Recycled Nitrogen for Regenerative Agriculture: A Review of Agronomic and Environmental Impacts of Circular Nutrient Sources
Abstract
1. Introduction
2. Overview of Recycled Nitrogen Fertilizers
2.1. Urine-Derived Fertilizers (UDF)
2.2. Compost
2.3. Manure
2.4. Digestate
2.5. Biosolids
2.6. Struvite
2.7. Mixed-Source Fertilizers and Co-Products
3. Agronomic Performance
3.1. Nitrogen Availability and Release Dynamics
3.2. Crop Yield Response
3.3. Nitrogen Use Efficiency (NUE)
3.4. Soil Fertility and Organic Matter Contributions
4. Environmental Considerations
4.1. Greenhouse Gas (GHG) Emissions
4.2. Nitrogen Loss Pathways: Leaching and Volatilization
4.3. Heavy Metals, Pathogens, and Contaminants
5. Economic and Practical Feasibility
5.1. Production and Processing Costs
5.2. Transportation and Application Challenges
5.3. Compatibility with Existing Farming Systems
5.4. Economic Incentives, Market Structures, and Externalities
5.5. Feasibility in Global South vs. Global North Contexts
6. Regulatory and Social Acceptance
6.1. Regulatory Frameworks
6.2. Social Acceptance and Perception
6.3. Institutional and Policy Support
6.4. Case Studies and Lessons Learned
6.5. Regional Perspectives
7. Knowledge Gaps and Research Needs
7.1. Agronomic Performance and Nutrient Dynamics
7.2. Environmental Fate and Impact
7.3. Technology Development and Optimization
7.4. Socio-Economic and Policy Research
7.5. Knowledge Exchange and Capacity Building
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mulvaney, R.L.; Khan, S.A.; Ellsworth, T.R. Synthetic Nitrogen Fertilizers Deplete Soil Nitrogen: A Global Dilemma for Sustainable Cereal Production. J. Environ. Qual. 2009, 38, 2295–2314. [Google Scholar] [CrossRef] [PubMed]
- Timsina, J. Can Organic Sources of Nutrients Increase Crop Yields to Meet Global Food Demand? Agronomy 2018, 8, 214. [Google Scholar] [CrossRef]
- Penuelas, J.; Coello, F.; Sardans, J. A Better Use of Fertilizers Is Needed for Global Food Security and Environmental Sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse Gas Emissions from Global Production and Use of Nitrogen Synthetic Fertilisers in Agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [CrossRef]
- Singh, B.; Craswell, E. Fertilizers and Nitrate Pollution of Surface and Ground Water: An Increasingly Pervasive Global Problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, C.; Su, Y.; Peng, W.; Lu, R.; Liu, Y.; Huang, H.; He, X.; Yang, M.; Zhu, S. Soil Acidification Caused by Excessive Application of Nitrogen Fertilizer Aggravates Soil-Borne Diseases: Evidence from Literature Review and Field Trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Gu, B.; Chang, J.; Min, Y.; Ge, Y.; Zhu, Q.; Galloway, J.N.; Peng, C. The Role of Industrial Nitrogen in the Global Nitrogen Biogeochemical Cycle. Sci. Rep. 2013, 3, 2579. [Google Scholar] [CrossRef]
- Bhatt, R.; Kunal; Moulick, D.; Bárek, V.; Brestic, M.; Gaber, A.; Skalicky, M.; Hossain, A. Sustainable Strategies to Limit Nitrogen Loss in Agriculture through Improving Its Use Efficiency—Aiming to Reduce Environmental Pollution. J. Agric. Food Res. 2025, 22, 101957. [Google Scholar] [CrossRef]
- Ludemann, C.I.; Wanner, N.; Chivenge, P.; Dobermann, A.; Einarsson, R.; Grassini, P.; Gruere, A.; Jackson, K.; Lassaletta, L.; Maggi, F.; et al. A Global FAOSTAT Reference Database of Cropland Nutrient Budgets and Nutrient Use Efficiency (1961–2020): Nitrogen, Phosphorus and Potassium. Earth Syst. Sci. Data 2024, 16, 525–541. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing Nitrogen for Sustainable Development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.S.; Hall, E.K.; Nolan, B.T.; Finlay, J.C.; Bernhardt, E.S.; Harrison, J.A.; Chan, F.; Boyer, E.W. The Interactive Effects of Excess Reactive Nitrogen and Climate Change on Aquatic Ecosystems and Water Resources of the United States. Biogeochemistry 2013, 114, 71–92. [Google Scholar] [CrossRef]
- Rizwan, M.; Tanveer, H.; Ali, M.H.; Sanaullah, M.; Wakeel, A. Role of Reactive Nitrogen Species in Changing Climate and Future Concerns of Environmental Sustainability. Environ. Sci. Pollut. Res. 2024, 31, 51147–51163. [Google Scholar] [CrossRef]
- Khan, S.; Das, P.; Thaher, M.I.; AbdulQuadir, M.; Mahata, C.; Al Jabri, H. Utilization of Nitrogen-Rich Agricultural Waste Streams by Microalgae for the Production of Protein and Value-Added Compounds. Curr. Opin. Green Sustain. Chem. 2023, 41, 100797. [Google Scholar] [CrossRef]
- Charbonneau, A.; Lucotte, M.; Moingt, M.; Blakney, A.J.C.; Morvan, S.; Bipfubusa, M.; Pitre, F.E. Fertilisation of Agricultural Soils with Municipal Biosolids: Glyphosate and Aminomethylphosphonic Acid Inputs to Québec Field Crop Soils. Sci. Total Environ. 2024, 922, 171290. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Lin, H.; Zheng, H.; Zhou, Q. Manure Enriched with Nitrogen Derived from High-Protein Food Waste in a Large Dining Facility. Heliyon 2024, 10, e32937. [Google Scholar] [CrossRef]
- Breda, C.C.; Soares, M.B.; Tavanti, R.F.R.; Viana, D.G.; Freddi, O.D.S.; Piedade, A.R.; Mahl, D.; Traballi, R.C.; Guerrini, I.A. Successive Sewage Sludge Fertilization: Recycling for Sustainable Agriculture. Waste Manag. 2020, 109, 38–50. [Google Scholar] [CrossRef]
- Md Nasir, N.A.N.; Zakarya, I.A.; Anuar, N.; Kamaruddin, S.A.; Helmi, N.A.M. Recent Advancements in the Treatments of the Organic Fraction of Municipal Solid Waste towards Circular Economy. Int. J. Environ. Sci. Technol. 2025, 22, 12115–12134. [Google Scholar] [CrossRef]
- Hertzberger, A.J.; Cusick, R.D.; Margenot, A.J. A Review and Meta-analysis of the Agricultural Potential of Struvite as a Phosphorus Fertilizer. Soil Sci. Soc. Am. J. 2020, 84, 653–671. [Google Scholar] [CrossRef]
- Martin, T.M.P.; Esculier, F.; Levavasseur, F.; Houot, S. Human Urine-Based Fertilizers: A Review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 890–936. [Google Scholar] [CrossRef]
