Use of Cattle Manure as Auxiliary Material to Gypsum to Ameliorate Saline–Alkali Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of Test Area
2.2. Experimental Design
2.3. Investigate Items and Methods
2.4. Statistical Analyses
3. Results
3.1. Variation in Soil Physical Properties Induced by Gypsum and Manure
3.2. Soil Chemical Properties’ Response to Gypsum and Manure Amendment
3.3. Effect of Gypsum and Manure on Yield
3.4. Relationships Between Soil Physicochemical Properties and Hordeum Yield
4. Discussion
4.1. Effect of Gypsum and Manure on Soil Properties and Crop Yield
4.2. Direct Effect of Soil Physicochemical Properties on Hordeum Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. FAO Launches First Major Global Assessment of Salt-Affected Soils in 50 Years; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Wang, B.; Huang, G.; Fan, X.; Fan, D.; Fan, J.; Zhang, Q. Spatial distribution characteristics and improvement countermeasures of arid type saline soil under mediterranean climate. J. Shanxi Agric. Sci. 2020, 48, 1289–1294. [Google Scholar] [CrossRef]
- Lutfunnahar, S.J.; Piash, M.I.; Rahman, M.H. Impact of MgCl2 modified biochar on phosphorus and nitrogen fractions in coastal saline soil. Open J. Soil Sci. 2021, 11, 331–351. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, M.; Mahmoud, E.; Abd El-Aziz, M.; Khalifa, T. Effect of zinc oxide nanoparticles and soil amendments on wheat yield, physiological attributes and soil properties grown in the saline–sodic soil. Commun. Soil Sci. Plant Anal. 2022, 53, 2170–2186. [Google Scholar] [CrossRef]
- Jesus, K.N.; Althoff, T.D.; Marin, A.M.P.; Sousa, A.R.; Martins, J.C.R.; Filho, R.N.A. Use of maize straw or animal manure as an alternative to gypsum to ameliorate saline-sodic soils. J. Exp. Agric. Int. 2019, 32, 1–11. [Google Scholar] [CrossRef]
- Khan, M.Z.; Azom, M.G.; Sultan, M.T. Amelioration of saline soil by the application of gypsum, calcium chloride, rice husk and cow dung. J. Agric. Chem. Environ. 2019, 8, 78–91. [Google Scholar] [CrossRef]
- Alkharpotly, A.E.A.; Soliman, M.A.E.; El-Sherpiny, M.A.; Baddour, A.G.; Ghazi, D.A. Evaluation of cobalt application combined with gypsum and compost as a regulator of cabbage plant tolerance to soil salinity. Open J. Ecol. 2023, 13, 914–930. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Wang, J. Seasonality of soil respiration under gypsum and straw amendments in an arid saline-alkali soil. J. Environ. Manag. 2021, 277, 111494. [Google Scholar] [CrossRef] [PubMed]
- Gashi, N.; Remenyik, J.; Paholcsek, M. Gypsum and tillage practices for combating soil salinity and enhancing crop productivity. Agriculture 2025, 15, 658. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Chen, L.; Liao, B.; Dai, Q.; Zhang, H.; Liao, P. Gypsum application and straw incorporation interact to alleviate methane emissions in coastal saline-alkali rice soils. Soil Sci. Plant Nutr. 2024, 24, 4398–4406. [Google Scholar] [CrossRef]
- Abbas, F.; Siddique, T.; Fan, R.; Azeem, M. Role of gypsum in conserving soil moisture macronutrients uptake and improving wheat yield in the rainfed area. Water 2023, 15, 1011. [Google Scholar] [CrossRef]
- Oliveira, M.W.; Verma, K.K.; Bhatt, R.; Oliveira, T.B.A. Impact of green and organic fertilizers on soil fertility and sugarcane productivity. In Agro-Industrial Perspectives on Sugarcane Production Under Environmental Stress; Springer: Singapore, 2023; pp. 193–213. [Google Scholar] [CrossRef]
- Sardar, M.; Behdani, M.A.; Eslami, S.V.; Zamani, G.R. The effect of manure and humic acid fertilizer on ions concentrations in cotton. Plant Prod. 2024, 46, 491–505. [Google Scholar] [CrossRef]
