Response of Crop Yield to Nitrogen Application and Optimal Nitrogen Application Rate in a Rice–Wheat Rotation System
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Experimental Design and Crop Management
2.3. Sampling and Measurements
2.3.1. Grain Yield and Yield Components
2.3.2. Determination of the Plant Nitrogen Concentration
2.3.3. Determination of the Soil
2.4. Data Analysis
3. Results
3.1. Effect of Nitrogen Application on Grain Yield
3.2. Effect of Nitrogen Application on Crop Yield Components
3.3. Effect of Nitrogen Application on Crop Nitrogen Utilization
3.4. Effects of Different Nitrogen Fertilizer Treatments on Nitrogen Pools in Rice–Wheat Rotation Soils
4. Discussion
4.1. Effect of Nitrogen Application on Crop Yield and Yield Components
4.2. Effect of Nitrogen Application on Nitrogen Utilization Efficiency of Crops
4.3. Effect of Nitrogen Application on Changes in Nitrogen Content in the Tillage Layer of Rice–Wheat Rotation Soils
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- NBS (National Bureau of Statistics of China). Online Statistical Database: Sown Areas of Major Farm Crops. 2022. Available online: http://www.stats.gov.cn/ (accessed on 30 December 2022). (In Chinese)
- Li, Y.; Tang, L.L.; Chen, Y.; Wu, C.Y.; Tang, X.; Ji, X.J. The effects of nitrogen application rates on uptake, utilization and losses of nitrogen for rice. Chin. J. Soil Sci. 2015, 46, 392–397. [Google Scholar]
- Zhou, W.; Yang, Z.; Wang, T. Environmental Compensation Effect and Synergistic Mechanism of Optimized Nitrogen Management Increasing Nitrogen Use Efficiency in Indica Hybrid Rice. Front. Plant Sci. 2019, 10, 245. [Google Scholar] [CrossRef]
- Li, S.; Shen, C.B. Research progress on regulation nitrate nitrogen metabolism and utilization in crops. J. Nanjing Agric. Univ. 2022, 45, 848–855. [Google Scholar]
- Gao, Y.; Sun, C.; Ramos, T.B. Modeling nitrogen dynamics and biomass production in rice paddy fields of cold regions with the ORYZA-N model. Ecol. Model. 2023, 475, 110184. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, H.; Wang, C.; Zhang, J.; Zhou, S. Optimizing fertilizer management mitigated net greenhouse gas emissions in a paddy rice-upland wheat rotation system: A ten-year in situ observation of the Yangtze River Delta, China. Agric. Ecosyst. Environ. 2023, 356, 108640. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, P.; Choudhary, O.P. Nitrogen and rice straw incorporation impact nitrogen use efficiency, soil nitrogen pools and enzyme activity in rice-wheat system in north-western India. Field Crops Res. 2021, 266, 108131. [Google Scholar] [CrossRef]
- Xue, L.H.; Li, G.H.; Hou, P.F. Research on Nitrogen Reduction Technology System for Sustained High Yield in Paddy Field in Taihu Lake Region. J. Agro Environ. Sci. 2016, 35, 729–736. [Google Scholar]
- Nebiyou, L.; Wu, S.; Wang, Y.; Gan, M.Q.; Liu, P.S.; Huang, Y.; Xu, H.J.; Hu, H.X.; Ma, Y.H. Optimal fertilizer rates towards the improvement of nitrogen use efficiency and reduction of nitrogen export in paddy rice-wheat intensive farming. Front. Environ. Sci. 2023, 11, 1239785. [Google Scholar] [CrossRef]
- Wang, L.M.; Huang, D.F.; Zhang, B.Y.; Pan, Z.C. Differences in uptake, utilization and loss of nitrogen and phosphorus in a Chinese double rice cropping system under different irrigation and fertilization managements. J. Appl. Ecol. 2022, 33, 1037–1044. [Google Scholar]