- Martin, T.M.P.; Aubin, J.; Gilles, E.; Auberger, J.; Esculier, F.; Levavasseur, F.; McConville, J.; Houot, S. Comparative Study of Environmental Impacts Related to Wheat Production with Human-Urine Based Fertilizers versus Mineral Fertilizers. J. Clean. Prod. 2023, 382, 135123. [Google Scholar] [CrossRef]
- Kyttä, V.; Helenius, J.; Tuomisto, H.L. Carbon Footprint and Energy Use of Recycled Fertilizers in Arable Farming. J. Clean. Prod. 2021, 287, 125063. [Google Scholar] [CrossRef]
- Bhunia, S.; Bhowmik, A.; Mallick, R.; Mukherjee, J. Agronomic Efficiency of Animal-Derived Organic Fertilizers and Their Effects on Biology and Fertility of Soil: A Review. Agronomy 2021, 11, 823. [Google Scholar] [CrossRef]
- Suleiman, A.K.A.; Lourenço, K.S.; Pitombo, L.M.; Mendes, L.W.; Roesch, L.F.W.; Pijl, A.; Carmo, J.B.; Cantarella, H.; Kuramae, E.E. Recycling Organic Residues in Agriculture Impacts Soil-Borne Microbial Community Structure, Function and N2O Emissions. Sci. Total Environ. 2018, 631–632, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Kong, D.; Zhang, H.; Xu, L.; Li, C.; Wu, M.; Jiao, J.; Li, D.; Xu, L.; Li, H.; et al. Different Regulation of Soil Structure and Resource Chemistry under Animal- and Plant-Derived Organic Fertilizers Changed Soil Bacterial Communities. Appl. Soil Ecol. 2021, 165, 104020. [Google Scholar] [CrossRef]
- Hou, P.; Shi, C.; Xu, T.; Xue, L.; Wang, J.; Liu, Q.; Xue, L.; Yang, L. Long-Term Fertilizer Optimization with Slow-Release and Organic Fertilizers Improves N Use Efficiency and Soil Bacterial Populations in Paddies. J. Soil Sci. Plant Nutr. 2023, 23, 6088–6100. [Google Scholar] [CrossRef]
- He, Z.; Ding, B.; Pei, S.; Cao, H.; Liang, J.; Li, Z. The Impact of Organic Fertilizer Replacement on Greenhouse Gas Emissions and Its Influencing Factors. Sci. Total Environ. 2023, 905, 166917. [Google Scholar] [CrossRef]
- Lisenbee, W.; Saha, A.; Mohammadpour, P.; Cibin, R.; Kaye, J.; Grady, C.; Chaubey, I. Water Quality Impacts of Recycling Nutrients Using Organic Fertilizers in Circular Agricultural Scenarios. Agric. Syst. 2024, 219, 104041. [Google Scholar] [CrossRef]
- Gasper, D.; Shah, A.; Tankha, S. The Framing of Sustainable Consumption and Production in SDG 12. Glob. Policy 2019, 10, 83–95. [Google Scholar] [CrossRef]
- Langhans, C.; Beusen, A.H.W.; Mogollón, J.M.; Bouwman, A.F. Phosphorus for Sustainable Development Goal Target of Doubling Smallholder Productivity. Nat. Sustain. 2021, 5, 57–63. [Google Scholar] [CrossRef]
- Forkes, J. Nitrogen Balance for the Urban Food Metabolism of Toronto, Canada. Resour. Conserv. Recycl. 2007, 52, 74–94. [Google Scholar] [CrossRef]
- Larsen, T.A.; Alder, A.C.; Eggen, R.I.L.; Maurer, M.; Lienert, J. Source Separation: Will We See a Paradigm Shift in Wastewater Handling? Environ. Sci. Technol. 2009, 43, 6121–6125. [Google Scholar] [CrossRef] [PubMed]
- Simha, P.; Ganesapillai, M. Ecological Sanitation and Nutrient Recovery from Human Urine: How Far Have We Come? A Review. Sustain. Environ. Res. 2017, 27, 107–116. [Google Scholar] [CrossRef]
- Larsen, T.A.; Gruendl, H.; Binz, C. The Potential Contribution of Urine Source Separation to the SDG Agenda – a Review of the Progress so Far and Future Development Options. Environ. Sci. Water Res. Technol. 2021, 7, 1161–1176. [Google Scholar] [CrossRef]
- Hilton, S.P.; Keoleian, G.A.; Daigger, G.T.; Zhou, B.; Love, N.G. Life Cycle Assessment of Urine Diversion and Conversion to Fertilizer Products at the City Scale. Environ. Sci. Technol. 2021, 55, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.E.; Dickman, R.; Kennedy, B.; Aga, D.; Noe-Hays, A.; Wigginton, K.R.; Jolliet, O.; Love, N.G. Comparative Exposure Assessment of Crops Grown by Urine-Derived Fertilizer and Crops Irrigated with Reclaimed Water. Environ. Sci. Technol. 2025, 59, 13034–13041. [Google Scholar] [CrossRef]
- Lienert, J.; Bürki, T.; Escher, B.I. Reducing Micropollutants with Source Control: Substance Flow Analysis of 212 Pharmaceuticals in Faeces and Urine. Water Sci. Technol. 2007, 56, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Köpping, I.; McArdell, C.S.; Borowska, E.; Böhler, M.A.; Udert, K.M. Removal of Pharmaceuticals from Nitrified Urine by Adsorption on Granular Activated Carbon. Water Res. X 2020, 9, 100057. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, P.; Boyer, T.H.; Zhao, L.; Huang, C.-H. Degradation of Pharmaceuticals and Metabolite in Synthetic Human Urine by UV, UV/H2O2, and UV/PDS. Environ. Sci. Technol. 2015, 49, 3056–3066. [Google Scholar] [CrossRef]
- Jakobsen, S.T. Aerobic Decomposition of Organic Wastes 2. Value of Compost as a Fertilizer. Resour. Conserv. Recycl. 1995, 13, 57–71. [Google Scholar] [CrossRef]
- Gurtler, J.B.; Doyle, M.P.; Erickson, M.C.; Jiang, X.; Millner, P.; Sharma, M. Composting To Inactivate Foodborne Pathogens for Crop Soil Application: A Review. J. Food Prot. 2018, 81, 1821–1837. [Google Scholar] [CrossRef]
- Li, Z.; Lu, H.; Ren, L.; He, L. Experimental and Modeling Approaches for Food Waste Composting: A Review. Chemosphere 2013, 93, 1247–1257. [Google Scholar] [CrossRef]
- Cerda, A.; Artola, A.; Font, X.; Barrena, R.; Gea, T.; Sánchez, A. Composting of Food Wastes: Status and Challenges. Bioresour. Technol. 2018, 248, 57–67. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of Sewage Sludge in EU Application of Old and New Methods—A Review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Fatunla, K.; Inam, E.; Essien, J.; Dan, E.; Odon, A.; Kang, S.; Semple, K.T. Influence of Composting and Thermal Processing on the Survival of Microbial Pathogens and Nutritional Status of Nigeria Sewage Sludge. Int. J. Recycl. Org. Waste Agric. 2017, 6, 301–310. [Google Scholar] [CrossRef]
