Fertilization Strategies Regulate Soil Viral Diversity and Functional Potentials in Nutrient Cycling
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experiment Design
2.3. Soil Sampling
2.4. Soil Physicochemical Properties Measurement
2.5. DNA Extraction and Metagenomic Sequencing
2.6. Viromes Assembly and Functional Annotation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Fertilization Strategies Restructure Soil Viral Community Composition and Diversity
3.2. Soil Physicochemical Factors Shape Viral Community Assembly and Diversity Patterns
3.3. Organic Amendments Expand Virus–Host Networks and Reshape Functional Associations
3.4. Long-Term Fertilization Alters Viral Functional Potential and Nutrient–Cycling Pathways
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mamatha, B.; Mudigiri, C.; Ramesh, G.; Saidulu, P.; Meenakshi, N.; Prasanna, C.L. Enhancing soil health and fertility management for sustainable agriculture: A review. Asian J. Soil Sci. Plant Nutr. 2024, 10, 182–190. [Google Scholar] [CrossRef]
- Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S.; et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- Yu, G.; Xiao, J.; Hu, S.; Polizzotto, M.L.; Zhao, F.; McGrath, S.P.; Li, H.; Ran, W.; Shen, Q. Mineral availability as a key regulator of soil carbon storage. Environ. Sci. Technol. 2017, 51, 4960–4969. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V.V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Q.; Zhang, W.; Zhu, P.; Xiao, Q.; Wang, C.; Wu, L.; Tian, Y.; Xu, M.; Gunina, A. Stoichiometric imbalance of soil carbon and nutrients drives microbial community structure under long-term fertilization. Appl. Soil Ecol. 2021, 168, 104119. [Google Scholar] [CrossRef]
- Chen, L.; Xun, W.; Sun, L.; Zhang, N.; Shen, Q.; Zhang, R. Effect of different long-term fertilization regimes on the viral community in an agricultural soil of Southern China. Eur. J. Soil Biol. 2014, 62, 121–126. [Google Scholar] [CrossRef]
- Yang, J.; Xia, L.; van Groenigen, K.J.; Zhao, X.; Ti, C.; Wang, W.; Du, Z.; Fan, M.; Zhuang, M.; Smith, P.; et al. Sustained benefits of long-term biochar application for food security and climate change mitigation. Proc. Natl. Acad. Sci. USA 2025, 122, e2509237122. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Huang, X.; Peng, Z.; Martinez, C.E.; Xiao, J.; Ran, W.; Shen, Q. Molecular mechanism of flavonoid-induced iron oxide transformation and implication for phosphorus loss risk in paddy soils. Environ. Sci. Process. Impacts 2025, 27, 2341–2352. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Zhang, Y.; Wen, Y.; Peng, Z.; Xu, D.; Xiao, J. Divergent risk gene profiles in smallholder and large-scale paddy farms. Environ. Res. 2025, 285, 122406. [Google Scholar] [CrossRef]
- Xiao, J.; Wen, Y.-L.; Dou, S.; Bostick, B.C.; He, X.-H.; Ran, W.; Yu, G.-H.; Shen, Q.-R. A new strategy for assessing the binding microenvironments in intact soil microaggregates. Soil Tillage Res. 2019, 189, 123–130. [Google Scholar] [CrossRef]
- Feng, W.; Sanchez-Rodriguez, A.R.; Bilyera, N.; Wang, J.; Wang, X.; Han, Y.; Ma, B.; Zhang, H.; Li, F.Y.; Zhou, J.; et al. Mechanisms of biochar-based organic fertilizers enhancing maize yield on a Chinese Chernozem: Root traits, soil quality and soil microorganisms. Environ. Technol. Innov. 2024, 36, 103756. [Google Scholar] [CrossRef]