- Peng, S.; Wang, H.; Zhang, W.K.; Hou, J.; Chen, A.; Wen, W.; Wan, Y.; Yuan, H. Effects of long-term nitrogen fertilizer reduction and deep application on yield and soil fertility of double-crop rice. J. Plant Nutr. Fertil. 2020, 26, 999–1007. [Google Scholar]
- Gong, L.; Jin, D.D.; Niu, S.W.; Wang, N.; Xu, J.Y.; Sui, S.J. Effects of long-term positioning of nitrogen fertilizer reduction on rice yield and nitrogen uptake and utilization. Chin. Rice 2022, 28, 42–46. [Google Scholar]
- Sun, Y.J.; Lin, D.; Sun, Y.Y.; Yan, F.J.; Ma, P.; Guo, C.C.; Li, F.J.; Yang, Z.Y.; Xu, F.X.; Ma, J. Improving yield and nitrogen use efficiency of hybrid indica rice through optimizing nitrogen application strategies in the rice season under different rotation patterns. Paddy Water Environ. 2022, 21, 99–113. [Google Scholar] [CrossRef]
- Wang, J.B.; Wu, G.; Yuan, M.M. Effects of different nitrogen application rates and methods on ammonia volatilization and nitrogen fertilizer utilization in rice fields. Soil Fertil. China 2022, 301, 10–17. [Google Scholar]
- Fu, Z.P.; Zhang, K.; Zhang, J.Y.; Zhang, Y.; Cao, Q.; Tian, Y.C.; Zhu, Y.; Gao, W.X.; Liu, X.J. Optimizing nitrogen application and sowing date can improve environmental sustainability and economic benefit in wheat-rice rotation. Agric. Syst. 2023, 204, 103536. [Google Scholar] [CrossRef]
- Liang, H.; Li, S.; Zhang, L.; Xu, C.; Lv, Y.; Gao, S.; Cao, W. Long-term green manuring enhances crop N uptake and reduces N losses in rice production system. Soil Tillage Res. 2022, 220, 105369. [Google Scholar] [CrossRef]
- Bhandari, A.L.; Ladha, J.K.; Pathak, H.; Padre, A.T.; Dawe, D.; Gupta, R.K. Yield and Soil Nutrient Changes in a Long-Term Rice-Wheat Rotation in India. Soil Sci. Soc. Am. J. 2002, 66, 162–170. [Google Scholar]
- Ding, W.C.; Xu, X.P.; Zhang, J.J.; Huang, S.H.; He, P.; Zhou, W. Nitrogen balance acts an indicator for estimating thresholds of nitrogen input in rice paddies of China. Environ. Pollut. 2021, 290, 118091. [Google Scholar] [CrossRef]
- Li, J.P.; Ma, H.B.; Xie, Y.Z.; Wang, K.B.; Qiu, K.Y. Deep soil C and N pools in long-term fenced and overgrazed temperate grasslands in northwest China. Sci. Rep. 2019, 9, 16088. [Google Scholar] [CrossRef]
- Shen, Y.Y.; Xu, L.; Guo, H.; Ismail, H.; Ran, X.; Zhang, C.; Peng, Y.X.; Zhao, Y.F.; Liu, W.Z.; Ding, Y.F.; et al. Mitigating the adverse effect of warming on rice canopy and rhizosphere microbial community by nitrogen application: An approach to counteract future climate change for rice. Sci. Total Environ. 2023, 905, 167151. [Google Scholar] [CrossRef]
- Manuel, F.; Vittorio, B.; Pranay, K.B.; Francesco, V.; Anna, P.; Gianluigi, G.; Giovanna, V.; Teofilo, V. Application of the full nitrogen dose at decreasing rates by foliar spraying versus conventional soil fertilization in common wheat. J. Agric. Food Res. 2025, 19, 101602. [Google Scholar]
- Dong, X.S.; Lin, H.; Wang, F.; Shi, S.M.; Ma, J.M.; He, X.H. Effects of increasing CO2 concentration on crop growth and soil ammonia-oxidizing microorganisms in a fababean (Vicia faba L.) and wheat (Triticum aestivum Yunmai) intercropping system. Plants 2025, 14, 516. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Xia, L.L.; Cai, S.Y. After-effects and fate of residual fertilizer nitrogen in rice-wheat rotation farmland under long-term no nitrogen fertilization. Soil J. 2022, 59, 1626–1639. [Google Scholar]