- Hepperly, P.; Lotter, D.; Ulsh, C.Z.; Seidel, R.; Reider, C. Compost, Manure and Synthetic Fertilizer Influences Crop Yields, Soil Properties, Nitrate Leaching and Crop Nutrient Content. Compost Sci. Util. 2009, 17, 117–126. [Google Scholar] [CrossRef]
- Petersen, S.O.; Sommer, S.G.; Béline, F.; Burton, C.; Dach, J.; Dourmad, J.Y.; Leip, A.; Misselbrook, T.; Nicholson, F.; Poulsen, H.D.; et al. Recycling of Livestock Manure in a Whole-Farm Perspective. Livest. Sci. 2007, 112, 180–191. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Yan, X.; Chen, D. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Tian, H.; Lu, C.; Dangal, S.R.S.; Yang, J.; Pan, S. Global Manure Nitrogen Production and Application in Cropland during 1860–2014: A 5 arcmin Gridded Global Dataset for Earth System Modeling. Earth Syst. Sci. Data 2017, 9, 667–678. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Yao, R.; Yu, S.; Li, F.; Hou, X. The Effects of Farmyard Manure and Mulch on Soil Physical Properties in a Reclaimed Coastal Tidal Flat Salt-Affected Soil. J. Integr. Agric. 2014, 13, 1782–1790. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing More Grain with Lower Environmental Costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure Acts as a Better Fertilizer for Increasing Crop Yields than Synthetic Fertilizer Does by Improving Soil Fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Cai, A.; Zhang, W.; Xu, M.; Wang, B.; Wen, S.; Shah, S.A.A. Soil Fertility and Crop Yield after Manure Addition to Acidic Soils in South China. Nutr. Cycl. Agroecosystems 2018, 111, 61–72. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Rukshana, F.; Butterly, C.R.; Xu, J.-M.; Baldock, J.A.; Tang, C. Organic Anion-to-Acid Ratio Influences pH Change of Soils Differing in Initial pH. J. Soils Sediments 2014, 14, 407–414. [Google Scholar] [CrossRef]
- Xu, J.M.; Tang, C.; Chen, Z.L. The Role of Plant Residues in pH Change of Acid Soils Differing in Initial pH. Soil Biol. Biochem. 2006, 38, 709–719. [Google Scholar] [CrossRef]
- McDaniel, M.D.; Tiemann, L.K.; Grandy, A.S. Does Agricultural Crop Diversity Enhance Soil Microbial Biomass and Organic Matter Dynamics? A Meta-analysis. Ecol. Appl. 2014, 24, 560–570. [Google Scholar] [CrossRef]
- Benbi, D.K.; Toor, A.S.; Kumar, S. Management of Organic Amendments in Rice-Wheat Cropping System Determines the Pool Where Carbon Is Sequestered. Plant Soil 2012, 360, 145–162. [Google Scholar] [CrossRef]
- Song, S.; Lim, J.W.; Lee, J.T.E.; Cheong, J.C.; Hoy, S.H.; Hu, Q.; Tan, J.K.N.; Chiam, Z.; Arora, S.; Lum, T.Q.H.; et al. Food-Waste Anaerobic Digestate as a Fertilizer: The Agronomic Properties of Untreated Digestate and Biochar-Filtered Digestate Residue. Waste Manag. 2021, 136, 143–152. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural Benefits and Environmental Risks of Soil Fertilization with Anaerobic Digestates: A Review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef]
- Muscolo, A.; Settineri, G.; Papalia, T.; Attinà, E.; Basile, C.; Panuccio, M.R. Anaerobic Co-Digestion of Recalcitrant Agricultural Wastes: Characterizing of Biochemical Parameters of Digestate and Its Impacts on Soil Ecosystem. Sci. Total Environ. 2017, 586, 746–752. [Google Scholar] [CrossRef]
- Panuccio, M.R.; Papalia, T.; Attinà, E.; Giuffrè, A.; Muscolo, A. Use of Digestate as an Alternative to Mineral Fertilizer: Effects on Growth and Crop Quality. Arch. Agron. Soil Sci. 2019, 65, 700–711. [Google Scholar] [CrossRef]
- Odlare, M.; Pell, M.; Svensson, K. Changes in Soil Chemical and Microbiological Properties during 4 Years of Application of Various Organic Residues. Waste Manag. 2008, 28, 1246–1253. [Google Scholar] [CrossRef]
- Peng, W.; Pivato, A. Sustainable Management of Digestate from the Organic Fraction of Municipal Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy. Waste Biomass Valorization 2019, 10, 465–481. [Google Scholar] [CrossRef]
- Tambone, F.; Orzi, V.; D’Imporzano, G.; Adani, F. Solid and Liquid Fractionation of Digestate: Mass Balance, Chemical Characterization, and Agronomic and Environmental Value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Eloffy, M.G.; Priya, A.K.; Yogeshwaran, V.; Yang, Z.; Elwakeel, K.Z.; Lopez-Maldonado, E.A. Biosolids Management and Utilizations: A Review. J. Clean. Prod. 2024, 451, 141974. [Google Scholar] [CrossRef]
- Sugurbekova, G.; Nagyzbekkyzy, E.; Sarsenova, A.; Danlybayeva, G.; Anuarbekova, S.; Kudaibergenova, R.; Frochot, C.; Acherar, S.; Zhatkanbayev, Y.; Moldagulova, N. Sewage Sludge Management and Application in the Form of Sustainable Fertilizer. Sustainability 2023, 15, 6112. [Google Scholar] [CrossRef]
- Milojevic, N.; Cydzik-Kwiatkowska, A. Agricultural Use of Sewage Sludge as a Threat of Microplastic (MP) Spread in the Environment and the Role of Governance. Energies 2021, 14, 6293. [Google Scholar] [CrossRef]
- Mohapatra, D.P.; Cledón, M.; Brar, S.K.; Surampalli, R.Y. Application of Wastewater and Biosolids in Soil: Occurrence and Fate of Emerging Contaminants. Water. Air. Soil Pollut. 2016, 227, 77. [Google Scholar] [CrossRef]
- Nsiah-Gyambibi, R. Improved Pyrolysis for Sewage Sludge Valorization via Enhanced Microcosm Vermicomposting. J. Mater. Cycles Waste Manag. 2023, 25, 3699–3713. [Google Scholar] [CrossRef]
- Le, Q.; Price, G.W. A Review of the Influence of Heat Drying, Alkaline Treatment, and Composting on Biosolids Characteristics and Their Impacts on Nitrogen Dynamics in Biosolids-Amended Soils. Waste Manag. 2024, 176, 85–104. [Google Scholar] [CrossRef]
- Tao, W.; Fattah, K.P.; Huchzermeier, M.P. Struvite Recovery from Anaerobically Digested Dairy Manure: A Review of Application Potential and Hindrances. J. Environ. Manag. 2016, 169, 46–57. [Google Scholar] [CrossRef]
- Huchzermeier, M.P.; Tao, W. Overcoming Challenges to Struvite Recovery from Anaerobically Digested Dairy Manure. Water Environ. Res. 2012, 84, 34–41. [Google Scholar] [CrossRef]
