Effect of Varying Dairy Cow Size and Live Weight on Soil Structure and Pasture Attributes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study 1: Effect of Cow Size and Mass on Hoof Pressure
2.1.1. Hoof Area and Live Weight Determination
2.1.2. Statistical Analysis
2.2. Study 2: Effect of Cow Size and Mass on Soil Physical Properties and Pasture Attributes
2.2.1. Site Description
2.2.2. Experimental Design and Treatments
2.2.3. Field Measurements and Soil Sampling
2.2.4. Laboratory Analysis
2.2.5. Statistical Analysis
3. Results
3.1. Study 1: Effect of Cow Size and Mass on Hoof Pressure
3.2. Study 2: Effect of Cow Size and Mass on Soil Physical Properties and Pasture Attributes
3.2.1. Soil Physical Properties
3.2.2. Pasture Attributes
3.2.3. Animal Behaviour
3.2.4. Canonical Variate Analysis
4. Discussion
4.1. Relationship Between Live Weight and Hoof Area
4.2. Effects of Tillage and Animal Treading on Soil Structure
4.3. Dynamics of Pasture Growth and Tiller Density
4.4. Grazing Behaviour of Dairy Cows with Contrasting Size and Live Weight
4.5. Relationship Between Treatments and Variables
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Negrón, M.; López, I.; Dörner, J. Consequences of intensive grazing by dairy cows of contrasting live weights on volcanic ash topsoil structure and pasture dynamics. Soil Tillage Res. 2019, 189, 88–97. [Google Scholar] [CrossRef]
- Alawneh, J.I.; Stevenson, M.A.; Williamson, N.B.; Lopez-Villalobos, N.; Otley, T. The effects of liveweight loss and milk production on the risk of lameness in a seasonally calving, pasture fed dairy herd in New Zealand. Prev. Vet. Med. 2014, 113, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Handcock, R.C.; López-Villalobos, N.; McNaughton, L.R.; Back, P.J.; Edwards, G.R.; Hickson, R.E. Live weight and growth of Holstein-Friesian, Jersey and crossbred dairy heifers in New Zealand. N. Z. J. Agric. Res. 2019, 62, 173–183. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Shalloo, L.; Pierce, K.M.; Buckley, F. Economic assessment of Holstein-Friesian dairy cows of divergent economic breeding index evaluated under seasonal calving pasture-based management. J. Dairy Sci. 2020, 103, 10311–10320. [Google Scholar] [CrossRef]
- Chapman, D.F.; Mackay, A.D.; Caradus, J.R.; Clark, D.A.; Goldson, S.L. Pasture productivity in New Zealand 1990–2020: Trends, expectations, and key factors. N. Z. J. Agric. Res. 2024, 68, 1221–1264. [Google Scholar] [CrossRef]
- MacDonald, K.A.; Penno, J.W.; Lancaster, J.A.S.; Roche, J.R. Effect of stocking rate on pasture production, milk production, and reproduction of dairy cows in pasture-based systems. J. Dairy Sci. 2008, 91, 2151–2163. [Google Scholar] [CrossRef]
- Spaans, O.K.; Macdonald, K.A.; Lancaster, J.A.S.; Bryant, A.M.; Roche, J.R. Dairy cow breed interacts with stocking rate in temperate pasture-based dairy production systems. J. Dairy Sci. 2018, 101, 4690–4702. [Google Scholar] [CrossRef]
- Castillo-Garcia, M.; Alados, C.L.; Ramos, J.; Moret, D.; Barrantes, O.; Pueyo, Y. Understanding herbivore-plant-soil feedbacks to improve grazing management on Mediterranean mountain grasslands. Agric. Ecosyst. Environ. 2022, 327, 107833. [Google Scholar] [CrossRef]
