Effects and Mechanisms of Biochar Derived from Different Biomass Sources on Mitigating Soil Acidification
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material Preparation and Soil Collection
2.2. Preparation of Straw-Derived Biochar
2.3. Characterization of Biochar
2.3.1. pH Measure
2.3.2. Scanning Electron Microscopy (SEM) Analysis
2.3.3. Brunauer–Emmett–Teller (BET) Analysis
2.3.4. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.3.5. X-Ray Photoelectron Spectroscopy (XPS) Analysis
2.3.6. Elemental Analysis
2.4. Assessment of the Acid-Neutralization Capacity of Biochar
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effects of Preparation Temperature on Biochar Properties
3.1.1. Elemental Composition and Functional Group Characteristics
3.1.2. Specific Surface Area and Surface Morphology of Maize Straw Biochar at Different Pyrolysis Temperatures
3.1.3. Yield and pH of Biochar at Different Pyrolysis Temperatures
3.1.4. Acid-Neutralization Performance
3.2. Biochar Properties of Different Biomass Types
3.2.1. Elemental Composition and Surface Functional Group Characteristics
3.2.2. FTIR Spectral Analysis of Functional Group Evolution
3.2.3. Specific Surface Area and Surface Morphology of Biochar Derived from Different Raw Materials
3.2.4. Yield and pH of Different Biomass-Derived Biochar
3.2.5. Acid-Neutralization Performance and Optimal Dosage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, L.; Hua, K.; Zhan, L.; He, C.; Wang, D.; Nagano, H.; Cheng, W.; Inubushi, K.; Guo, Z. Effect of Soil Acidification on Temperature Sensitivity of Soil Respiration. Agronomy 2024, 14, 1056. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, C.; Su, Y.; Peng, W.; Lu, R.; Liu, Y.; Huang, H.; He, X.; Yang, M.; Zhu, S. Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yu, L.; Wang, Z.; Yang, C.; Dong, F.; Yang, D.; Xi, H.; Sun, Z.; Bol, R.; Awais, M.; et al. Effect of simulated acidification on soil properties and plant nutrient uptake of eggplant in greenhouse. Front. Plant Sci. 2025, 16, 1558458. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cen, B.; Yu, Z.; Qiu, R.; Gao, T.; Long, X. The key role of biochar in amending acidic soil: Reducing soil acidity and improving soil acid buffering capacity. Biochar 2025, 7, 52. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Sci. Total Environ. 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Zhu, Q.; de Vries, W.; Liu, X.; Hao, T.; Zeng, M.; Shen, J.; Zhang, F. Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980–2010. Sci. Total Environ. 2018, 618, 1497–1505. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Z.; Jiang, B.; Baoyin, B.; Cui, Z.; Wang, H.; Li, Q.; Cui, J. Effects of Long-Term Application of Nitrogen Fertilizer on Soil Acidification and Biological Properties in China: A Meta-Analysis. Microorganisms 2024, 12, 1683. [Google Scholar] [CrossRef]
- Fei, L.; Binzhe, L.; David, V.R.; Jan, M.; He, S.; Jingsheng, C.; Jingheng, G. Straw return exacerbates soil acidification in major Chinese croplands. Resour. Conserv. Recycl. 2023, 198, 107176. [Google Scholar] [CrossRef]
- Yang, F.; Jia, W.; Yang, N.; Li, W.-X.; Duan, Y.-H.; Hu, Y.; Cui, Y. Spatio-temporal variation of surface soil pH of farmland in different regions of China in the past 30 years. J. Plant Nutr. Fertil. 2023, 29, 1213–1227. [Google Scholar]