- Pan, T.; Chen, Y.; Wang, L.; Hafeez, A.; Muramoto, J.; Shennan, C.; Cai, Y.; Tian, J.; Cai, K. Integrated anaerobic soil disinfestation and bio-organic fertilizers to alleviate continuous cropping obstacles: Improving soil health and changing bacterial communities. Agric. Ecosyst. Environ. 2025, 385, 109562. [Google Scholar] [CrossRef]
- Huang, B.; Chen, B.; Xie, X.; Li, Z.; Hou, X.; Yang, E.; Hu, L.; Luan, T.; Yuan, K. Uncovering effects of anaerobic digestion process on viral communities in activated sludges using viromic approaches. Chem. Eng. J. 2024, 496, 153964. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, R.; Wang, Y.; Niu, Y.; Zhang, G.; Wang, R.; Guo, H.; Ma, Q.; Zhou, J.; Wang, T. Lytic virus–bacteria interactions play a primary role in enhancing soil organic carbon and Total nitrogen storage in polyethylene microplastics-amended soils. Chem. Eng. J. 2025, 523, 168373. [Google Scholar] [CrossRef]
- Cheng, Z.; He, Y.; Wang, Y.; Yang, X.; Chen, J.; Wu, L.; Xu, J.; Shi, J. Interactive dynamics between rhizosphere bacterial and viral communities facilitate soybean fitness to cadmium stress revealed by time-series metagenomics. Soil Biol. Biochem. 2024, 190, 109313. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, Z.; Liu, H.; Li, Y.; Ge, T.; Tang, X.; He, Y.; Ma, B.; Xu, J.; Anantharaman, K.; et al. Soil nutrient conditions alter viral lifestyle strategy and potential function in phosphorous and nitrogen metabolisms. Soil Biol. Biochem. 2024, 189, 109279. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, D.; Yu, H.; Yang, X.; Song, X.; Dahlgren, R.A.; Xu, J. Viruses enhance bacterial-mediated arsenic reduction processes by enriching rare functional taxa in flooded paddy soil. Soil Biol. Biochem. 2025, 205, 109783. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, S.; Chen, X.; Li, Y.; Xie, S. Thallium spill shifts the structural and functional characteristics of viral communities with different lifestyles in river sediments. Sci. Total Environ. 2024, 947, 174531. [Google Scholar] [CrossRef] [PubMed]
- Starr, E.P.; Nuccio, E.E.; Pett-Ridge, J.; Banfield, J.F.; Firestone, M.K. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc. Natl. Acad. Sci. USA 2019, 116, 25900–25908. [Google Scholar] [CrossRef] [PubMed]
- Trubl, G.; Kimbrel, J.A.; Liquet-Gonzalez, J.; Nuccio, E.E.; Weber, P.K.; Pett-Ridge, J.; Jansson, J.K.; Waldrop, M.P.; Blazewicz, S.J. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome 2021, 9, 208. [Google Scholar] [CrossRef]
- Jia, P.; Liang, J.-L.; Lu, J.-L.; Zhong, S.-J.; Xiong, T.; Feng, S.-W.; Wang, Y.; Wu, Z.-H.; Yi, X.-Z.; Gao, S.-M.; et al. Soil keystone viruses are regulators of ecosystem multifunctionality. Environ. Int. 2024, 191, 108964. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, T.; Song, Y.; Rocha, U.N.D.; Liu, J.; Nikolausz, M.; Wei, Y.; Richnow, H.H. Viral Communities Contribute More to the Lysis of Antibiotic-Resistant Bacteria than the Transduction of Antibiotic Resistance Genes in Anaerobic Digestion Revealed by Metagenomics. Environ. Sci. Technol. 2024, 58, 2346–2359. [Google Scholar] [CrossRef]