- Massey, M.S.; Davis, J.G.; Ippolito, J.A.; Sheffield, R.E. Effectiveness of Recovered Magnesium Phosphates as Fertilizers in Neutral and Slightly Alkaline Soils. Agron. J. 2009, 101, 323–329. [Google Scholar] [CrossRef]
- de-Bashan, L.E.; Bashan, Y. Recent Advances in Removing Phosphorus from Wastewater and Its Future Use as Fertilizer (1997–2003). Water Res. 2004, 38, 4222–4246. [Google Scholar] [CrossRef]
- Ryu, H.-D.; Lim, C.-S.; Kang, M.-K.; Lee, S.-I. Evaluation of Struvite Obtained from Semiconductor Wastewater as a Fertilizer in Cultivating Chinese Cabbage. J. Hazard. Mater. 2012, 221–222, 248–255. [Google Scholar] [CrossRef]
- Gaterell, M.R.; Gay, R.; Wilson, R.; Gochin, R.J.; Lester, J.N. An Economic and Environmental Evaluation of the Opportunities for Substituting Phosphorus Recovered from Wastewater Treatment Works in Existing UK Fertiliser Markets. Environ. Technol. 2000, 21, 1067–1084. [Google Scholar] [CrossRef]
- Peeva, G.; Yemendzhiev, H.; Koleva, R.; Nenov, V. Agrotechnical Assessment of Struvite Application. J. Agric. Chem. Environ. 2021, 10, 213–221. [Google Scholar] [CrossRef]
- El Diwani, G.; El Rafie, S.; El Ibiari, N.N.; El-Aila, H.I. Recovery of Ammonia Nitrogen from Industrial Wastewater Treatment as Struvite Slow Releasing Fertilizer. Desalination 2007, 214, 200–214. [Google Scholar] [CrossRef]
- Schlegel, A.J. Effect of Composted Manure on Soil Chemical Properties and Nitrogen Use by Grain Sorghum. J. Prod. Agric. 1992, 5, 153–157. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Liu, R.; Zhang, A.; Yang, Z. Effect of Nitrate Leaching Caused by Swine Manure Application in Fields of the Yellow River Irrigation Zone of Ningxia, China. Sci. Rep. 2017, 7, 13693. [Google Scholar] [CrossRef]
- Hsu, J.-H.; Lo, S.-L. Effect of Composting on Characterization and Leaching of Copper, Manganese, and Zinc from Swine Manure. Environ. Pollut. 2001, 114, 119–127. [Google Scholar] [CrossRef]
- Nahar, M.S.; Grewal, P.S.; Miller, S.A.; Stinner, D.; Stinner, B.R.; Kleinhenz, M.D.; Wszelaki, A.; Doohan, D. Differential Effects of Raw and Composted Manure on Nematode Community, and Its Indicative Value for Soil Microbial, Physical and Chemical Properties. Appl. Soil Ecol. 2006, 34, 140–151. [Google Scholar] [CrossRef]
- Ji, Z.; Zhang, L.; Liu, Y.; Li, X.; Li, Z. Evaluation of Composting Parameters, Technologies and Maturity Indexes for Aerobic Manure Composting: A Meta-Analysis. Sci. Total Environ. 2023, 886, 163929. [Google Scholar] [CrossRef]
- Luo, Y.; Liang, J.; Zeng, G.; Chen, M.; Mo, D.; Li, G.; Zhang, D. Seed Germination Test for Toxicity Evaluation of Compost: Its Roles, Problems and Prospects. Waste Manag. 2018, 71, 109–114. [Google Scholar] [CrossRef]
- Udert, K.M.; Larsen, T.A.; Gujer, W. Fate of Major Compounds in Source-Separated Urine. Water Sci. Technol. 2006, 54, 413–420. [Google Scholar] [CrossRef]
- Senecal, J.; Vinnerås, B. Urea Stabilisation and Concentration for Urine-Diverting Dry Toilets: Urine Dehydration in Ash. Sci. Total Environ. 2017, 586, 650–657. [Google Scholar] [CrossRef]
- Sharifi, M.; Baker, S.; Hojabri, L.; Hajiaghaei-Kamrani, M. Short-Term Nitrogen Dynamics in a Soil Amended with Anaerobic Digestate. Can. J. Soil Sci. 2019, 99, 173–181. [Google Scholar] [CrossRef]
- Czekała, W. Digestate as a Source of Nutrients: Nitrogen and Its Fractions. Water 2022, 14, 4067. [Google Scholar] [CrossRef]
- Silva-Leal, J.A.; Pérez-Vidal, A.; Torres-Lozada, P. Effect of Biosolids on the Nitrogen and Phosphorus Contents of Soil Used for Sugarcane Cultivation. Heliyon 2021, 7, e06360. [Google Scholar] [CrossRef]
- Marchuk, S.; Tait, S.; Sinha, P.; Harris, P.; Antille, D.L.; McCabe, B.K. Biosolids-Derived Fertilisers: A Review of Challenges and Opportunities. Sci. Total Environ. 2023, 875, 162555. [Google Scholar] [CrossRef] [PubMed]
- Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M. A Systematic Comparison of Commercially Produced Struvite: Quantities, Qualities and Soil-Maize Phosphorus Availability. Sci. Total Environ. 2021, 756, 143726. [Google Scholar] [CrossRef]
- Azevedo, A.; Lapa, N.; Moldão, M.; Duarte, E. Opportunities and Challenges in the Anaerobic Co-Digestion of Municipal Sewage Sludge and Fruit and Vegetable Wastes: A Review. Energy Nexus 2023, 10, 100202. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, Y.; Yang, H.; Zhu, L.; Cai, B.; Luo, S.; Cao, J.; Wei, Z. Transformation of Organic Nitrogen Fractions with Different Molecular Weights during Different Organic Wastes Composting. Bioresour. Technol. 2018, 262, 221–228. [Google Scholar] [CrossRef]
- Bonvin, C.; Etter, B.; Udert, K.M.; Frossard, E.; Nanzer, S.; Tamburini, F.; Oberson, A. Plant Uptake of Phosphorus and Nitrogen Recycled from Synthetic Source-Separated Urine. AMBIO 2015, 44, 217–227. [Google Scholar] [CrossRef]
- Degryse, F.; Baird, R.; Da Silva, R.C.; McLaughlin, M.J. Dissolution Rate and Agronomic Effectiveness of Struvite Fertilizers – Effect of Soil pH, Granulation and Base Excess. Plant Soil 2017, 410, 139–152. [Google Scholar] [CrossRef]
- Buckthought, L.E.; Clough, T.J.; Cameron, K.C.; Di, H.J.; Shepherd, M.A. Urine Patch and Fertiliser N Interaction: Effects of Fertiliser Rate and Season of Urine Application on Nitrate Leaching and Pasture N Uptake. Agric. Ecosyst. Environ. 2015, 203, 19–28. [Google Scholar] [CrossRef]
- Chipako, T.L.; Randall, D.G. Urine Treatment Technologies and the Importance of pH. J. Environ. Chem. Eng. 2020, 8, 103622. [Google Scholar] [CrossRef]
- Zapałowska, A.; Jarecki, W. The Impact of Using Different Types of Compost on the Growth and Yield of Corn. Sustainability 2024, 16, 511. [Google Scholar] [CrossRef]
- Al-Bataina, B.B.; Young, T.M.; Ranieri, E. Effects of Compost Age on the Release of Nutrients. Int. Soil Water Conserv. Res. 2016, 4, 230–236. [Google Scholar] [CrossRef]