- Zhao, J.; Dong, Y.; Xie, X.; Li, X.; Zhang, X.; Shen, X. Effect of annual variation in soil pH on available soil nutrients in pear orchards. Acta Ecol. Sin. 2011, 31, 212–216. [Google Scholar] [CrossRef]
- Rahman, S.U.; Han, J.-C.; Ahmad, M.; Ashraf, M.N.; Khaliq, M.A.; Yousaf, M.; Wang, Y.; Yasin, G.; Nawaz, M.F.; Khan, K.A. Aluminum phytotoxicity in acidic environments: A comprehensive review of plant tolerance and adaptation strategies. Ecotoxicol. Environ. Saf. 2024, 269, 115791. [Google Scholar] [CrossRef]
- Lin, S.; Liu, Z.; Wang, Y.; Li, J.; Wang, G.; Ye, J.; Wang, H.; He, H. Soil metagenomic analysis on changes of functional genes and microorganisms involved in nitrogen-cycle processes of acidified tea soils. Front. Plant Sci. 2022, 13, 998178. [Google Scholar] [CrossRef]
- Shang, Y.; Chen, W.; Li, F.; Li, S.; Han, Y.; Li, P. Effects of Tillage Depth and Lime Application on Acidification Reduction and Nutrient Availability in Vertisol Soil. Agric. Ecosyst. Environ. 2024, 14, 1728. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Y.; Wang, Y.; Hong, L.; Jia, X.; Kang, J.; Lin, S.; Wu, Z.; Wang, H. Improvement of soil acidification in tea plantations by long-term use of organic fertilizers and its effect on tea yield and quality. Front. Plant Sci. 2022, 13, 1055900. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Yang, F.; Feng, H.; Yu, Z.; Liu, C.; Wei, C.; Liang, T. Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations: Evidence in nutrient contents and isotope fractionations. Sci. Total Environ. 2021, 762, 143059. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.A.; Fontoura, S.M.; Ambrosini, V.G.; Pesini, G.; Flores, J.P.M.; Bayer, C.; Tiecher, T. Impacts of tillage and liming on crop yields and soil acidity correction: Insights from a 32-year experiment in Southern Brazil. Plant Soil 2025, 511, 1621–1640. [Google Scholar] [CrossRef]
- Enesi, R.O.; Dyck, M.; Chang, S.; Thilakarathna, M.S.; Fan, X.; Strelkov, S.; Gorim, L.Y. Liming remediates soil acidity and improves crop yield and profitability-a meta-analysis. Front. Agron. 2023, 5, 1194896. [Google Scholar] [CrossRef]
- Jouichat, H.; Khiari, L.; Gallichand, J.; Ismail, M. Modeling temporal variation of soil acidity after the application of liming materials. Soil Tillage Res. 2024, 240, 106050. [Google Scholar] [CrossRef]
- Saleem, M.H.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef]
- Wenyika, P.; Enesi, R.O.; Gorim, L.Y.; Dyck, M. Effects of liming on soil biota and related processes in agroecosystems: A review. Discov. Soil 2025, 2, 37. [Google Scholar] [CrossRef]
- Li, Y.; Cui, S.; Chang, S.X.; Zhang, Q. Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: A global meta-analysis. J. Soils Sediments 2019, 19, 1393–1406. [Google Scholar] [CrossRef]
- Huang, K.; Li, M.; Li, R.; Rasul, F.; Shahzad, S.; Wu, C.; Shao, J.; Huang, G.; Li, R.; Almari, S. Soil acidification and salinity: The importance of biochar application to agricultural soils. Front. Plant Sci. 2023, 14, 1206820. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Meca, S.; Zhang, S.; Clarens, F.; Hu, X. Understanding the dependence of biochar properties on different types of biomass. Waste Manag. 2024, 182, 142–163. [Google Scholar] [CrossRef]