- Luo, X.-Q.; Wang, P.; Li, J.-L.; Ahmad, M.; Duan, L.; Yin, L.-Z.; Deng, Q.-Q.; Fang, B.-Z.; Li, S.-H.; Li, W.-J. Viral community-wide auxiliary metabolic genes differ by lifestyles, habitats, and hosts. Microbiome 2022, 10, 190. [Google Scholar] [CrossRef]
- Bi, L.; Ma, B.; He, J.-Z.; Hu, H.-W. Adaptive strategies of soil viruses in oligotrophic arid environments. Soil Biol. Biochem. 2025, 210, 109941. [Google Scholar] [CrossRef]
- Zimmerman, A.E.; Howard-Varona, C.; Needham, D.M.; John, S.G.; Worden, A.Z.; Sullivan, M.B.; Waldbauer, J.R.; Coleman, M.L. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 2020, 18, 21–34. [Google Scholar] [CrossRef]
- Liang, J.-L.; Feng, S.-W.; Lu, J.-L.; Wang, X.-N.; Li, F.-L.; Guo, Y.-Q.; Liu, S.-Y.; Zhuang, Y.-Y.; Zhong, S.-J.; Zheng, J.; et al. Hidden diversity and potential ecological function of phosphorus acquisition genes in widespread terrestrial bacteriophages. Nat. Commun. 2024, 15, 2827. [Google Scholar] [CrossRef]
- Liao, H.; Liu, C.; Ai, C.; Gao, T.; Yang, Q.E.; Yu, Z.; Gao, S.; Zhou, S.; Friman, V.P. Mesophilic and thermophilic viruses are associated with nutrient cycling during hyperthermophilic composting. ISME J. 2023, 17, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Sieradzki, E.T.; Allen, G.M.; Kimbrel, J.A.; Nicol, G.W.; Hazard, C.; Nuccio, E.; Blazewicz, S.J.; Pett-Ridge, J.; Trubl, G. Phosphate amendment drives bloom of RNA viruses after soil wet-up. Soil Biol. Biochem. 2025, 205, 109791. [Google Scholar] [CrossRef]
- Han, L.-L.; Yu, D.-T.; Bi, L.; Du, S.; Silveira, C.; Cobián Güemes, A.G.; Zhang, L.-M.; He, J.-Z.; Rohwer, F. Distribution of soil viruses across China and their potential role in phosphorous metabolism. Environ. Microbiome 2022, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, D.; Zheng, Y.; Li, X.; Sun, G.; Li, X.; Ding, L. Responses of viral communities and viral-encoded auxiliary metabolic genes to long-term fertilization practices under different land-use types. J. Environ. Sci. 2025. [Google Scholar] [CrossRef]
- Bi, L.; He, J.Z.; Hu, H.W. Total metagenomes outperform viromes in recovering viral diversity from sulfuric soils. ISME Commun. 2024, 4, ycae017. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, G.; Zhang, C.; Chen, L.; Ma, D.; Zhang, L.; Jia, C.; Ma, L.; Zhang, J. Impact of Virus-Mediated Modifications in Bacterial Communities on the Accumulation of Soil Organic Carbon. Adv. Sci. 2025, 12, e06449. [Google Scholar] [CrossRef] [PubMed]
- Recena, R.; García-López, A.M.; Quintero, J.M.; Skyttä, A.; Ylivainio, K.; Santner, J.; Buenemann, E.; Delgado, A. Assessing the phosphorus demand in European agricultural soils based on the Olsen method. J. Clean. Prod. 2022, 379, 134749. [Google Scholar] [CrossRef]
- Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2023, 2, e107. [Google Scholar] [CrossRef]
- Li, D.; Luo, R.; Liu, C.-M.; Leung, C.-M.; Ting, H.-F.; Sadakane, K.; Yamashita, H.; Lam, T.-W. MEGAHIT v1. 0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 2016, 102, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Martin, C.; Kosmopoulos, J.C.; Anantharaman, K. ViWrap: A modular pipeline to identify, bin, classify, and predict viral–host relationships for viruses from metagenomes. iMeta 2023, 2, e118. [Google Scholar] [CrossRef]