- Mayel, S.; Jarrah, M.; Kuka, K. How does grassland management affect physical and biochemical properties of temperate grassland soils? A review study. Grass Forage Sci. 2021, 76, 215–244. [Google Scholar] [CrossRef]
- Bilotta, G.S.; Brazier, R.E.; Haygarth, P.M. The Impacts of grazing animals on the quality of soils, vegetation, and surface waters in intensively managed grasslands. Adv. Agron. 2007, 94, 237–280. [Google Scholar]
- Greenwood, K.L.; McKenzie, M.B. Grazing effects on soil physical properties and the consequences for pasture: A review. Aust. J. Exp. Agric. 2001, 41, 1231–1250. [Google Scholar] [CrossRef]
- Drewry, J.J.; Littlejohn, J.; Paton, R. A survey of soil physical properties on sheep and dairy farms in southern New Zealand. N. Z. J. Agric. Res. 2000, 43, 251–258. [Google Scholar] [CrossRef]
- Oliveira, B.A.; López, I.F.; Cranston, L.M.; Kemp, P.D.; Donaghy, D.J.; López-Villalobos, N. Productive and nutritional parameters in diverse pastures composed of complementary species (Lolium perenne L., Bromus valdivianus Phil., Dactylis glomerata L., and Trifolium repens L.) under the leaf regrowth stage defoliation criterion. Eur. J. Agron. 2026, 172, 127823. [Google Scholar] [CrossRef]
- Oliveira, B.A.; López, I.F.; Cranston, L.M.; Poli, C.H.E.C.; Kemp, P.D.; Donaghy, D.J.; Draganova, I.; López-Villalobos, N. Animal behaviour and dietary preference of dairy cows grazing binary and diverse pastures under the leaf regrowth stage defoliation criterion. Anim. Feed Sci. Technol. 2024, 318, 116146–116153. [Google Scholar] [CrossRef]
- Phillips, C.J.C. Cattle Behaviour; Farming Press: Ipswich, UK, 1993. [Google Scholar]
- Greenwood, K.L.; MacLeod, D.A.; Hutchinson, K.J. Long-term stocking rate effects on soil physical properties. Aust. J. Exp. Agric. 1997, 37, 413–419. [Google Scholar] [CrossRef]
- Climo, W.J.; Richardson, M.A. Factors affecting the susceptibility of three soils in the Manawatu to stock treading. N. Z. J. Agric. Res. 1984, 27, 247–253. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C.; Milne, J.; Drewry, J.J.; Smith, N.P.; Hendry, T.; Moore, S.; Reijnen, B. A mechanical hoof for simulating animal treading under controlled conditions. N. Z. J. Agric. Res. 2001, 44, 111–116. [Google Scholar] [CrossRef]
- Horn, R.; Baumgartl, T. Dynamic Properties of Soils. In Soil Physic Companion; Warrick, A.W., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 17–48. [Google Scholar]
- Dec, D.; Bravo, S.; Horn, R.; Uteau, D.; Peth, S.; Zúñiga, F.; Clunes, J.; Granda, S.; Martínez, O.; Balocchi, O.; et al. Analyzing the impact of grazing and short-term irrigation management on soil mechanical strength of a volcanic ash soil under different types of pastures. Soil Tillage Res. 2021, 213, 105130. [Google Scholar] [CrossRef]
- Strudley, M.W.; Timothy, R.; Grenn, J.C.; Ascough, I.I. Tillage effects on soil hydraulic properties in space and time: State of science. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Greenwood, P.; McNamara, R. An analysis of the physical condition of two intensively grazed Southland soils. Proc. N. Z. Grassl. Assoc. 1992, 54, 71–75. [Google Scholar] [CrossRef]
- Dörner, J.; Dec, D.; Peng, X.; Horn, R. Change of shrinkage behavior of an Andisol in southern Chile: Effects of land use and wetting/drying cycles. Soil Tillage Res. 2009, 106, 45–53. [Google Scholar] [CrossRef]