- Gu, B.J.; Ju, X.T.; Chang, S.X.; Ge, Y.; Chang, J. Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection. Reg. Environ. Change 2017, 17, 1217–1227. [Google Scholar] [CrossRef]
- Gui, S.; Zhu, X.; Cao, G. Effects of tillage on soil nitrogen and its components from rice-wheat fields in subtropical regions of China. Int. J. Agric. Biol. Eng. 2022, 15, 146–152. [Google Scholar] [CrossRef]
- Liu, C.; Ren, D.; Liu, H.; Zhang, Y.; Wang, L.; Li, Z.; Zhang, M. Optimizing nitrogen management diminished reactive nitrogen loss and acquired optimal net ecosystem economic benefit in a wheat-maize rotation system. J. Clean. Prod. 2022, 331, 129964. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Kumar, A.; Kumar, R.; Lavakush; Kumar, S.; Maurya, S.K.; Kumar, A. Effect of inorganic and organic sources of nutrient on NPK content, NPK uptake, apparent nitrogen recovery, nitrogen use efficiency and Protein content in rice under rice wheat cropping system. J. Pharmacogn. Phytochem. 2021, 10, 2610–2613. [Google Scholar]
- Zhou, Y.; Xu, L.; Zhang, J.; Li, W.; Jiang, Y.; Wang, S.; Ding, Y.; Liu, Z.; Li, G. Low N apparent surplus with higher rice yield under long-term fertilizer postponing in the rice-wheat cropping system. Crop J. 2022, 10, 9. [Google Scholar] [CrossRef]
- Xu, X.; Ma, F.; Zhou, J.; Du, C. Control-released urea improved agricultural production efficiency and reduced the ecological and environmental impact in rice-wheat rotation system: A life-cycle perspective. Field Crops Res. 2022, 278, 108445. [Google Scholar] [CrossRef]
- Chen, Z.D.; Chun-Chun, X.U.; Long, J.I.; Fang, F.P. Comprehensive evaluation for carbon and nitrogen footprints of rice–wheat rotation system in Middle Yangtze River Basin. J. Plant Nutr. Fertil. 2019, 25, 1125–1133. [Google Scholar]
- Zhang, J.; Li, W.; Zhou, Y.; Ding, Y.; Xu, L.; Jiang, Y.; Li, G. Long-term straw incorporation increases rice yield stability under high fertilization level conditions in the rice–wheat system. Crop J. 2021, 9, 1191–1197. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.F.; Xu, X.J. Effects of long-term soil testing and positioning of fertilizers on rice and wheat yields and soil nutrients. Zhejiang Agric. Sci. 2023, 64, 525–529. [Google Scholar]
- Hou, P.F.; Yu, Y.L.; Xue, L.X.; Petropoulos, E.; He, S.Y.; Zhang, Y.S.; Pandey, A.; Xue, L.H.; Yang, L.Z.; Chen, D.L. Effect of long term fertilization management strategies on methane emissions and rice yield. Sci. Total Environ. 2020, 725, 138261. [Google Scholar] [CrossRef]
- Mukhi, S.K.; Rout, K.K.; Patra, R.K.; Dash, A.; Parida, A.K.; Shivhare, S. Sub-soil properties as influenced by long-term manuring and their relationship with yield and sustainability of a rice-rice production system in eastern India. Int. J. Plant Soil Sci. 2022, 34, 795–808. [Google Scholar] [CrossRef]
- Kaveh, S.F.; Alireza, V.A.S.; Masood, K.; Zakerin, H.; Mohammadreza, Y. The effect of periodic irrigation and different amounts of nitrogen fertilizer on yield and yield components of rice. Commun. Soil Sci. Plant Anal. 2021, 52, 22–31. [Google Scholar]
- Koppensteiner, L.J.; Kaul, H.P.; Piepho, H.P.; Barta, N.; Euteneuer, P.; Bernas, J.; Kopyra, A.K.; Gronauer, A.; Neugschwandtner, R.W. Yield and yield components of facultative wheat are affected by sowing time, nitrogen fertilization and environment. Eur. J. Agron. 2022, 140, 126591. [Google Scholar] [CrossRef]