- Vergara, C.; Araujo, K.E.C.; Da Silva Pereira, E.E.; De Oliveira, F.F.; Da Silva, I.K.; Da Silva Souza, F.K.; Jericó, R. Gypsum boards and eggshells facilitate the accumulation of dry matter and nutrients in tomato vegetative structures. Res. Soc. Dev. 2024, 13, e9013846627. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, M.W.; Chang, H.; Je, S.M.; Kim, G.J.; Noh, N.J. Effects of soil physical ameliorants on the growth and root morphology of Prunus yedoensis and Ginkgo biloba seedlings in compacted soils. J. For. Res. 2024, 30, 262–271. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Q.; Li, Y.; Zhuo, Y.; Xu, L. Research on saline-alkali soil amelioration with FGD gypsum. Resour. Conserv. Recycl. 2017, 121, 82–92. [Google Scholar] [CrossRef]
- Hammerschmitt, R.K.; Facco, D.B.; Drescher, G.L.; Mallmann, F.J.K.; Ono, F.B.; Zancanaro, L. Limestone and gypsum reapplication in an oxisol under no-tillage promotes low soybean and corn yield increase under tropical conditions. Soil Tillage Res. 2021, 214, 105165. [Google Scholar] [CrossRef]
- Chen, X.D.; Yaa, O.K.; Wu, J.G. Effects of different organic materials application on soil physicochemical properties in a primary saline-alkali soil. Eurasian Soil Sci. 2020, 53, 798–808. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Li, Y.; Zhuo, Y.; Liu, J. Sustainable effects of gypsum from desulphurization of flue gas on the reclamation of sodic soil after 17 years. Eur. J. Soil Sci. 2019, 70, 1082–1097. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, P. Soil salinity and food security in India. Front. Sustain. Food Syst. 2020, 4, 533781. [Google Scholar] [CrossRef]
- Sagna, B.; Ndiaye, A.; Thiam, I. Phosphogypsum and Organic Matter: Sustainable Solution for the Rehabilitation of Saline Lands in the Saloum Delta, Senegal. J. Agric. Chem. Environ. 2025, 14, 202–216. [Google Scholar] [CrossRef]
- Gonçalo Filho, F.; Da Silva Dias, N.; Suddarth, S.R.P.; Ferreira, J.F.; Anderson, R.G.; Dos Santos Fernandes, C.; De Lira, R.B.; Neto, M.F.; Cosme, C.R. Reclaiming tropical saline-sodic soils with gypsum and cow manure. Water 2019, 12, 57. [Google Scholar] [CrossRef]
- Han, Y.S.; Tokunaga, T.K.; Salve, R.; Chon, C.M. Environmental feasibility of soil amendment with flue gas desulfurization gypsum (FGDG) for terrestrial carbon sequestration. Environ. Earth Sci. 2016, 75, 1148. [Google Scholar] [CrossRef]
- Yu, F.; Zhao, S.; Zhao, Y.; Wang, Y.; Zhai, C. Long-term cattle manure application to saline-sodic soil increases maize yield by decreasing key obstacle factors in the black soil region of Northeastern China. Int. J. Agric. Biol. Eng. 2023, 16, 176–183. [Google Scholar] [CrossRef]
- Omar, M.M.; Shitindi, M.J.; Massawe, B.H.J.; Massawe, B.H.J.; Fue, K.G.; Meliyo, J.L.; Pedersen, O. Salt-affected soils in Tanzanian agricultural lands: Type of soils and extent of the problem. Cogent Environ Sci. 2023, 9, 20. [Google Scholar] [CrossRef]
- Zoca, S.M.; Penn, C. An important tool with no instruction manual: A review of gypsum use in agriculture. Adv. Agron. 2017, 144, 1–44. [Google Scholar] [CrossRef]
- Kudakwashe, M.; Qiang, L.; Shuai, W.; Yanfei, Y. Plant and microbe-assisted biochar amendment technology for petroleum hydrocarbon remediation in saline-sodic soils: A review. Pedosphere 2022, 32, 211–221. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Li, Y.; Liu, J.; Zhuo, Y.; Chen, H.; Wang, J.; Xu, L.; Sun, Z. Extensive reclamation of saline-sodic soils with flue gas desulfurization gypsum on the Songnen Plain, Northeast China. Geoderma 2018, 321, 52–60. [Google Scholar] [CrossRef]