- Drewry, J.J. Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia: A review. Agric. Ecosyst. Environ. 2006, 114, 159–169. [Google Scholar] [CrossRef]
- Evans, R. Soil erosion in the UK initiated by grazing animals. A need for a national survey. Appl. Geogr. 1997, 17, 127–141. [Google Scholar] [CrossRef]
- Heathwaite, A.; Burt, T.; Trudgill, S. Land-Use Controls on Sediment Production in a Lowland Catchment, South-West England. In Soil Erosion on Agricultural Land; Boardman, J., Foster, I., Dearing, J., Eds.; John Wiley and Sons Ltd.: Chichester, UK, 1990; pp. 70–86. [Google Scholar]
- Reszkowska, A.; Krümmelbein, J.; Gan, L.; Peth, S.; Horn, R. Influence of grazing on soil water and gas fluxes of two Inner Mongolia steppe ecosystems. Soil Tillage Res. 2011, 111, 180–189. [Google Scholar] [CrossRef]
- Reszkowska, A.; Krümmelbein, J.; Peth, S.; Horn, R.; Zhao, Y.; Gan, L. Influence of grazing on hydraulic and mechanical properties of semiarid steppe soils under different vegetation type in Inner Mongolia, China. Plant Soil 2011, 340, 59–72. [Google Scholar] [CrossRef]
- Zhao, Y.; Peth, S.; Krümmelbein, J.; Horn, R.; Wang, Z.; Steffens, M.; Hoffmann, C.; Peng, X. Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecol. Model. 2007, 205, 241–254. [Google Scholar] [CrossRef]
- Holt, J.A.; Bristow, K.L.; McIvor, J.G. The effects of grazing pressure on soil animals and hydraulic properties of two soils in semi–arid tropical Queensland. Soil Res. 1996, 34, 69–79. [Google Scholar] [CrossRef]
- Unger, P.; Kaspar, T. Soil compaction and root growth: A review. Agron. J. 1994, 86, 759–766. [Google Scholar] [CrossRef]
- Nie, Z.N.; Ward, G.N.; Michael, A.T. Impact of pugging by dairy cows on pastures and indicators of pugging damage to pasture soil in south-western Victoria. Aust. J. Agric. Res. 2001, 52, 37–43. [Google Scholar] [CrossRef]
- Singleton, P.L.; Addison, B. Effects of cattle treading on physical properties of three soils used for dairy farming in the Waikato, North Island, New Zealand. Soil Res. 1999, 37, 891–902. [Google Scholar] [CrossRef]
- Steffens, M.; Kölbl, A.; Totsche, K.U.; Kögel-Knabner, I. Grazing effects of soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). Geoderma 2008, 143, 63–72. [Google Scholar] [CrossRef]
- Hutchinson, K.J.; King, K.L.; Wilkinson, D.R. Effect of rainfall, moisture stress and stocking rate on the persistence of white clover over 30 years. Aust. J. Exp. Agric. 1995, 35, 1039–1047. [Google Scholar] [CrossRef]
- Ghanizadeh, H.; Harrington, K.C. Weed management in New Zealand pastures. Agronomy 2019, 9, 448. [Google Scholar] [CrossRef]
- Sigua, G.C.; Colemann, S.W. Long-term effect of cow congregation zone on soil penetrometer resistance: Implications for soils and forage quality. Agron. Sustain. Dev. 2009, 29, 517–523. [Google Scholar] [CrossRef]
- Dörner, J.; Dec, D.; Zuñiga, F.; Sandoval, P.; Horn, R. Effect of land use change on Andosol’s pore functions and their functional resilience after mechanical and hydraulic stresses. Soil Tillage Res. 2011, 115–116, 71–79. [Google Scholar] [CrossRef]
- Lal, R. Sustainable Land Use Systems and Soil Resilience. In Soil Resilience and Sustainable Land Use; Grennland, D.J., Szabolcs, I., Eds.; CAB International: Wallingford, UK, 1994; pp. 41–67. [Google Scholar]