- Guo, J.; Bolduc, B.; Zayed, A.A.; Varsani, A.; Dominguez-Huerta, G.; Delmont, T.O.; Pratama, A.A.; Gazitúa, M.C.; Vik, D.; Sullivan, M.B.; et al. VirSorter2: A multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 2021, 9, 37. [Google Scholar] [CrossRef]
- Kieft, K.; Zhou, Z.; Anantharaman, K. VIBRANT: Automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 2020, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Chaumeil, P.-A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk v2: Memory friendly classification with the genome taxonomy database. Bioinformatics 2022, 38, 5315–5316. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, F.H.; Zaragoza-Solas, A.; López-Pérez, M.; Barylski, J.; Zielezinski, A.; Dutilh, B.E.; Edwards, R.; Rodriguez-Valera, F. RaFAH: Host prediction for viruses of Bacteria and Archaea based on protein content. Patterns 2021, 2, 100274. [Google Scholar] [CrossRef]
- Tu, Q.; Lin, L.; Cheng, L.; Deng, Y.; He, Z. NCycDB: A curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics 2018, 35, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Tu, Q.; Yu, X.; Qian, L.; Wang, C.; Shu, L.; Liu, F.; Liu, S.; Huang, Z.; He, J.; et al. PCycDB: A comprehensive and accurate database for fast analysis of phosphorus cycling genes. Microbiome 2022, 10, 101. [Google Scholar] [CrossRef]
- Lyu, F.; Han, F.; Ge, C.; Mao, W.; Chen, L.; Hu, H.; Chen, G.; Lang, Q.; Fang, C. OmicStudio: A composable bioinformatics cloud platform with real-time feedback that can generate high-quality graphs for publication. iMeta 2023, 2, e85. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Xiao, E.; Haggblom, M.; Krumins, V.; Dong, Y.; Sun, X.; Li, F.; Wang, Q.; Li, B.; Yan, B. Bacterial survival strategies in an alkaline tailing site and the physiological mechanisms of dominant phylotypes as revealed by metagenomic analyses. Environ. Sci. Technol. 2018, 52, 13370–13380. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Xiao, E.; Xiao, T.; Krumins, V.; Wang, Q.; Haggblom, M.; Dong, Y.; Tang, S.; Hu, M.; Li, B.; et al. Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions. Environ. Sci. Technol. 2017, 51, 9165–9175. [Google Scholar] [CrossRef]
- Chen, M.L.; An, X.L.; Liao, H.; Yang, K.; Su, J.Q.; Zhu, Y.G. Viral Community and Virus-Associated Antibiotic Resistance Genes in Soils Amended with Organic Fertilizers. Environ. Sci. Technol. 2021, 55, 13881–13890. [Google Scholar] [CrossRef]
- Li, W.-J.; Ghaly, T.M.; Tetu, S.G.; Huang, F.-Y.; Li, H.-Z.; Li, H. Effects of agricultural inputs on soil virome-associated antibiotic resistance and virulence: A focus on manure, microplastic and pesticide. J. Hazard. Mater. 2025, 496, 139380. [Google Scholar] [CrossRef]
- Tong, D.; Ma, B.; Hu, L.F.; Li, Y.; Dahlgren, R.A.; Xu, J.M. Soil Virus Life-Strategy Conversion and Implications for Ecosystem and Soil Functions. Glob. Change Biol. 2025, 31, e70460. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Rong, X.; Zhou, X.; Fei, J.; Peng, J.; Luo, G. Biochar and organic fertilizer applications enhance soil functional microbial abundance and agroecosystem multifunctionality. Biochar 2024, 6, 3. [Google Scholar] [CrossRef]