- Khater, E.-S.; Bahnasawy, A.; Hamouda, R.; Sabahy, A.; Abbas, W.; Morsy, O.M. Biochar production under different pyrolysis temperatures with different types of agricultural wastes. Sci. Rep. 2024, 14, 2625. [Google Scholar] [CrossRef] [PubMed]
- Janu, R.; Mrlik, V.; Ribitsch, D.; Hofman, J.; Sedláček, P.; Bielská, L.; Soja, G. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resour. Convers. 2021, 4, 36–46. [Google Scholar] [CrossRef]
- Uroić Štefanko, A.; Leszczynska, D. Impact of biomass source and pyrolysis parameters on physicochemical properties of biochar manufactured for innovative applications. Front. Energy Res. 2020, 8, 138. [Google Scholar] [CrossRef]
- Barszcz, W.; Łożyńska, M.; Molenda, J. Impact of pyrolysis process conditions on the structure of biochar obtained from apple waste. Sci. Rep. 2024, 14, 10501. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E.; Neugschwandtner, R.W.; Konvalina, P.; Kopecký, M.; Moudrý, J.; Perná, K.; Murindangabo; Theoneste, Y. The impact of pyrolysis temperature on biochar properties and its effects on soil hydrological properties. Sustainability 2022, 14, 14722. [Google Scholar] [CrossRef]
- Viana, D.G.; Soares, M.B.; Alleoni, L.R.F.; Egreja Filho, F.B.; Duckworth, O.W.; Regitano, J.B. Sugarcane straw biochar: Effects of pyrolysis temperature on barite dissolution and Ba availability under flooded conditions. Biochar 2024, 6, 83. [Google Scholar] [CrossRef]
- Cárdenas-Aguiar, E.; Gascó, G.; Lado, M.; Méndez, A.; Paz-Ferreiro, J.; Management, A.P.-G.J.W. New insights into the production, characterization and potential uses of vineyard pruning waste biochars. Waste Manag. 2023, 171, 452–462. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokoowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Raghavan, V.; Palacios, J.H.; Grenier, M.; Zegan, D. The production of engineered biochars in a vertical auger pyrolysis reactor for carbon sequestration. Energies 2017, 10, 288. [Google Scholar] [CrossRef]
- An, X.; Zhu, Z.; Luo, X.; Chen, C.; Liu, T.; Zou, L.; Li, S.; Liu, Y. Effects of Raw Materials and Pyrolysis Temperatures on Physicochemical Properties of Biochars Derived from Hemp Stalks. Plants 2025, 14, 2564. [Google Scholar] [CrossRef]
- Hu, Y.; Li, P.-Y.; Yang, Y.-P.; Ling, M.; Li, X.-F. Preparation and Characterization of Biochar from Four Types of Waste Biomass under Matched Conditions. BioResources 2022, 17, 6464–6475. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential role of biochars in decreasing soil acidification-a critical review. Sci. Total Environ. 2017, 581–582, 601–611. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, W.; Liang, G.; Song, D.; Zhang, X. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Sci. Total Environ. 2015, 538, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M.B.; Hay, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, 8877–8884. [Google Scholar] [CrossRef]
- Qian, F.; Xi, Z.; Qin, L.; Yan, W.; Jie, C.; Wei, C.; Hui, C.; Lin, J.; Lin, C.; Bing, L. Properties of Eupatorium adenophora Spreng (Crofton Weed) Biochar Produced at Different Pyrolysis Temperatures. Environ. Eng. Sci. 2019, 36, 937–946. [Google Scholar] [CrossRef]
- Zornoza, R.; Moreno-Barriga, F.; Acosta, J.A.; Muñoz, M.A.; Faz, A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 2016, 144, 122–130. [Google Scholar] [CrossRef]