- Angulo-Jaramillo, R.; Moreno, F.; Clothier, B.E.; Thony, J.L.; Vachaud, G.; Fernandez-Boy, E.; Cayuela, J.A. Seasonal variation of hydraulic properties of soils measured using a tension disk infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 27–32. [Google Scholar] [CrossRef]
- Dec, D.; Dörner, J.; Balocchi, O.; López, I. Temporal dynamics of hydraulic and mechanical properties of an Andosol under grazing. Soil Tillage Res. 2012, 125, 44–51. [Google Scholar] [CrossRef]
- Matus, F.; Amigo, X.; Kristiansen, S. Aluminium stabilization controls organic carbon levels in Chilean volcanic soil. Geoderma 2006, 132, 158–168. [Google Scholar] [CrossRef]
- Ellies, A. Mechanical Consolidation in Volcanic Ash Soils. In Impacts of Water and External Forces on Soil Structure; Drescher, J., Horn, R., De Boodt, M., Eds.; Catena-Verlag: Hessen, Germany, 1988; Suppl. 11; pp. 87–92. [Google Scholar]
- Dörner, J.; Dec, D.; Peng, X.; Horn, R. Effect of land use change on the dynamic behaviour of structural properties of an Andisol in southern Chile under saturated and unsaturated hydraulic conditions. Geoderma 2010, 159, 189–197. [Google Scholar] [CrossRef]
- Armas-Espinel, S.; Hernández-Moreno, J.; Muñoz-Carpena, R.; Regalado, C. Physical properties of “sorriba”-cultivated volcanic soils from Tenerife in relation to andic diagnostic parameters. Geoderma 2003, 117, 297–311. [Google Scholar] [CrossRef]
- Regalado, C.M.; Muñoz-Carpena, R. Estimating the saturated hydraulic conductivity in spatially variable soil with different permeameters: A stochastic Kozeny-Carman relation. Soil Tillage Res. 2004, 77, 189–202. [Google Scholar] [CrossRef]
- Ellies, A.; Grez, R.; Ramírez, C. La conductividad hidráulica en fase saturada como herramienta para el diagnóstico de la estructura del suelo. Agro Sur 1997, 25, 51–56. [Google Scholar] [CrossRef]
- Hoyos, N.; Comerford, N. Land use and landscape effects on aggregate stability and total carbon of Andisols from Colombian Andes. Geoderma 2005, 129, 268–278. [Google Scholar] [CrossRef]
- Lu, N.; Dong, Y. Correlation between soil-shrinkage curve and water-retention characteristics. J. Geothech. Geoenviron. Eng. 2017, 143, 04017054. [Google Scholar] [CrossRef]
- Cumming, D.; Cumming, G. Ungulate community structure and ecological processes: Body size, hoof area and trampling in African savannas. Oecologia 2003, 134, 560–568. [Google Scholar] [CrossRef]
- Peters, R.H. The Ecological Implications of Body Size; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- SAS Institute, Inc. Statistical Analysis Software, version 9.3; SAS Institute, Inc.: Cary, NC, USA, 2011. [Google Scholar]
- Salazar, O.; Casanova, M.; Luzio, W. Correlation between world reference base and soil taxonomy for the soils from the Xth “Los Lagos” region of Chile. J. Soil Sci. Plant Nutr. 2005, 5, 35–45. [Google Scholar]
- Zúñiga, F.; Ivelic-Sáez, J.; López, I.; Huygens, D.; Dörner, J. Temporal dynamics of the physical quality of an Andisol under a grazing system subjected to different pasture improvement strategies. Soil Tillage Res. 2015, 145, 233–241. [Google Scholar] [CrossRef]
- Radcliffe, J.E. Seasonal distribution of pasture production in New Zealand. I. Methods of measurement. N. Z. J. Exp. Agric. 1968, 2, 337–340. [Google Scholar]
- Mitchell, K.J.; Glenday, A.C. The tiller population of pastures. N. Z. J. Agric. Res. 1958, 1, 305–318. [Google Scholar]