- Azuka, C.; Idu, M.C. Effect of organic manures application on soil physicochemical properties of coarse-textured ultisol and okra productivity in Nsukka, Southeastern Nigeria. Agric. Sci. Dig. 2022, 42, 145–151. [Google Scholar] [CrossRef]
- Wei, B.; Bi, J.; Qian, X.; Peng, C.; Sun, M.; Wang, E.; Liu, X.; Zeng, X.; Feng, H.; Song, A. Organic manure amendment fortifies soil health by enriching beneficial metabolites and microorganisms and suppressing plant pathogens. Agronomy 2025, 15, 429. [Google Scholar] [CrossRef]
- Zong, R.; Han, Y.; Tan, M.; Zou, R.; Wang, Z. Migration characteristics of soil salinity in saline-sodic cotton field with different reclamation time in non-irrigation season. Agric. Water Manag. 2022, 263, 107440. [Google Scholar] [CrossRef]
- Robinson, D.; Thomas, A.; Reinsch, S.; Lebron, I.; Feeney, C.; Maskell, L.; Wood, C.; Seaton, F.; Emmett, B.; Cosby, B. Analytical modelling of soil porosity and bulk density across the soil organic matter and land-use continuum. Sci. Rep. 2022, 12, 7085. [Google Scholar] [CrossRef]
- Zhang, X.; Shao, L.; Sun, H.; Chen, S.; Wang, Y. Incorporation of soil bulk density in simulating root distribution of winter wheat and maize in two contrasting soils. Soil Sci. Soc. Am. J. 2012, 76, 638–647. [Google Scholar] [CrossRef]
- Strock, C.F.; Rangarajan, H.; Black, C.K.; Schäfer, E.D.; Lynch, J.P. Theoretical evidence that root penetration ability interacts with soil compaction regimes to affect nitrate capture. Ann. Bot. 2022, 129, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Reijneveld, A.; Lerink, P.; Qin, W.; Oenema, O. Within-field spatial variations in subsoil bulk density related to crop yield and potential CO2 and N2O emissions. Catena 2022, 213, 106156. [Google Scholar] [CrossRef]
- Elmeknassi, M.; Elghali, A.; De Carvalho, H.W.P.; Laamrani, A.; Benzaazoua, M. A review of organic and inorganic amendments to treat saline-sodic soils: Emphasis on waste valorization for a circular economy approach. Sci. Total Environ. 2024, 921, 171087. [Google Scholar] [CrossRef]
- Mao, Y.; Li, X.; Dick, W.A.; Chen, L. Remediation of saline–sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China. J. Environ. Sci. 2016, 45, 224–232. [Google Scholar] [CrossRef]
- Su, F.; Wu, J.; Wang, D.; Zhao, H.; Wang, Y.; He, X. Moisture movement, soil salt migration, and nitrogen transformation under different irrigation conditions: Field experimental research. Chemosphere 2022, 300, 134569. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Rengasamy, P.; Mcdonald, G.K. High concentrations of Na+ and Cl− ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 2010, 61, 4449–4459. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Zhang, L.; Song, R.; Zeng, H.; Cao, J.; Qin, Z.; Yang, Z.; Zhang, Q.; Li, J.; Wang, B. Use of Cattle Manure as Auxiliary Material to Gypsum to Ameliorate Saline–Alkali Soils. Agronomy 2025, 15, 2378. https://doi.org/10.3390/agronomy15102378
Lu J, Zhang L, Song R, Zeng H, Cao J, Qin Z, Yang Z, Zhang Q, Li J, Wang B. Use of Cattle Manure as Auxiliary Material to Gypsum to Ameliorate Saline–Alkali Soils. Agronomy. 2025; 15(10):2378. https://doi.org/10.3390/agronomy15102378
Chicago/Turabian StyleLu, Jinjing, Longyan Zhang, Ruixin Song, Hanxuan Zeng, Jianpeng Cao, Zefeng Qin, Zhiping Yang, Qiang Zhang, Jianhua Li, and Bin Wang. 2025. "Use of Cattle Manure as Auxiliary Material to Gypsum to Ameliorate Saline–Alkali Soils" Agronomy 15, no. 10: 2378. https://doi.org/10.3390/agronomy15102378
APA StyleLu, J., Zhang, L., Song, R., Zeng, H., Cao, J., Qin, Z., Yang, Z., Zhang, Q., Li, J., & Wang, B. (2025). Use of Cattle Manure as Auxiliary Material to Gypsum to Ameliorate Saline–Alkali Soils. Agronomy, 15(10), 2378. https://doi.org/10.3390/agronomy15102378