- Zhou, W.; Lv, T.F.; Yang, Z.P.; Wang, T.; Fu, Y.; Chen, Y.; Hu, B.H.; Ren, W.J. Morphophysiological mechanism of rice yield increase in response to optimized nitrogen management. Sci. Rep. 2017, 7, 17226. [Google Scholar] [CrossRef]
- He, B.; Li, C.; Yao, L.; Cui, H.Y.; Tian, Y.J.; Sun, X.; Yu, T.H.; He, J.Q.; Wang, S. Effects of dynamic nitrogen application on rice yield and quality under straw returning conditions. Environ. Res. 2024, 243, 117857. [Google Scholar] [CrossRef]
- Liu, S.; Wang, M.; Yin, M.; Chu, G.; Xu, C.; Zhang, X.; Abliz, B.; Tang, C.; Wang, D.; Chen, S. Fifteen years of crop rotation combined with straw management alters the nitrogen supply capacity of upland-paddy soil. Soil Tillage Res. 2022, 215, 105219. [Google Scholar] [CrossRef]
- Isaac, N.A.; Michael, V.D.L.; John, G.A.; Joachim, M.S. Water and nitrogen (n) use efficiency of upland rice (oryza sativa L.×oryza glaberrima steud) under varying n application rates. Nitrogen 2020, 1, 151–166. [Google Scholar]
- Liu, X.; Xu, S.S.; Zhang, J.W.; Ding, Y.F.; Li, G.H.; Wang, S.H.; Liu, Z.H.; Tang, S.; Ding, C.Q.; Chen, L. Effect of continuous reduction of nitrogen application to a rice-wheat rotation system in the middle-lower Yangtze River region (2013–2015). Field Crops Res. 2016, 196, 348–356. [Google Scholar] [CrossRef]
- Zhang, J.H.; Liu, J.L.; Zhang, J.B.; Zhao, F.T.; Cheng, Y.N.; Wang, W.P. Effects of Nitrogen Application Rates on Translocation of Dry Matter and Nitrogen Utilization in Rice and Wheat. Acta Agron. Sin. 2010, 36, 1736–1742. [Google Scholar] [CrossRef]
- Hu, B.J.; Zhang, J.; Xiao, J.X.; Yang, S.Y.; Dong, K.; Dong, Y. Long-term intercropping with nitrogen management to improve soil quality and control crop diseases. Plant Cell Environ. 2025, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ye, C.; Xu, C.M.; Wang, Z.M.; Chen, S.; Chu, G.; Zhang, X.F. Soil Nitrogen Distribution and Plant Nitrogen Utilization in Direct-Seeded Rice in Response to Deep Placement of Basal Fertilizer-Nitrogen. Rice Sci. 2019, 26, 404–415. [Google Scholar] [CrossRef]










| Growth Stage | Rotation | Tmax | Tmean | Tmin | Prec | 
|---|---|---|---|---|---|
| °C | mm | ||||
| Vegetative a | 1 | 33.1 | 25.0 | 19.3 | 466.7 | 
| 2 | 37.0 | 27.3 | 20.2 | 331.1 | |
| Reproductive b | 1 | 36.6 | 29.1 | 20.9 | 168.7 | 
| 2 | 33.2 | 27.4 | 22.4 | 291.8 | |
| Ripening c | 1 | 35.0 | 22.3 | 9.8 | 147.1 | 
| 2 | 35.9 | 23.5 | 9.2 | 1583 | |
| Whole d | 1 | 36.6 | 24.7 | 9.8 | 782.5 | 
| 2 | 33.2 | 25.6 | 9.2 | 781.2 | |
| Growth Stage | Rotation | Tmax | Tmean | Tmin | Prec | 
|---|---|---|---|---|---|
| °C | mm | ||||
| Vegetative a | 1 | 28.2 | 6.8 | −8.3 | 130.4 | 
| 2 | 21.7 | 5.9 | −4.9 | 121.0 | |
| Reproductive b | 1 | 24.3 | 13.2 | 1.2 | 118.4 | 
| 2 | 31.5 | 14.7 | 2.5 | 270.5 | |
| Ripening c | 1 | 32.6 | 21.0 | 12.6 | 158.7 | 
| 2 | 29.4 | 19.6 | 10.6 | 13.8 | |
| Whole d | 1 | 32.6 | 10.7 | −8.3 | 407.5 | 
| 2 | 31.5 | 10.4 | −4.9 | 405.3 | |
| Rice Yield | Wheat Yield | |||
|---|---|---|---|---|
| Rotation | Rotation | |||
| 1 | 2 | 1 | 2 | |
| PN | 28.40 * | 12.30 | 45.40 * | 25.10 * | 
| CN | 97.70 * | 97.00 * | 98.50 * | 97.60 * | 
| PN × CN | 50.60 * | 32.00 * | 56.30 * | 37.80 * | 