- Van Midden, C.; Harris, J.; Shaw, L.; Sizmur, T.; Pawlett, M. The Impact of Anaerobic Digestate on Soil Life: A Review. Appl. Soil Ecol. 2023, 191, 105066. [Google Scholar] [CrossRef]
- Carraro, G.; Tonderski, K.; Enrich-Prast, A. Solid-Liquid Separation of Digestate from Biogas Plants: A Systematic Review of the Techniques’ Performance. J. Environ. Manag. 2024, 356, 120585. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Bhogal, A.; Rollett, A.; Taylor, M.; Williams, J.R. Precision Application Techniques Reduce Ammonia Emissions Following Food-Based Digestate Applications to Grassland. Nutr. Cycl. Agroecosystems 2018, 110, 151–159. [Google Scholar] [CrossRef]
- Valle, S.F.; Giroto, A.S.; Dombinov, V.; Robles-Aguilar, A.A.; Jablonowski, N.D.; Ribeiro, C. Struvite-Based Composites for Slow-Release Fertilization: A Case Study in Sand. Sci. Rep. 2022, 12, 14176. [Google Scholar] [CrossRef]
- Gu, B.; Wang, R.; Sardans, J.; Peñuelas, J.; Han, X.; Jiang, Y. Altered Soil Nitrogen Retention by Grassland Acidification from Near-Neutral to Acidic Conditions: A Plant-Soil-Microbe Perspective. Fundam. Res. 2024; in press. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X.; Mustafa, A. Exploring the Link between Soil Health and Crop Productivity. Ecotoxicol. Environ. Saf. 2025, 289, 117703. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Frey, B.; Li, D.; Liu, X.; Chen, C.; Liu, Y.; Zhang, R.; Sui, X.; Li, M.-H. Effects of Organic Nitrogen Addition on Soil Microbial Community Assembly Patterns in the Sanjiang Plain Wetlands, Northeastern China. Appl. Soil Ecol. 2024, 204, 105685. [Google Scholar] [CrossRef]
- Iqbal, S.; Begum, F.; Nguchu, B.A.; Claver, U.P.; Shaw, P. The Invisible Architects: Microbial Communities and Their Transformative Role in Soil Health and Global Climate Changes. Environ. Microbiome 2025, 20, 36. [Google Scholar] [CrossRef] [PubMed]
- Furtak, K.; Wolińska, A. The Impact of Extreme Weather Events as a Consequence of Climate Change on the Soil Moisture and on the Quality of the Soil Environment and Agriculture—A Review. CATENA 2023, 231, 107378. [Google Scholar] [CrossRef]
- De Guardia, A.; Petiot, C.; Rogeau, D.; Druilhe, C. Influence of Aeration Rate on Nitrogen Dynamics during Composting. Waste Manag. 2008, 28, 575–587. [Google Scholar] [CrossRef]
- Karak, T.; Bhattacharyya, P. Human Urine as a Source of Alternative Natural Fertilizer in Agriculture: A Flight of Fancy or an Achievable Reality. Resour. Conserv. Recycl. 2011, 55, 400–408. [Google Scholar] [CrossRef]
- Pandorf, M.; Hochmuth, G.; Boyer, T.H. Human Urine as a Fertilizer in the Cultivation of Snap Beans (Phaseolus Vulgaris) and Turnips (Brassica rapa). J. Agric. Food Chem. 2019, 67, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, D.; Srivastava, A.; Shakya, S.M.; Khadka, J.; Acharya, B.S. Use of Compost Supplemented Human Urine in Sweet Pepper (Capsicum annuum L.) Production. Sci. Hortic. 2013, 153, 8–12. [Google Scholar] [CrossRef]
- Upreti, H.; Shrestha, P.; Paudel, P. Effect of Human Urine as Fertilizer on Crop Production. Agron. J. Nepal 2013, 2, 168–172. [Google Scholar] [CrossRef]
- Nicastro, R.; El-Nakhel, C.; Geelen, D.; Fusco, G.M.; De Pascale, S.; Rouphael, Y.; Carillo, P. Exploring the Potential of Human Urine Derivatives in Circular Agriculture: A Case Study on Lettuce. Front. Sustain. Food Syst. 2024, 8, 1440014. [Google Scholar] [CrossRef]
- Sutradhar, I.; Jackson-deGraffenried, M.; Akter, S.; McMahon, S.A.; Waid, J.L.; Schmidt, H.-P.; Wendt, A.S.; Gabrysch, S. Introducing Urine-Enriched Biochar-Based Fertilizer for Vegetable Production: Acceptability and Results from Rural Bangladesh. Environ. Dev. Sustain. 2021, 23, 12954–12975. [Google Scholar] [CrossRef]
- Olesen, J.E.; Askegaard, M.; Rasmussen, I.A. Winter Cereal Yields as Affected by Animal Manure and Green Manure in Organic Arable Farming. Eur. J. Agron. 2009, 30, 119–128. [Google Scholar] [CrossRef]
- Koutroubas, S.D.; Antoniadis, V.; Damalas, C.A.; Fotiadis, S. Effect of Organic Manure on Wheat Grain Yield, Nutrient Accumulation, and Translocation. Agron. J. 2016, 108, 615–625. [Google Scholar] [CrossRef]
- Frøseth, R.B.; Bakken, A.K.; Bleken, M.A.; Riley, H.; Pommeresche, R.; Thorup-Kristensen, K.; Hansen, S. Effects of Green Manure Herbage Management and Its Digestate from Biogas Production on Barley Yield, N Recovery, Soil Structure and Earthworm Populations. Eur. J. Agron. 2014, 52, 90–102. [Google Scholar] [CrossRef]
- Przygocka-Cyna, K.; Grzebisz, W. The Multifactorial Effect of Digestate on the Availability of Soil Elements and Grain Yield and Its Mineral Profile—The Case of Maize. Agronomy 2020, 10, 275. [Google Scholar] [CrossRef]
- Ayilara, M.; Olanrewaju, O.; Babalola, O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Li, M.; Peterson, C.A.; Tautges, N.E.; Scow, K.M.; Gaudin, A.C.M. Yields and Resilience Outcomes of Organic, Cover Crop, and Conventional Practices in a Mediterranean Climate. Sci. Rep. 2019, 9, 12283. [Google Scholar] [CrossRef]
- Tansel, B.; Katsenovich, Y.; Quinete, N.S.; Ocheje, J.; Nasir, Z.; Manzano, M.M. PFAS in Biosolids: Accumulation Characteristics and Fate Profiles after Land Application. J. Environ. Manag. 2024, 370, 122395. [Google Scholar] [CrossRef] [PubMed]
- Marguí, E.; Iglesias, M.; Camps, F.; Sala, L.; Hidalgo, M. Long-Term Use of Biosolids as Organic Fertilizers in Agricultural Soils: Potentially Toxic Elements Occurrence and Mobility. Environ. Sci. Pollut. Res. 2016, 23, 4454–4464. [Google Scholar] [CrossRef]
- Broderick, S.R.; Evans, W.B. Biosolids Promote Similar Plant Growth and Quality Responses as Conventional and Slow-Release Fertilizers. HortTechnology 2017, 27, 794–804. [Google Scholar] [CrossRef]
- Gómez-Suárez, A.D.; Nobile, C.; Faucon, M.-P.; Pourret, O.; Houben, D. Fertilizer Potential of Struvite as Affected by Nitrogen Form in the Rhizosphere. Sustainability 2020, 12, 2212. [Google Scholar] [CrossRef]