- McIntyre, G. A method for unbiased selective sampling, using ranked sets. Aust. J. Agric. Res. 1952, 3, 385–390. [Google Scholar] [CrossRef]
- Earle, D.F.; McGowan, A.A. Evaluation and calibration of an automated rising plate meter for estimating dry matter yield of pasture. Aust. J. Exp. Agric. 1979, 19, 337–343. [Google Scholar] [CrossRef]
- Tharmaraj, J.; Chapman, D.F.; Nie, Z.N.; Lane, A.P. Herbage accumulation, botanical composition and nutritive value of five pasture types for dairy production in southern Australia. Aust. J. Agric. Res. 2008, 59, 127–138. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; AOAC: Gaithensburg, MD, USA, 1996. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant: Ruminant Metabolism, Nutritional Strategies, the Cellulolytic Fermentation and the Chemistry of Forages and Plant Fibres; Cornell University Press: Ithaca, NY, USA, 1982. [Google Scholar]
- Hartge, R.; Horn, R. Die Physikalische Untersuchung von Böden: Praxis Messmethoden Auswertung; Schweizerbart: Stuttgart, Germany, 2009. [Google Scholar]
- Baumgartl, T.; Köck, B. Modelling volume change and mechanical properties with hydraulic models. Soil Sci. Soc. Am. J. 2004, 68, 57–65. [Google Scholar] [CrossRef]
- Casagrande, A. Characteristics of cohesive soils affecting the stability of slopes and Earth fill. J. Boston Soc. Civil Eng. 1936, 23, 13–32. [Google Scholar]
- Dörner, J.; Horn, R. Anisotropy of pore functions in structured Stagnic Luvisols in the Weichselian moraine region in N Germany. J. Plant Nutr. Soil Sci. 2006, 169, 213–220. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Mwendera, E.J.; Mohamed Saleem, M.A. Infiltration rates, surface runoff, and soil loss as influenced by grazing pressure in the Ethiopian highlands. Soil Use Manag. 1997, 13, 29–35. [Google Scholar] [CrossRef]
- Lull, H.W. Soil Compaction on Forest and Range Lands; Miscellaneous Publication No. 768; Forest Service, United States Department of Agriculture: Washington, DC, USA, 1959.
- Moret, D.; Arrúe, J.L. Dynamics of soil hydraulic properties during fallow as affected by tillage. Soil Tillage Res. 2007, 96, 103–113. [Google Scholar] [CrossRef]
- McVay, K.A.; Budde, J.A.; Fabrizzi, K.; Mikha, M.; Rice, C.; Schlegel, A.J.; Peterson, D.E.; Sweeney, D.W.; Thompson, C. Management effects on soil physical properties in long-term tillage studies in Kansas. Soil Sci. Soc. Am. J. 2006, 70, 434–438. [Google Scholar] [CrossRef]
- Osunbitan, J.A.; Oyedele, D.J.; Adekalu, K.O. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil Tillage Res. 2005, 82, 57–64. [Google Scholar] [CrossRef]
- Fujikawa, T.; Miyazaki, T. Effect of bulk density and soil type on the gas diffusion coefficient in repacked and undisturbed soils. Soil Sci. 2005, 170, 892–901. [Google Scholar] [CrossRef]
- Descalzi, C.A.; López, I.F.; Kemp, P.D.; Dörner, J.; Ordóñez, I. Pasture restoration improvement methods for temperate degraded pastures and consequences of the climatic seasonality on soil-pasture complex. J. Agron. Crop Sci. 2020, 206, 130–147. [Google Scholar] [CrossRef]
- Reichert, J.M.; da Silva, V.R.; Reinert, D.J. Soil moisture, penetration resistance, and least limiting water range for three soil management system and black beans yield. In Conserving Soil and Water for Society: Sharing Solutions, Proceedings of the 13th International Soil Conservation Organisation Conference, Brisbane, Australia, 4–8 July 2004; Purdue University: West Lafayette, IN, USA, 2004. [Google Scholar]