- Zhou, G.; Chen, L.; Zhang, C.; Ma, D.; Zhang, J. Bacteria–Virus Interactions Are More Crucial in Soil Organic Carbon Storage than Iron Protection in Biochar-Amended Paddy Soils. Environ. Sci. Technol. 2023, 57, 19713–19722. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, Y.; Wommack, K.E.; Wilhelm, S.W.; DeBruyn, J.M.; Sherfy, A.C.; Zhuang, J.; Radosevich, M. Lysogenic reproductive strategies of viral communities vary with soil depth and are correlated with bacterial diversity. Soil Biol. Biochem. 2020, 144, 107767. [Google Scholar] [CrossRef]
- Silpe, J.E.; Bassler, B.L. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 2019, 176, 268–280.e13. [Google Scholar] [CrossRef]
- Lee, S.; Sorensen, J.W.; Walker, R.L.; Emerson, J.B.; Nicol, G.W.; Hazard, C. Soil pH influences the structure of virus communities at local and global scales. Soil Biol. Biochem. 2022, 166, 108569. [Google Scholar] [CrossRef]
- Correa, A.M.S.; Howard-Varona, C.; Coy, S.R.; Buchan, A.; Sullivan, M.B.; Weitz, J.S. Revisiting the rules of life for viruses of microorganisms. Nat. Rev. Microbiol. 2021, 19, 501–513. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, T.; Yu, M.; Chen, Y.-L.; Jin, M. The life cycle transitions of temperate phages: Regulating factors and potential ecological implications. Viruses 2022, 14, 1904. [Google Scholar] [CrossRef] [PubMed]
- Shiah, F.-K.; Lai, C.-C.; Chen, T.-Y.; Ko, C.-Y.; Tai, J.-H.; Chang, C.-W. Viral shunt in tropical oligotrophic ocean. Sci. Adv. 2022, 8, eabo2829. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Yuan, S.; Xia, R.; Ye, M.; Balcázar, J.L. Underexplored viral auxiliary metabolic genes in soil: Diversity and eco-evolutionary significance. Environ. Microbiol. 2023, 25, 800–810. [Google Scholar] [CrossRef]
- Osburn, E.D.; Baer, S.G.; Evans, S.E.; McBride, S.G.; Strickland, M.S. Effects of experimentally elevated virus abundance on soil carbon cycling across varying ecosystem types. Soil Biol. Biochem. 2024, 198, 109556. [Google Scholar] [CrossRef]
- Whitaker, B.K.; Rúa, M.A.; Mitchell, C.E. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen. New Phytol. 2015, 207, 760–768. [Google Scholar] [CrossRef]
- Maat, D.S.; Brussaard, C.P. Both phosphorus-and nitrogen limitation constrain viral proliferation in marine phytoplankton. Aquat. Microb. Ecol. 2016, 77, 87–97. [Google Scholar] [CrossRef]
- Khan, K.S.; Mack, R.; Castillo, X.; Kaiser, M.; Joergensen, R.G. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 2016, 271, 115–123. [Google Scholar] [CrossRef]
- Bhowmik, A.; Cloutier, M.; Ball, E.; Bruns, M.A. Underexplored microbial metabolisms for enhanced nutrient recycling in agricultural soils. AIMS Microbiol. 2017, 3, 826. [Google Scholar] [CrossRef]
- Bilyera, N.; Dippold, M.A.; Bleicher, J.; Maranguit, D.; Kuzyakov, Y.; Blagodatskaya, E. Microbial tradeoffs in internal and external use of resources regulated by phosphorus and carbon availability. Eur. J. Soil Biol. 2021, 106, 103353. [Google Scholar] [CrossRef]
- Poirier, Y.; Jaskolowski, A.; Clúa, J. Phosphate acquisition and metabolism in plants. Curr. Biol. 2022, 32, R623–R629. [Google Scholar] [CrossRef]
- Luo, G.; Sun, B.; Li, L.; Li, M.; Liu, M.; Zhu, Y.; Guo, S.; Ling, N.; Shen, Q. Understanding how long-term organic amendments increase soil phosphatase activities: Insight into phoD- and phoC-harboring functional microbial populations. Soil Biol. Biochem. 2019, 139, 107632. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Liu, Y.; Li, J.; Hu, H. Soil organic matter contents modulate the effects of bacterial diversity on the carbon cycling processes. J. Soils Sediments 2023, 23, 911–922. [Google Scholar] [CrossRef]
