, J.; Fang, X.; et al. An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau. Nat. Commun. 2023, 14, 6406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, X.; Chen, A.; Guo, J.; Xing, X.; Yang, D.; Xu, B.; Lan, X.; Yang, X. A spatio-temporal fusion strategy for improving the estimation accuracy of the aboveground biomass in grassland based on GF-1 and MODIS. Ecol. Indic. 2023, 157, 111276. [Google Scholar] [CrossRef]
- Lange, M.; Feilhauer, H.; Kühn, I.; Doktor, D. Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series. Remote Sens. Environ. 2022, 277, 112888. [Google Scholar] [CrossRef]
- Li, Z.; Huffman, T.; McConkey, B.; Townley-Smith, L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 2013, 138, 232–244. [Google Scholar] [CrossRef]
- Chi, D.; Wang, H.; Li, X.; Liu, H.; Li, X. Assessing the effects of grazing on variations of vegetation NPP in the Xilingol grassland, China, using a grazing pressure index. Ecol. Indic. 2018, 88, 372–383. [Google Scholar] [CrossRef]
- Wu, T.; Fu, H.; Feng, F.; Bai, H. A new approach to predict normalized difference vegetation index using time-delay neural network in the arid and semi-arid grassland. Int. J. Remote Sens. 2019, 40, 9050–9063. [Google Scholar] [CrossRef]
- Chen, X.; Mo, X.; Hu, S.; Liu, S. Contributions of climate change and human activities to ET and GPP trends over North China Plain from 2000 to 2014. J. Geogr. Sci. 2017, 27, 661–680. [Google Scholar] [CrossRef]
- Xie, S.; Mo, X.; Hu, S.; Liu, S. Contributions of climate change, elevated atmospheric CO2 and human activities to ET and GPP trends in the Three-North region of China. Agric. For. Meteorol. 2020, 295, 108183. [Google Scholar] [CrossRef]
- Barrett, B.; Nitze, I.; Green, S.; Cawkwell, F. Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. Remote Sens. Environ. 2014, 152, 109–124. [Google Scholar]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Yao, Y.; Ren, H. Estimation of grassland aboveground biomass in northern China based on topography-climate-remote sensing data. Ecol. Indic. 2024, 165, 112230. [Google Scholar]
- Morais, T.G.; Teixeira, R.F.M.; Figueiredo, M.; Domingos, T. The use of machine learning methods to estimate aboveground biomass of grasslands: A review. Ecol. Indic. 2021, 130, 108081. [Google Scholar] [CrossRef]
- Bertuol-Garcia, D.; Ladouceur, E.; Brudvig, L.A.; Laughlin, D.C.; Munson, S.M.; Curran, M.F.; Davies, K.W.; Svejcar, L.N.; Shackelford, N. Testing the hierarchy of predictability in grassland restoration across a gradient of environmental severity. Ecol. Appl. 2023, 33, e2922. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Tong, S.; Bao, G.; Chen, J.; Yin, S.; Li, F.; Sa, C.; Bao, Y. Spatiotemporal variation of autumn phenology responses to preseason drought and temperature in alpine and temperate grasslands in China. Sci. Total Environ. 2022, 859, 160373. [Google Scholar]
- Kang, L.; Han, X.; Zhang, Z.; Sun, O.J. Grassland Ecosystems in China: Review of Current Knowledge and Research Advancement. Philos. Trans. R Soc. B Biol. Sci. 2007, 362, 997–1008. [Google Scholar] [CrossRef]
- Chang, C.; Wang, J.; Zhao, Y.; Cai, T.; Yang, J.; Zhang, G.; Wu, X.; Otgonbayar, M.; Xiao, X.; Xin, X.; et al. A 10-m annual grazing intensity dataset in 2015-2021 for the largest temperate meadow steppe in China. Sci. Data 2024, 11, 181. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar]
- Huete, A. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25. [Google Scholar]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Science 2017, 3. [Google Scholar] [CrossRef]
- NY/T 2997-2016; Ministry of Agriculture and Rural Affairs, PRC. Grassland Classification. China Agriculture Press: Beijing, China, 2016.