- Horn, R.; Smucker, A. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Tillage Res. 2005, 82, 5–14. [Google Scholar] [CrossRef]
- Horn, R.; Fleige, H. Risk assessment of subsoil compaction for arable soils in Northwest Germany at farm scale. Soil Tillage Res. 2009, 102, 201–208. [Google Scholar] [CrossRef]
- Horn, R.; Fleige, H. A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil Tillage Res. 2003, 73, 89–99. [Google Scholar] [CrossRef]
- Bachmann, J.; Contreras, K.; Hartge, K.H.; MacDonald, R. Comparison of soil strength data obtained in situ with penetrometer and with vane shear test. Soil Tillage Res. 2006, 87, 112–118. [Google Scholar] [CrossRef]
- Ellies, A.; Ramírez, C.; MacDonald, R. Variación en la resistencia del suelo por efecto de su uso. Turrialba 1993, 43, 77–82. [Google Scholar]
- McLaren, R.G.; Cameron, K.C. Soil Science: Sustainable Production and Environmental Protection; Oxford University Press: Auckland, New Zealand, 1996. [Google Scholar]
- García-Favre, J.; López, I.F.; Cranston, L.M.; Donaghy, D.J.; Kemp, P.D.; Ordóñez, I.P. Functional contribution of two perennial grasses to enhance pasture production and drought resistance under a leaf regrowth stage defoliation criterion. J. Agron. Crop Sci. 2023, 209, 144–160. [Google Scholar] [CrossRef]
- Watt, T.A. The biology of Holcus lanatus L. (Yorkshire fog) and its significance in grassland. Herb. Abstr. 1978, 48, 195–204. [Google Scholar]
- Ordóñez, I.; López, I.F.; Kemp, P.D.; Descalzi, C.A.; Horne, R.; Zúñiga, F.; Dec, D.; Dörner, J. Effect of pasture improvement managements on physical properties and water content dynamics of a volcanic ash soil in southern Chile. Soil Tillage Res. 2018, 178, 55–64. [Google Scholar] [CrossRef]
- Olinic, T.; Olinic, E.-D. The effect of living plant roots on the shear strength parameters: A sustainable approach to shallow slope stability and erosion control applications. In Proceedings of the 4th International Conference on Sustainable Development in Civil, Urban and Transportation Engineering, Wrocław, Poland, 14–17 October 2024; Różański, A., Bui, Q.-B., Sadowski, Ł., Tran, M.T., Eds.; Lecture Notes in Civil Engineering. Springer Nature: Singapore, 2024; Volume 418, pp. 401–409. [Google Scholar]
- Bristiel, P.; Roumet, C.; Violle, C.; Volaire, F. Coping with drought: Root trait variability within the perennial grass Dactylis glomerata captures a trade-off between dehydration avoidance and dehydration tolerance. Plant Soil 2019, 434, 327–342. [Google Scholar] [CrossRef]
- Uteau, D.; Pagenkemper, S.; Peth, S.; Horn, R. Root and time dependent soil structure formation and its influence on gas transport in the subsoil. Soil Tillage Res. 2013, 132, 69–76. [Google Scholar] [CrossRef]
- Nissen, J.; Quiroz, C.; Seguel, O.; MacDonald, R.; Ellies, A. Flujo hídrico no saturado en Andisoles. Rev. Cienc. Suelo Nutr. Veg. 2006, 6, 9–19. [Google Scholar] [CrossRef]
- Ball, B.C.; O’Sullivan, M.F.; Hunter, R. Gas diffusion, fluid flow and derived pore continuity indices in relation to vehicle traffic and tillage. J. Soil Sci. 1988, 39, 327–339. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2010.