- Sharifian, M.; Kern, W.; Riess, G. Innovative approaches to hydrogen storage in vinyl aromatic polymers. Int. J. Hydrogen Energy 2025, 149, 149992. [Google Scholar] [CrossRef]
- Khatami, S.; Deng, Y.; Tien, M.; Hatcher, P.G. Lignin Contribution to Aliphatic Constituents of Humic Acids through Fungal Degradation. J. Environ. Qual. 2019, 48, 1565–1570. [Google Scholar] [CrossRef]
- Gianluca, G.; María, V.; Christian, D.S.; Elisabet, P.; Manyà, J.J. Importance of pyrolysis temperature and pressure in the concentration of polycyclic aromatic hydrocarbons in wood waste-derived biochars. J. Anal. Appl. Pyrolysis 2021, 159, 105337. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, Q.; Wang, Y.; Han, Z.; Chen, Z.; Mu, Y. Biochar enhanced biological nitrobenzene reduction with a mixed culture in anaerobic systems: Short-term and long-term assessments. Chem. Eng. J. 2018, 351, 912–921. [Google Scholar] [CrossRef]
- Li, Y.; Xing, B.; Ding, Y.; Han, X.; Wang, S. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour. Technol. 2020, 312, 123614. [Google Scholar] [CrossRef] [PubMed]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.-M.; Dallmeyer, I.; Garcia-Perez, M. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Chen, Q.; Tong, H.; Gao, X.; Li, P.; Li, J.; Zhuang, H.; Wu, S. Preparation and Application of Wetland-Plant-Derived Biochar for Tetracycline Antibiotic Adsorption in Water. Sustainability 2025, 17, 6625. [Google Scholar] [CrossRef]
- Wang, L.; Olsen, M.N.; Moni, C.; Dieguez-Alonso, A.; de la Rosa, J.M.; Stenrød, M.; Liu, X.; Mao, L. Comparison of properties of biochar produced from different types of lignocellulosic biomass by slow pyrolysis at 600 °C. Appl. Energy Combust. Sci. 2022, 12, 100090. [Google Scholar] [CrossRef]
- Jeong, C.Y.; Dodla, S.K.; Wang, J.J. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Chemosphere 2016, 142, 4–13. [Google Scholar] [CrossRef]
- Chen, S.; Cao, Z.; Wang, Z.; Yong, Q.; Peng, W.; Yao, F.; Luo, K.; Li, B.; Wang, D.; Li, X.; et al. Biological denitrification driven by hydrochar: Insight into the mechanism from intracellular and extracellular electron transfer. J. Environ. Chem. Eng. 2025, 13, 117167. [Google Scholar] [CrossRef]
- Wong, J.W.C.; Ogbonnaya, U.O. Biochar porosity: A nature-based dependent parameter to deliver microorganisms to soils for land restoration. Environ. Sci. Pollut. Res. Int. 2021, 28, 46894–46909. [Google Scholar] [CrossRef]
- Zhao, F.; Tang, L.; Song, W.; Jiang, H.; Liu, Y.; Chen, H. Predicting and refining acid modifications of biochar based on machine learning and bibliometric analysis: Specific surface area, average pore size, and total pore volume. Sci. Total Environ. 2024, 948, 174584. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota–a review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Se-Eun, B.; Eun-Ju, L.; Jihyun, Y.; Da-Jung, L.; In-Seon, K.; Jae-Won, L. Role of cellulose and lignin on biochar characteristics and removal of diazinon from biochar with a controlled chemical composition. Ind. Crops Prod. 2023, 200, 116913. [Google Scholar]
- Lan, X.; Zhen, F.; Zhang, Q.; Li, H.; Zhang, Z.; Qu, B.; Wang, Y. Characterizations of high nitrogen-doped rice straw biogas residue biochars and their photocatalytic antifouling activity. Ind. Crops Prod. 2024, 222, 120073. [Google Scholar] [CrossRef]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 2012, 41, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Bing, W.; Yuena, M.; Xinqing, L.; Pan, W.; Fang, L.; Xueyang, Z.; Ling, L.; Miao, C. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer. Sci. Total Environ. 2020, 758, 143664. [Google Scholar]