- LY/T 3320-2022; Forestry Industry Standard of the People’s Republic of China. Evaluating Criterion for Balance of Forage Supply and Livestock Requirement. National Forestry and Grassland Administration: Beijing, China, 2022.
- Pasolli, L.; Melgani, F.; Blanzieri, E. Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data. IEEE Geosci. Remote Sens. Lett. 2010, 7, 464–468. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Wang, J.; Zhang, A.; Deng, X. Estimation of malondialdehyde content in Medicago truncatula under salt stress based on multi-order spectral transformation characteristics. Remote Sens. 2024, 16, 4049. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, J.; Brierley, G.; Li, X.; Perry, G.L.W.; Xu, T. Improving the accuracy of models to map alpine grassland above-ground biomass using Google Earth Engine. Grass Forage Sci. 2023, 78, 237–253. [Google Scholar]
- Kok, Z.H.; Mohamed Shariff, A.R.; Alfatni, M.S.M.; Khairunniza-Bejo, S. Support vector machine in precision agriculture: A review. Comput. Electron. Agric. 2021, 191, 106546. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. 2005, 67, 301–320. [Google Scholar]
- Wang, D.; Peng, Q.; Li, X.; Zhang, W.; Xia, X.; Qin, Z.; Ren, P.; Liang, S.; Yuan, W. A long-term high-resolution dataset of grasslands grazing intensity in China. Sci. Data 2024, 11, 1194. [Google Scholar] [PubMed]
- Kempa, D.R.; Guodong, H.; Xiangyang, H.; Michalk, D.L.; Fujiang, H.; Jianping, W.; Yingjung, Z. Innovative grassland management systems for environmental and livelihood benefits. Proc. Natl. Acad. Sci. USA 2013, 110, 8369–8374. [Google Scholar]
- Li, Z.; Han, G.; Zhao, M.; Wang, J.; Wang, Z.; Kemp, D.R.; Michalk, D.L.; Wilkes, A.; Behrendt, K.; Wang, H.; et al. Identifying management strategies to improve sustainability and household income for herders on the desert steppe in Inner Mongolia, China. Agric. Syst. 2015, 132, 62–72. [Google Scholar] [CrossRef]









| Category (Resolution) | Variable (Unit) | Full Name/Definition | Description/ Ecological Meaning | Used in the Modelling Module |
|---|---|---|---|---|
| Satellite data (500 m) | NDVI [43] | Normalized difference vegetation index | Reflects vegetation greenness and photosynthetic activity | Reconstruction of VIp/AGB conversion |
| EVI [44] | Enhanced vegetation index | Enhances vegetation signal by reducing atmospheric and canopy background noise | Reconstruction of VIp/AGB conversion | |
| EVI2 [45] | 2-band enhanced vegetation index | Simplified two-band version of EVI, without blue band dependence | Reconstruction of VIp/AGB conversion | |
| SAVI [46] | Soil adjusted vegetation index | Minimizes soil brightness effects in sparsely vegetated areas | Reconstruction of VIp/AGB conversion | |
| NIRV [47] | Near-infrared reflectance of vegetation | Represents vegetation productivity using near-infrared reflectance | Reconstruction of VIp/AGB conversion | |
| Regional subareas | Group [48] | 8 sub-areas | Classified according to the Grassland Classification standard as the first-level grassland category, used for large-scale ecological zoning | Reconstruction of VIp |
| Subgroup [48] | 20 sub-areas | Second-level division under the Grassland Classification standard, representing finer ecological differentiation within major zones | Reconstruction of VIp | |
| Type [48] | 224 sub-areas | Third-level grassland unit defined by vegetation composition according to the Grassland Classification standard | Reconstruction of VIp | |
| County-level | 108 sub-areas | Administrative divisions used for statistical aggregation and spatial validation. | Reconstruction of VIp | |
| Climatic factors (~10 km) | P (mm) | Annual precipitation from 2000 to 2024 | Mean temperature | Reconstruction of VIp |
| T (°C) | Annual temperature from 2000 to 2024 | Cumulative precipitation | Reconstruction of VIp | |