- Seabloom, E.W.; Borer, E.T.; Lacroix, C.; Mitchell, C.E.; Power, A.G. Richness and composition of niche-assembled viral pathogen communities. PLoS ONE 2013, 8, e55675. [Google Scholar] [CrossRef]
- Roy, K.; Ghosh, D.; DeBruyn, J.M.; Dasgupta, T.; Wommack, K.E.; Liang, X.; Wagner, R.E.; Radosevich, M. Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils. Front. Microbiol. 2020, 11, 1494. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, X.; Song, L.; Lin, X.; Zhang, H.; Shen, C.; Chu, H. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 2016, 92, 41–49. [Google Scholar] [CrossRef]
- Zou, M.; Zhang, Q.; Li, F.; Chen, L.; Qiu, Y.; Yin, Q.; Zhou, S. Impacts of multiple environmental factors on soil bacterial community assembly in heavy metal polluted paddy fields. Sci. Rep. 2024, 14, 14696. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; He, J.; Zhou, Z.; Xia, L.; Hu, Y.; Zhang, Y.; Zhang, Y.; Luo, Y.; Chu, H.; Liu, W.; et al. Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: A meta-analysis. Sci. Total Environ. 2022, 829, 154627. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Liu, Y.; Niazi, N.K.; Bolan, N.; Zhao, L.; Zhang, S.; Xue, J.; Yao, B.; Li, Y. Biochar addition increased soil bacterial diversity and richness: Large-scale evidence of field experiments. Sci. Total Environ. 2023, 893, 164961. [Google Scholar] [CrossRef]
- Baskaran, V.; Patil, P.K.; Antony, M.L.; Avunje, S.; Nagaraju, V.T.; Ghate, S.D.; Nathamuni, S.; Dineshkumar, N.; Alavandi, S.V.; Vijayan, K.K. Microbial community profiling of ammonia and nitrite oxidizing bacterial enrichments from brackishwater ecosystems for mitigating nitrogen species. Sci. Rep. 2020, 10, 5201. [Google Scholar] [CrossRef]
- Berlanga Herranz, M.; Picart, P.; Blasco, A.; Benaiges-Fernandez, R.; Guerrero, R.; Butturini, A.; Urmeneta, J. Biodiversity and potential functionality of biofilm-sediment biotope in La Muerte lagoon, Monegros Desert, Spain. Front. Ecol. Evol. 2024, 12, 1412124. [Google Scholar] [CrossRef]
- Chen, X.; Weinbauer, M.G.; Jiao, N.; Zhang, R. Revisiting marine lytic and lysogenic virus-host interactions: Kill-the-Winner and Piggyback-the-Winner. Sci. Bull. 2021, 66, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Marantos, A.; Mitarai, N.; Sneppen, K. From kill the winner to eliminate the winner in open phage-bacteria systems. PLoS Comput. Biol. 2022, 18, e1010400. [Google Scholar] [CrossRef]
- Zhang, H.; Ullah, F.; Ahmad, R.; Shah, S.A.; Khan, A.; Adnan, M. Response of soil proteobacteria to biochar amendment in sustainable agriculture-a mini review. J. Soil Plant Environ. 2022, 1, 16–30. [Google Scholar] [CrossRef]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; Van Veen, J.A.; Kuramae, E.E. The ecology of Acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef]
- de Castro, V.H.L.; Schroeder, L.F.; Quirino, B.F.; Kruger, R.H.; Barreto, C.C. Acidobacteria from oligotrophic soil from the Cerrado can grow in a wide range of carbon source concentrations. Can. J. Microbiol. 2013, 59, 746–753. [Google Scholar] [CrossRef]
- Freches, A.; Fradinho, J.C. The biotechnological potential of the Chloroflexota phylum. Appl. Environ. Microbiol. 2024, 90, e01756-23. [Google Scholar] [CrossRef]