- Nanthi, B.; Sarmah, A.K.; Sanandam, B.; Shankar, B.; Lokesh, P.; Lukas, V.Z.; Prasanthi, S.; Ahmed, K.B.; Mahtab, A.; Zakaria, S.; et al. Soil acidification and the liming potential of biochar. Environ. Pollut. 2023, 317, 120632. [Google Scholar]






| Sample | MBC300 | MBC500 | MBC700 | MBC900 | 
|---|---|---|---|---|
| C (%) | 37.02 ± 1.07 d | 53.44 ± 1.54 c | 59.60 ± 0.58 b | 68.00 ± 1.71 a | 
| N (%) | 0.66 ± 0.02 d | 1.41 ± 0.04 a | 1.31 ± 0.01 b | 1.06 ± 0.03 c | 
| H (%) | 3.89 ± 0.03 a | 2.45 ± 0.04 b | 1.86 ± 0.05 c | 0.99 ± 0.01 d | 
| S (%) | 0.08 ± 0.00 b | 0.04 ± 0.01 c | 0.10 ± 0.01 a | 0.08 ± 0.01 b | 
| O (%) | 51.48 ± 4.15 a | 31.72 ± 1.9 b | 24.89 ± 0.58 c | 12.75 ± 0.64 d | 
| Ash (%) | 6.87 ± 0.09 d | 10.94 ± 0.32 c | 12.25 ± 0.08 b | 17.13 ± 0.08 a | 
| H/C | 0.11 ± 0.03 a | 0.05 ± 0.00 b | 0.03 ± 0.00 c | 0.01 ± 0.00 d | 
| O/C | 1.39 ± 0.07 a | 0.59 ± 0.06 b | 0.42 ± 0.01 c | 0.19 ± 0.01 d | 
| Temperatures (°C) | SBET (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Size (nm) | 
|---|---|---|---|
| 300 °C | 77.38 | 0.12 | 5.25 | 
| 500 °C | 20.81 | 0.09 | 14.86 | 
| 700 °C | 35.34 | 0.13 | 11.89 | 
| 900 °C | 42.30 | 0.04 | 3.54 | 
| Sample | RBC | SBC | CBC | MBC | 
|---|---|---|---|---|
| C% | 76.94 ± 1.03 a | 72.39 ± 1.39 b | 80.55 ± 1.93 a | 59.60 ± 0.58 b | 
| N% | 0.75 ± 0.04 a | 1.10 ± 0.02 b | 0.93 ± 0.02 c | 1.31 ± 0.01 b | 
| H% | 1.05 ± 0.04 a | 1.26 ± 0.03 a | 1.25 ± 0.03 b | 1.86 ± 0.05 c | 
| S% | 0.10 ± 0.00 b | 0.18 ± 0.00 a | 0.06 ± 0.00 c | 0.10 ± 0.01 a | 
| O% | 8.38 ± 0.21 b | 12.99 ± 0.24 a | 3.87 ± 0.08 c | 24.89 ± 0.58 c | 
| Ash% | 12.78 ± 0.13 c | 12.10 ± 0.16 b | 13.34 ± 0.30 a | 12.25 ± 0.08 b | 
| H/C | 0.01 ± 0.00 b | 0.02 ± 0.00 a | 0.02 ± 0.00 a,b | 0.03 ± 0.00 c | 
| O/C | 0.11 ± 0.00 b | 0.18 ± 0.00 a | 0.05 ± 0.00 c | 0.42 ± 0.0 c | 
| Sample | SBET (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Size (nm) | 
|---|---|---|---|
| RBC | 42.30 | 0.04 | 3.54 | 
| SBC | 4.42 | 0.02 | 15.10 | 
| CBC | 1.38 | 0.01 | 29.09 | 
| MBC | 35.34 | 0.13 | 11.89 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Cui, Z.; Xu, L.; Ma, J.; Yu, R.; Wang, Y. Effects and Mechanisms of Biochar Derived from Different Biomass Sources on Mitigating Soil Acidification. Agronomy 2025, 15, 2523. https://doi.org/10.3390/agronomy15112523
Wang N, Cui Z, Xu L, Ma J, Yu R, Wang Y. Effects and Mechanisms of Biochar Derived from Different Biomass Sources on Mitigating Soil Acidification. Agronomy. 2025; 15(11):2523. https://doi.org/10.3390/agronomy15112523
Chicago/Turabian StyleWang, Nan, Zhengwu Cui, Linhao Xu, Jinpeng Ma, Rui Yu, and Yang Wang. 2025. "Effects and Mechanisms of Biochar Derived from Different Biomass Sources on Mitigating Soil Acidification" Agronomy 15, no. 11: 2523. https://doi.org/10.3390/agronomy15112523
APA StyleWang, N., Cui, Z., Xu, L., Ma, J., Yu, R., & Wang, Y. (2025). Effects and Mechanisms of Biochar Derived from Different Biomass Sources on Mitigating Soil Acidification. Agronomy, 15(11), 2523. https://doi.org/10.3390/agronomy15112523
 
        

 
                         
       