| Panicles | Grain Number per Spike | Grain Weight | Seed Setting Rate | |||||
|---|---|---|---|---|---|---|---|---|
| Rotation | Rotation | Rotation | Rotation | |||||
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |
| PN | 19.60 * | 14.40 | 7.00 | 5.20 | 0.50 | 0.30 | 2.30 | 2.00 | 
| CN | 96.70 * | 96.50 * | 87.10 * | 81.40 * | 18.30 | 9.20 | 68.50 * | 30.90 * | 
| PN × CN | 59.70 * | 37.40 * | 21.00 * | 17.10 | 2.90 | 1.30 | 5.20 | 5.10 | 
| Panicles | Grain Number per Spike | Grain Weight | ||||
|---|---|---|---|---|---|---|
| Rotation | Rotation | Rotation | ||||
| 1 | 2 | 1 | 2 | 1 | 2 | |
| PN | 47.20 * | 11.30 | 4.10 | 3.10 | 03.80 | 1.60 | 
| CN | 98.40 * | 95.00 * | 67.80 * | 55.60 * | 43.00 * | 25.10 * | 
| PN × CN | 56.90 * | 30.10 * | 9.10 | 9.00 | 4.60 | 0.80 | 
| PFPN | PEN | REN | AEN | |||||
|---|---|---|---|---|---|---|---|---|
| Rotation | Rotation | Rotation | Rotation | |||||
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |
| PN | 7.30 | 0.70 | 5.50 | 1.40 | 12.80 | 6.50 | 0.90 | 0.80 | 
| CN | 99.40 * | 95.50 * | 99.80 * | 88.90 * | 98.90 * | 86.20 * | 78.30 * | 71.40 * | 
| PN × CN | 13.50 | 2.50 | 7.20 | 5.10 | 18.60 | 8.50 | 3.70 | 3.00 | 
| PFPN | PEN | REN | AEN | |||||
|---|---|---|---|---|---|---|---|---|
| Rotation | Rotation | Rotation | Rotation | |||||
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |
| PN | 9.30 | 3.10 | 18.50 | 16.60 | 57.30 * | 44.90 * | 16.20 | 10.70 | 
| CN | 92.70 * | 91.60 * | 98.80 * | 96.40 * | 99.40 * | 91.60 * | 99.10 * | 96.90 * | 
| PN × CN | 20.40 | 19.40 | 27.60 | 25.80 | 64.10 * | 54.90 * | 23.30 | 15.90 | 
| Treatment | TN | NH4+ | NO3− | |||
|---|---|---|---|---|---|---|
| Rotation | Rotation | Rotation | ||||
| 1 | 2 | 1 | 2 | 1 | 2 | |
| PN | 17.10 | 8.50 | 94.30 * | 93.70 * | 76.10 * | 60.80 * | 
| CN | 73.20 * | 63.90 * | 98.10 * | 98.90 * | 97.90 * | 77.20 * | 
| PN × CN | 21.30 | 20.30 | 20.00 | 3.50 | 16.40 | 28.30 | 
| Treatment | TN | NH4+ | NO3− | |||
|---|---|---|---|---|---|---|
| Rotation | Rotation | Rotation | ||||
| 1 | 2 | 1 | 2 | 1 | 2 | |
| PN | 24.40 | 16.30 | 70.90 * | 87.70 * | 98.70 * | 98.40 * | 
| CN | 71.70 * | 62.20 * | 96.00 * | 94.10 * | 99.50 * | 99.40 * | 
| PN × CN | 39.50 | 35.40 | 12.20 | 3.90 | 10.20 | 0.30 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Liu, X.; Gao, P.; Chen, Y.; Wei, H.; Zhang, H.; Dai, Q. Response of Crop Yield to Nitrogen Application and Optimal Nitrogen Application Rate in a Rice–Wheat Rotation System. Agronomy 2025, 15, 2506. https://doi.org/10.3390/agronomy15112506
Yang Y, Liu X, Gao P, Chen Y, Wei H, Zhang H, Dai Q. Response of Crop Yield to Nitrogen Application and Optimal Nitrogen Application Rate in a Rice–Wheat Rotation System. Agronomy. 2025; 15(11):2506. https://doi.org/10.3390/agronomy15112506
Chicago/Turabian StyleYang, Yulin, Xiaohu Liu, Pinglei Gao, Yinglong Chen, Huanhe Wei, Hongcheng Zhang, and Qigen Dai. 2025. "Response of Crop Yield to Nitrogen Application and Optimal Nitrogen Application Rate in a Rice–Wheat Rotation System" Agronomy 15, no. 11: 2506. https://doi.org/10.3390/agronomy15112506
APA StyleYang, Y., Liu, X., Gao, P., Chen, Y., Wei, H., Zhang, H., & Dai, Q. (2025). Response of Crop Yield to Nitrogen Application and Optimal Nitrogen Application Rate in a Rice–Wheat Rotation System. Agronomy, 15(11), 2506. https://doi.org/10.3390/agronomy15112506
 
        

 
       