| MAP (mm) | Mean annual precipitation from 1980 to 1999 | Long-term average precipitation, representing regional water availability | AGB Conversion | |
| MAT (°C) | Mean annual temperature from 1980 to 1999 | Long-term average temperature, representing regional thermal conditions | AGB Conversion | |
| AP (mm) | Annual precipitation anomaly from 2000 to 2024 | Represents interannual variability of precipitation | AGB Conversion | |
| AT (°C) | Annual temperature anomaly from 2000 to 2024 | Represents interannual variability of temperature | AGB Conversion | |
| Topographic factors (30 m) | DEM (m) | Elevation derived from SRTM 30 m | Represents terrain and microclimate variation | AGB Conversion |
| Climate-driven metrics (500 m) | VIp | Potential vegetation index | Derived from climatic drivers to represent ungrazed vegetation conditions | AGB Conversion |
| Type | Sampling Method | Number of Plots | Primary Purpose |
|---|---|---|---|
| AGB measurements | All herbaceous biomass was harvested in plots consisting of 5 quadrats of 0.1 m2 each, dried, weighted, and averaged. | 2789 | AGB Conversion |
| GI quadrats | Paired grazed and ungrazed plots (<1 km apart, each 10 × 10 m) were established to compare vegetation residuals. Grazing intensity levels were determined based on relative reductions in vegetation cover, grass height, edible forage, and residual biomass. | 648 (324 paired grazed and ungrazed quadrats) | Estimation of GI |
| Ungrazed reference stations | Long-term fenced plots established by the Forestry and Grassland Monitoring and Planning Institute of Inner Mongolia, excluding livestock grazing to maintain natural vegetation conditions. | 76 | Reconstruction of VIp |
| Algorithms (Acronym) | Benefits | Limitations | References |
|---|---|---|---|
| Random Forest (RF) | Robust performance, automatically evaluates variable importance, less prone to overfitting | Less interpretable than linear models, high computational demands | [10] |
| Gaussian Process Regression (GPR) | Provides uncertainty estimates, suitable for small-sample, high-dimensional data | High computational complexity, not suitable for large datasets | [50] |
| Least-Squares Boosting (LSBOOST) | Integrates multiple weak learners, high accuracy, adjustable learning rate | High accuracy but computationally intensive, sensitive to parameter tuning | [51] |
| Multiple Linear Regression (MLR) | Simple model, interpretable coefficients, suitable for strongly linear data | Cannot model complex nonlinear relationships | [52] |
| Support Vector Machine (SVM) | Handles both linear and nonlinear data, effective for high-dimensional datasets | Sensitive to kernel and parameter selection, relatively high training cost | [53] |
| Elastic Net Regression (ENET) | Effective for high-dimensional data and correlated predictors | Less effective for capturing complex nonlinear patterns | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, R.; Yang, Y.; Chang, S.; A, G.; Yun, X.; Song, X.; Liu, A. Quantifying Grazing Intensity from Aboveground Biomass Differences Using Satellite Data and Machine Learning. Agronomy 2025, 15, 2537. https://doi.org/10.3390/agronomy15112537
Su R, Yang Y, Chang S, A G, Yun X, Song X, Liu A. Quantifying Grazing Intensity from Aboveground Biomass Differences Using Satellite Data and Machine Learning. Agronomy. 2025; 15(11):2537. https://doi.org/10.3390/agronomy15112537
Chicago/Turabian StyleSu, Ritu, Yong Yang, Shujuan Chang, Gudamu A, Xiangjun Yun, Xiangyang Song, and Aijun Liu. 2025. "Quantifying Grazing Intensity from Aboveground Biomass Differences Using Satellite Data and Machine Learning" Agronomy 15, no. 11: 2537. https://doi.org/10.3390/agronomy15112537
APA StyleSu, R., Yang, Y., Chang, S., A, G., Yun, X., Song, X., & Liu, A. (2025). Quantifying Grazing Intensity from Aboveground Biomass Differences Using Satellite Data and Machine Learning. Agronomy, 15(11), 2537. https://doi.org/10.3390/agronomy15112537