- Materechera, S.A.; Kirby, J.M.; Alston, A.M.; Dexter, A.R. Modification of soil aggregation by watering regime and roots growing through beds of large aggregates. Plant Soil 1994, 160, 57–66. [Google Scholar] [CrossRef]
- Koppi, A.J.; Douglas, J.T.; Moran, C.J. An image analysis evaluation of soil compaction in grassland. J. Soil Sci. 1992, 43, 15–25. [Google Scholar] [CrossRef]
- Hirsch, P.R.; Jhurreea, D.; Williams, J.K.; Murray, P.J.; Scott, T.; Misselbrook, T.H.; Goulding, K.W.T.; Clark, I.M. Soil resilience and recovery: Rapid community responses to management changes. Plant Soil 2017, 412, 283–297. [Google Scholar] [CrossRef]
- Seybold, C.A.; Herrick, J.E.; Brejda, J.J. Soil resilience: A fundamental component of soil quality. Soil Sci. 1999, 164, 224–234. [Google Scholar] [CrossRef]
- López, I.; Balocchi, O.; Saldivia, E.; Ortiz, C. Lolium perenne L. Tiller Growth Dynamics as Affected by Different Intensities of Pastures Utilization by Grazing Dairy Cows. In An Overview of Research on Pastoral-Based Systems in the Southern Part of South America; Machado, C., Wade, M., Carneiro, S., Agnusdei, M., de Faccio, P., Morris, S., Beskow, W., Eds.; Universidad Nacional del Centro de la Provincia de Buenos Aires: Buenos Aires, Argentina, 2010; pp. 43–55. [Google Scholar]
- Nissen, J.; Robert, L. Efecto del riego, frecuencia de corte y fertilización nitrogenada en una pradera artificial de la Región de Los Ríos. Agro Sur 2009, 37, 41–51. [Google Scholar] [CrossRef]
- McKenzie, B.A.; Kemp, P.D.; Moot, D.J.; Matthew, C.; Lucas, R.J. Environmental Effects on Plants Growth and Development. In New Zealand Pasture and Crops Science; White, J., Hodgson, J., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 29–44. [Google Scholar]
- Balocchi, O.; López, I.; Anwandter, V. Effect of Pasture Botanical Composition and Fertilizer Application on Herbage Production, Nutritive Value and Grazing Preference of Dairy Cows. In An Overview of Research on Pastoral-Based Systems in the Southern Part of South America; Machado, C., Wade, M., Carneiro, S., Agnusdei, M., de Faccio, P., Morris, S., Beskow, W., Eds.; Universidad Nacional del Centro de la Provincia de Buenos Aires: Buenos Aires, Argentina, 2010; pp. 69–80. [Google Scholar]
- Kemp, P.D.; Matthew, C.; Lucas, R.J. Pasture Species and Cultivars. In New Zealand Pasture and Crops Science; White, J., Hodgson, J., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 83–100. [Google Scholar]
- Matthew, C.; Assuero, S.; Black, C.; Sackville-Hamilton, N. Tiller Dynamics of Grazed Swards. In Grassland Ecophysiology and Grazing Ecology; Lemaire, G., Hodgson, J., de Moraes, A., Carvalho, P., Nabinger, C., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 127–150. [Google Scholar]
- Fulkerson, W.J.; Donaghy, D. Plant-soluble carbohydrates reserves and senescence—Key criteria for developing an effective grazing management system for ryegrass-based pastures: A review. Aust. J. Exp. Agric. 2001, 41, 261–275. [Google Scholar] [CrossRef]
- García-Favre, J.; López, I.F.; Cranston, L.M.; Donaghy, D.J.; Kemp, P.D. The growth response of pasture brome (Bromus valdivianus Phil.) to defoliation frequency under two soil-water restriction levels. Agronomy 2021, 11, 300. [Google Scholar] [CrossRef]
- McKenzie, B.A.; Valentine, I.; Matthew, C.; Harrington, K.C. Plant Interactions in Pastures and Crops. In New Zealand Pasture and Crops Science; White, J., Hodgson, J., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 45–58. [Google Scholar]
- Hodgson, J. Grazing Management: Science into Practice; Longman Scientific and Technical: Harlow, UK, 1990. [Google Scholar]
- Hodgson, J.; Brookes, I.M. Nutrition of Grazing Animals. In New Zealand Pasture and Crops Science; White, J., Hodgson, J., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 117–132. [Google Scholar]