- Albers, R.W.; Siegel, G.J.; Xie, Z.-J. Membrane transport. In Basic Neurochemistry; Elsevier: Amsterdam, The Netherlands, 2012; pp. 40–62. [Google Scholar]
- Stock, J.B.; Stock, A.M.; Mottonen, J.M. Signal transduction in bacteria. Nature 1990, 344, 395–400. [Google Scholar] [CrossRef]
- Jang, W.; Haucke, V. ER remodeling via lipid metabolism. Trends Cell Biol. 2024, 34, 942–954. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Das, S. Bacterial enzymatic degradation of recalcitrant organic pollutants: Catabolic pathways and genetic regulations. Environ. Sci. Pollut. Res. 2023, 30, 79676–79705. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Peng, Y.; Cao, S.; Li, B.; Wang, S.; Niu, M. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation. Appl. Microbiol. Biotechnol. 2016, 100, 2011–2021. [Google Scholar] [CrossRef]
- Libutti, A.; Mucci, M.; Francavilla, M.; Monteleone, M. Effect of biochar amendment on nitrate retention in a silty clay loam soil. Ital. J. Agron. 2016, 11, 780. [Google Scholar] [CrossRef]
- Fan, K.; Delgado-Baquerizo, M.; Guo, X.; Wang, D.; Wu, Y.; Zhu, M.; Yu, W.; Yao, H.; Zhu, Y.-G.; Chu, H. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 2019, 7, 143. [Google Scholar] [CrossRef]
- Wang, X.; Guo, H.; Wang, J.; He, P.; Kuzyakov, Y.; Ma, M.; Ling, N. Microbial phosphorus-cycling genes in soil under global change. Glob. Change Biol. 2024, 30, e17281. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, S.; Greening, C.; Baltar, F.; Morales, S.E. Global and seasonal variation of marine phosphonate metabolism. ISME J. 2022, 16, 2198–2212. [Google Scholar] [CrossRef] [PubMed]
Treatment | pH | OM (%) | TN (%) | NH4+-N (mg/kg) | NO3−-N (mg/kg) | TP (mg/kg) | AP (mg/kg) |
---|---|---|---|---|---|---|---|
CK | 6.34 ± 0.13 b | 2.50 ± 0.24 c | 0.19 ± 0.01 b | 17.32 ± 0.59 b | 0.96 ± 0.09 c | 401.63 ± 17.41 c | 26.80 ± 2.45 c |
CF | 6.34 ± 0.18 b | 2.40 ± 0.04 c | 0.19 ± 0.02 b | 22.19 ± 1.75 a | 1.93 ± 0.11 b | 419.37 ± 28.89 c | 26.49 ± 1.03 c |
BC | 7.16 ± 0.20 a | 3.88 ± 0.25 b | 0.23 ± 0.02 b | 17.34 ± 0.95 b | 1.22 ± 0.10 c | 516.37 ± 32.86 b | 42.57 ± 2.46 b |
OF | 6.44 ± 0.18 b | 4.33 ± 0.33 a | 0.37 ± 0.03 a | 23.41 ± 1.16 a | 2.98 ± 0.11 a | 659.61 ± 53.40 a | 51.13 ± 2.39 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Liu, C.; Wei, R.; Chi, Z.; Zhang, P.; Yu, Z. Fertilization Strategies Regulate Soil Viral Diversity and Functional Potentials in Nutrient Cycling. Agronomy 2025, 15, 2425. https://doi.org/10.3390/agronomy15102425
Xiao J, Liu C, Wei R, Chi Z, Zhang P, Yu Z. Fertilization Strategies Regulate Soil Viral Diversity and Functional Potentials in Nutrient Cycling. Agronomy. 2025; 15(10):2425. https://doi.org/10.3390/agronomy15102425
Chicago/Turabian StyleXiao, Jian, Chuan Liu, Rui Wei, Zhilai Chi, Peng Zhang, and Zhen Yu. 2025. "Fertilization Strategies Regulate Soil Viral Diversity and Functional Potentials in Nutrient Cycling" Agronomy 15, no. 10: 2425. https://doi.org/10.3390/agronomy15102425
APA StyleXiao, J., Liu, C., Wei, R., Chi, Z., Zhang, P., & Yu, Z. (2025). Fertilization Strategies Regulate Soil Viral Diversity and Functional Potentials in Nutrient Cycling. Agronomy, 15(10), 2425. https://doi.org/10.3390/agronomy15102425