- Jama-Rodzeńska, A.; Gałka, B.; Szuba-Trznadel, A.; Jandy, A.; Kamińska, J.A. Effect of Struvite (Crystal Green) Fertilization on Soil Element Content Determined by Different Methods under Soybean Cultivation. Sci. Rep. 2023, 13, 12702. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen Use Efficiency Definitions of Today and Tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef]
- Galloway, J.N.; Winiwarter, W.; Leip, A.; Leach, A.M.; Bleeker, A.; Erisman, J.W. Nitrogen Footprints: Past, Present and Future. Environ. Res. Lett. 2014, 9, 115003. [Google Scholar] [CrossRef]
- Jin, K.; Ran, Y.; Alengebawy, A.; Yang, G.; Jia, S.; Ai, P. Agro-Environmental Sustainability of Using Digestate Fertilizer for Solanaceous and Leafy Vegetables Cultivation: Insights on Fertilizer Efficiency and Risk Assessment. J. Environ. Manag. 2022, 320, 115895. [Google Scholar] [CrossRef]
- Gai, X.; Liu, H.; Liu, J.; Zhai, L.; Yang, B.; Wu, S.; Ren, T.; Lei, Q.; Wang, H. Long-Term Benefits of Combining Chemical Fertilizer and Manure Applications on Crop Yields and Soil Carbon and Nitrogen Stocks in North China Plain. Agric. Water Manag. 2018, 208, 384–392. [Google Scholar] [CrossRef]
- Zhu, X.; Ros, G.H.; Xu, M.; Cai, Z.; Sun, N.; Duan, Y.; De Vries, W. Long-Term Impacts of Mineral and Organic Fertilizer Inputs on Nitrogen Use Efficiency for Different Cropping Systems and Site Conditions in Southern China. Eur. J. Agron. 2023, 146, 126797. [Google Scholar] [CrossRef]
- Wei, Z.; Hoffland, E.; Zhuang, M.; Hellegers, P.; Cui, Z. Organic Inputs to Reduce Nitrogen Export via Leaching and Runoff: A Global Meta-Analysis. Environ. Pollut. 2021, 291, 118176. [Google Scholar] [CrossRef]
- Wang, L.; Ye, C.; Gao, B.; Wang, X.; Li, Y.; Ding, K.; Li, H.; Ren, K.; Chen, S.; Wang, W.; et al. Applying Struvite as a N-Fertilizer to Mitigate N2O Emissions in Agriculture: Feasibility and Mechanism. J. Environ. Manag. 2023, 330, 117143. [Google Scholar] [CrossRef]
- De Corato, U.; Viola, E.; Keswani, C.; Minkina, T. Impact of the Sustainable Agricultural Practices for Governing Soil Health from the Perspective of a Rising Agri-Based Circular Bioeconomy. Appl. Soil Ecol. 2024, 194, 105199. [Google Scholar] [CrossRef]
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture. Agronomy 2020, 10, 1838. [Google Scholar] [CrossRef]
- Hale, L.; Curtis, D.; Azeem, M.; Montgomery, J.; Crowley, D.E.; McGiffen, M.E. Influence of Compost and Biochar on Soil Biological Properties under Turfgrass Supplied Deficit Irrigation. Appl. Soil Ecol. 2021, 168, 104134. [Google Scholar] [CrossRef]
- Mbau, S.K.; Karanja, N.; Ayuke, F. Short-Term Influence of Compost Application on Maize Yield, Soil Macrofauna Diversity and Abundance in Nutrient Deficient Soils of Kakamega County, Kenya. Plant Soil 2015, 387, 379–394. [Google Scholar] [CrossRef]
- Seleem, M.; Khalafallah, N.; Zuhair, R.; Ghoneim, A.M.; El-Sharkawy, M.; Mahmoud, E. Effect of Integration of Poultry Manure and Vinasse on the Abundance and Diversity of Soil Fauna, Soil Fertility Index, and Barley (Hordeum Aestivum L.) Growth in Calcareous Soils. BMC Plant Biol. 2022, 22, 492. [Google Scholar] [CrossRef] [PubMed]
- Zingore, S.; Delve, R.J.; Nyamangara, J.; Giller, K.E. Multiple Benefits of Manure: The Key to Maintenance of Soil Fertility and Restoration of Depleted Sandy Soils on African Smallholder Farms. Nutr. Cycl. Agroecosystems 2008, 80, 267–282. [Google Scholar] [CrossRef]
- Sciubba, L.; Cavani, L.; Negroni, A.; Zanaroli, G.; Fava, F.; Ciavatta, C.; Marzadori, C. Changes in the Functional Properties of a Sandy Loam Soil Amended with Biosolids at Different Application Rates. Geoderma 2014, 221–222, 40–49. [Google Scholar] [CrossRef]
- Nielsen, K.; Roß, C.-L.; Hoffmann, M.; Muskolus, A.; Ellmer, F.; Kautz, T. The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity. Agriculture 2020, 10, 244. [Google Scholar] [CrossRef]
- Maris, S.C.; Capra, F.; Ardenti, F.; Boselli, R.; Pochintesta, D.; Beone, G.M.; Tabaglio, V.; Fiorini, A. The Interaction between Types of Cover Crop Residue and Digestate Application Methods Affects Ammonia Volatilization during Maize Cropping Season. J. Environ. Qual. 2021, 50, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Ardenti, F.; Capra, F.; Santelli, S.; Lucini, L.; Tabaglio, V.; Fiorini, A. Potential of Conservation Tillage, Cover Crops, and Digestate Application as Integrated C Farming Practices for Processing Tomato. Soil Tillage Res. 2024, 244, 106213. [Google Scholar] [CrossRef]
- Tumbure, A.; Schmalenberger, A. Struvites with Comparable Nitrogen and Phosphorus Composition Have Similar Agronomic Response but Shape Cherry Tomato Rhizosphere Bacterial Community Structure Differently. Appl. Soil Ecol. 2024, 195, 105276. [Google Scholar] [CrossRef]
- Kudeyarov, V.N. Nitrous Oxide Emission from Fertilized Soils: An Analytical Review. Eurasian Soil Sci. 2020, 53, 1396–1407. [Google Scholar] [CrossRef]
- Shaaban, M.; Hu, R.; Wu, Y.; Younas, A.; Xu, X.; Sun, Z.; Jiang, Y.; Lin, S. Mitigation of N2O Emissions from Urine Treated Acidic Soils by Liming. Environ. Pollut. 2019, 255, 113237. [Google Scholar] [CrossRef]
- Faust, V.; Gruber, W.; Ganigué, R.; Vlaeminck, S.E.; Udert, K.M. Nitrous Oxide Emissions and Carbon Footprint of Decentralized Urine Fertilizer Production by Nitrification and Distillation. ACS EST Eng. 2022, 2, 1745–1755. [Google Scholar] [CrossRef]
- Saggar, S.; Singh, J.; Giltrap, D.L.; Zaman, M.; Luo, J.; Rollo, M.; Kim, D.-G.; Rys, G.; Der Weerden, T.J.V. Quantification of Reductions in Ammonia Emissions from Fertiliser Urea and Animal Urine in Grazed Pastures with Urease Inhibitors for Agriculture Inventory: New Zealand as a Case Study. Sci. Total Environ. 2013, 465, 136–146. [Google Scholar] [CrossRef]
- Wang, C.; Amon, B.; Schulz, K.; Mehdi, B. Factors That Influence Nitrous Oxide Emissions from Agricultural Soils as Well as Their Representation in Simulation Models: A Review. Agronomy 2021, 11, 770. [Google Scholar] [CrossRef]
- Holly, M.A.; Larson, R.A.; Powell, J.M.; Ruark, M.D.; Aguirre-Villegas, H. Greenhouse Gas and Ammonia Emissions from Digested and Separated Dairy Manure during Storage and after Land Application. Agric. Ecosyst. Environ. 2017, 239, 410–419. [Google Scholar] [CrossRef]
- Pedersen, J.; Nyord, T. Effect of Low-Dose Acidification of Slurry Digestate on Ammonia Emissions after Field Application (Short Communication). Atmos. Environ. X 2023, 17, 100205. [Google Scholar] [CrossRef]
- Sigdel, S.; Karsten, H.D.; Dell, C.J.; Hoover, R.J. Ammonia Emissions and Corn Yield Response from Injected versus Surface-applied Liquid-separated Anaerobic Digestate. Agron. J. 2025, 117, e70050. [Google Scholar] [CrossRef]
- Song, C.; Zhu, J.-J.; Willis, J.L.; Moore, D.P.; Zondlo, M.A.; Ren, Z.J. Oversimplification and Misestimation of Nitrous Oxide Emissions from Wastewater Treatment Plants. Nat. Sustain. 2024, 7, 1348–1358. [Google Scholar] [CrossRef]
- Zhu, Q.; Davidson, E.A.; Hagedorn, J.G.; Castro, M.S.; Fisher, T.R.; Fox, R.J.; Brown, S.E.; Lewis, J.W. Evaluation of Impacts of Biosolids Application and Drainage Water Management on Soil N2O and CH4 Emissions Using the Flux Gradient Method. Agric. Ecosyst. Environ. 2025, 377, 109273. [Google Scholar] [CrossRef]
- Simha, P.; Vasiljev, A.; Randall, D.G.; Vinnerås, B. Factors Influencing the Recovery of Organic Nitrogen from Fresh Human Urine Dosed with Organic/Inorganic Acids and Concentrated by Evaporation in Ambient Conditions. Sci. Total Environ. 2023, 879, 163053. [Google Scholar] [CrossRef] [PubMed]
- Geisseler, D.; Smith, R.; Cahn, M.; Muramoto, J. Nitrogen Mineralization from Organic Fertilizers and Composts: Literature Survey and Model Fitting. J. Environ. Qual. 2021, 50, 1325–1338. [Google Scholar] [CrossRef]
- Kacprzak, M.; Malińska, K.; Grosser, A.; Sobik-Szołtysek, J.; Wystalska, K.; Dróżdż, D.; Jasińska, A.; Meers, E. Cycles of Carbon, Nitrogen and Phosphorus in Poultry Manure Management Technologies – Environmental Aspects. Crit. Rev. Environ. Sci. Technol. 2023, 53, 914–938. [Google Scholar] [CrossRef]
- Leon, P.; Nakayama, Y.; Margenot, A.J. Field-scale Evaluation of Struvite Phosphorus and Nitrogen Leaching Relative to Monoammonium Phosphate. J. Environ. Qual. 2024, 53, 23–34. [Google Scholar] [CrossRef]
- Kumar, R.; Whelan, A.; Cannon, P.; Sheehan, M.; Reeves, L.; Antunes, E. Occurrence of Emerging Contaminants in Biosolids in Northern Queensland, Australia. Environ. Pollut. 2023, 330, 121786. [Google Scholar] [CrossRef]
- Mossa, A.-W.; Bailey, E.H.; Usman, A.; Young, S.D.; Crout, N.M.J. The Impact of Long-Term Biosolids Application (>100 Years) on Soil Metal Dynamics. Sci. Total Environ. 2020, 720, 137441. [Google Scholar] [CrossRef]
- Viskari, E.-L.; Grobler, G.; Karimäki, K.; Gorbatova, A.; Vilpas, R.; Lehtoranta, S. Nitrogen Recovery With Source Separation of Human Urine—Preliminary Results of Its Fertiliser Potential and Use in Agriculture. Front. Sustain. Food Syst. 2018, 2, 32. [Google Scholar] [CrossRef]
- Ding, C.; Lang, Y.; Xiao, L.; Zhan, X.; Shi, L. Veterinary Antibiotics in Contaminated Animal Manure: Fate, Removal Challenges, and Future Perspectives on Conventional and Emerging Technologies. Emerg. Contam. 2025, 11, 100515. [Google Scholar] [CrossRef]
- Cucina, M. Integrating Anaerobic Digestion and Composting to Boost Energy and Material Recovery from Organic Wastes in the Circular Economy Framework in Europe: A Review. Bioresour. Technol. Rep. 2023, 24, 101642. [Google Scholar] [CrossRef]
- Vithanage, M.; Ramanayaka, S.; Hasinthara, S.; Navaratne, A. Compost as a Carrier for Microplastics and Plastic-Bound Toxic Metals into Agroecosystems. Curr. Opin. Environ. Sci. Health 2021, 24, 100297. [Google Scholar] [CrossRef]
- Scopetani, C.; Chelazzi, D.; Cincinelli, A.; Martellini, T.; Leiniö, V.; Pellinen, J. Hazardous Contaminants in Plastics Contained in Compost and Agricultural Soil. Chemosphere 2022, 293, 133645. [Google Scholar] [CrossRef] [PubMed]
- Ronteltap, M.; Maurer, M.; Gujer, W. The Behaviour of Pharmaceuticals and Heavy Metals during Struvite Precipitation in Urine. Water Res. 2007, 41, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, C.M.; Sindhøj, E. Situating the Discourse of Recycled Nutrient Fertilizers in Circular Economy Principles for Sustainable Agriculture. Front. Sustain. 2024, 5, 1465752. [Google Scholar] [CrossRef]
- Amen, R.; Hameed, J.; Albashar, G.; Kamran, H.W.; Hassan Shah, M.U.; Zaman, M.K.U.; Mukhtar, A.; Saqib, S.; Ch, S.I.; Ibrahim, M.; et al. Modelling the Higher Heating Value of Municipal Solid Waste for Assessment of Waste-to-Energy Potential: A Sustainable Case Study. J. Clean. Prod. 2021, 287, 125575. [Google Scholar] [CrossRef]
- Persson, T.; Rueda-Ayala, V. Phosphorus Retention and Agronomic Efficiency of Refined Manure-Based Digestate—A Review. Front. Sustain. Food Syst. 2022, 6, 993043. [Google Scholar] [CrossRef]
- Callesen, G.M.; Pedersen, S.M.; Carolus, J.; Johannesdottir, S.; López, J.M.; Kärrman, E.; Hjerppe, T.; Barquet, K. Recycling Nutrients and Reducing Carbon Emissions in the Baltic Sea Region—Sustainable or Economically Infeasible? Environ. Manag. 2022, 69, 213–225. [Google Scholar] [CrossRef]
- Van Der Wiel, B.Z.; Neuberger, S.; Darr, D.; Wichern, F. Challenges and Opportunities for Nutrient Circularity: An Innovation Platform Approach. Nutr. Cycl. Agroecosystems 2024, 129, 375–391. [Google Scholar] [CrossRef]
- USA EPA Biosolids. Standards for the Use or Disposal of Sewage Sludge (40 CFR Part 503). 2023. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-O/part-503 (accessed on 22 August 2025).
- European Commission. Council Directive 86/278/EEC on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. 1986. Available online: https://eur-lex.europa.eu/eli/dir/1986/278/oj (accessed on 22 August 2025).
- European Commission. Council Directive 91/676/EEC Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources. 1991. Available online: https://eur-lex.europa.eu/eli/dir/1991/676/oj/eng (accessed on 22 August 2025).
- Tarpeh, W.A.; Wald, I.; Omollo, M.O.; Egan, T.; Nelson, K.L. Evaluating Ion Exchange for Nitrogen Recovery from Source-Separated Urine in Nairobi, Kenya. Dev. Eng. 2018, 3, 188–195. [Google Scholar] [CrossRef]
| RNF Type | Primary N Forms | Typical N Content (%) | C/N Ratio | Release Rate | Key Benefits | Key Challenges | References | 
|---|---|---|---|---|---|---|---|
| UDF | Urea, NH4+, NO3− | 0.5–1.5 (variable) | Low | Rapid | High N availability, urban recycling, lower heavy metal content | Odor, micropollutants, infrastructure | [85,86] | 
| Compost | Organic N | 0.5–2.0 | High | Slow | Soil health, OM increase | Low N availability, variability | [82] | 
| Manure | NH4+, Organic N | 1–6 (species dependent) | Med | Moderate | Readily available, on-farm resource | Odor, leaching/volatilization risk | [51] | 
| Digestate | NH4+, Organic N | 2–6 | Low-Med | Moderate-Rapid | High availability, stabilized material | Logistics, excess NH4+, uneven quality | [87,88] | 
| Biosolids | Organic N, NH4+ | 2–6 | Med | Moderate | Waste reuse, long-term N supply | Heavy metals, contaminants, regulations | [89,90] | 
| Struvite | NH4+ (fixed) | 5–6 (as N) | N/A | Slow | Clean, consistent, P and Mg included | Cost, tech-intensive recovery | [91] | 
| Mixed Sources | Variable | Variable | Variable | Variable | Balanced nutrients, flexibility | Quality control, unknown interactions | [83,92] | 
| RNF Type | N Availability | Yield Potential | NUE Potential | Soil Fertility Impact | Agronomic Notes | References | 
|---|---|---|---|---|---|---|
| UDF | High (urea, NH4+, NO3−) | Comparable to urea with good management | Medium–High (if incorporated/acidified) | Low (little OM) | Rapid uptake, good starter fertilizer, but risk of N loss | [110,113] | 
| Compost | Low–Moderate (organic N) | Often lower unless combined with mineral N | Low initially, improves long-term NUE | High (builds SOM, microbes) | Best for soil improvement and organic systems | [45,136] | 
| Manure | Moderate (NH4+ + organic N) | Competitive at medium–high rates | Medium (depends on handling) | High (variable, but boosts OM and microbes) | Widely used; timing and storage critical | |
| Digestate | Moderate–High (mostly NH4+) | Often comparable to synthetic N | Medium–High | Moderate (stimulates microbes, less OM) | Good balance of immediacy and residual effects | [129] | 
| Biosolids | Moderate (stabilized N) | Comparable in long-term use | Medium | Moderate–High (micronutrients, OM) | Regulatory limits apply; good for low-input rotations | [124] | 
| Struvite | Low–Moderate (NH4+) | High in nutrient-balanced strategies | Medium–High | Low (mineral fertilizer) | Ideal for P-limited soils; slow-release N source | [144] | 
| Mixed Sources | Variable | Blended to meet needs | Variable | Variable (depends on components) | Customizable; offers synergistic benefits | [82,136] | 
| RNF Type | GHG Emissions (N2O, NH3) | N Losses (Leaching, Volatilization) | Contaminant Risk | Notes | References | 
|---|---|---|---|---|---|
| UDF | Moderate–Low (if managed) | High (if surface-applied); Low with incorporation | Low–Moderate (pharma traces) | Needs pH/stabilization | [147,155,161] | 
| Compost | Low | Very Low | Low (if clean feedstock) | Best for soil C enhancement | [157,165] | 
| Manure | Variable | Moderate–High | Moderate–High (pathogens, antibiotics) | Composting helps | [135,163] | 
| Digestate | Moderate–High | High volatilization unless injected | Moderate (depends on source) | High moisture, odor issues | [102,150] | 
| Biosolids | Moderate | Low–Moderate | High (metals, pharma, plastics) | Regulations essential | [123,154] | 
| Struvite | Very Low | Very Low | Very Low | Limited availability | [18,166] | 
| Mixed Sources | Variable | Variable | Depends on inputs | Requires quality control | [37,136] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbani, M. Recycled Nitrogen for Regenerative Agriculture: A Review of Agronomic and Environmental Impacts of Circular Nutrient Sources. Agronomy 2025, 15, 2503. https://doi.org/10.3390/agronomy15112503
Ghorbani M. Recycled Nitrogen for Regenerative Agriculture: A Review of Agronomic and Environmental Impacts of Circular Nutrient Sources. Agronomy. 2025; 15(11):2503. https://doi.org/10.3390/agronomy15112503
Chicago/Turabian StyleGhorbani, Mohammad. 2025. "Recycled Nitrogen for Regenerative Agriculture: A Review of Agronomic and Environmental Impacts of Circular Nutrient Sources" Agronomy 15, no. 11: 2503. https://doi.org/10.3390/agronomy15112503
APA StyleGhorbani, M. (2025). Recycled Nitrogen for Regenerative Agriculture: A Review of Agronomic and Environmental Impacts of Circular Nutrient Sources. Agronomy, 15(11), 2503. https://doi.org/10.3390/agronomy15112503
 
        


 
       