- Canseco, C.; Abarzúa, A.; Parga, J.; Teuber, N.; Balocchi, O.; Lopetegui, J.; Anwandter, V.; Demanet, R. Calidad Nutritiva de las Praderas. In Manejo del Pastoreo; Teuber, N., Balocchi, O., Parga, J., Eds.; Imprenta América: Osorno, Chile, 2007; pp. 51–67. [Google Scholar]
- García-Favre, J.; Cranston, L.M.; López, I.F.; Poli, C.H.E.C.; Donaghy, D.J.; Caram, N.; Kemp, P.D. Pasture brome and perennial ryegrass characteristics that influence ewe lamb dietary preference during different seasons and periods of the day. Animal 2023, 17, 100865. [Google Scholar] [CrossRef] [PubMed]
- Tharmaraj, J.; Wales, W.; Chapman, D.; Egan, A. Defoliation pattern, foraging behaviour and diet selection by lactating cows in response to sward height and herbage allowance of a ryegrass-dominated pasture. Grass Forage Sci. 2003, 58, 225–238. [Google Scholar] [CrossRef]
- Tallowin, J.R.; Rook, A.J.; Rutter, S.M. Impacts of grazing management on biodiversity of grassland. Anim. Sci. 2005, 81, 193–198. [Google Scholar] [CrossRef]
- Rutter, S.M.; Orr, R.J.; Yarrow, N.H.; Champion, R.A.; Atkinson, L.D.; Cook, J.E. Long-term dietary preference for grass and clover in dairy cows. In Proceedings of the Fifth International Symposium on the Nutrition of Herbivores, San Antonio, TX, USA, 11–16 April 1999. [Google Scholar]
- Hodgson, J.; Forbes, T.; Armsttong, R.; Beattie, M.; Hunter, E. Comparative studies of the ingestive behaviour and herbage intake of sheep and cattle grazing indigenous hill plant communities. J. Appl. Ecol. 1991, 28, 205–227. [Google Scholar] [CrossRef]
- Parga, J.; Teuber, N.; Balocchi, O.; Anwandter, V.; Canseco, C.; Abarzúa, A.; Lopetegui, J.; Demanet, R. Comportamiento del Animal en Pastoreo. In Manejo del Pastoreo; Teuber, N., Balocchi, O., Parga, J., Eds.; Imprenta América: Osorno, Chile, 2007; pp. 69–89. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Análisis Multivariante; Prentice Hall Iberia: Madrid, Spain, 1999. [Google Scholar]
- Johnson, D.E. Métodos Multivariados Aplicados al Análisis de Datos; International Thomson Editores: Mexico City, Mexico, 2000. [Google Scholar]
- Soane, B.D.; Blackwell, P.S.; Dickson, J.W.; Painter, D.J. Compaction by agricultural vehicles: A review. I. Soil and wheel characteristics. Soil Tillage Res. 1981, 1, 207–237. [Google Scholar] [CrossRef]
- Hodgson, J.; Clark, D.A.; Mitchell, R.J. Foraging Behaviour in Grazing Animals and its Impact on Plant Communities. In Forage Quality, Evaluation and Utilization; Fahey, G.C., Ed.; American Society of Agronomy Inc., Crop Science of America Inc., Soil Science Society of America Inc.: Madison, WI, USA, 1994; pp. 796–827. [Google Scholar]
- Stuth, J.W. Foraging Behaviour. In Grazing Management: An Ecological Perspective; Heitschmidt, R.K., Stuth, J.W., Eds.; Timber Press: Portland, OR, USA, 1991; pp. 65–84. [Google Scholar]
- Hodgson, J. Nomenclature and definitions in grazing studies. Grass Forage Sci. 1979, 34, 11–18. [Google Scholar] [CrossRef]
- Santos, G.T.; Zanini, G.D.; Padilha, D.A.; Sbrissia, A.F. A grazing height target to minimize tiller stem elongation rate in annual ryegrass swards. Ciênc. Rural 2016, 46, 169–175. [Google Scholar] [CrossRef]
- Willat, S.T.; Sulistyaningsih, N. Effect of plant roots on soil strength. Soil Tillage Res. 1990, 16, 329–336. [Google Scholar] [CrossRef]
- Olinic, T.; Olinic, E.-D.; Butcaru, A.-C. Integrating geosynthetics and vegetation for sustainable erosion control applications. Sustainability 2024, 16, 10621. [Google Scholar] [CrossRef]
- Ordóñez, I.P.; López, I.F.; Kemp, P.D.; Donaghy, D.J.; Dörner, J.; García-Favre, J.; Zhang, Y. A short-term effect of multi-species pastures and the plant’s physiological response on pasture growth. Eur. J. Agron. 2024, 159, 127232. [Google Scholar] [CrossRef]
- Kirby, J.M.; Blunden, B.G. Interaction of soil deformations, structure and permeability. Soil Res. 1991, 29, 891–904. [Google Scholar] [CrossRef]
- Russell, E.W. Soil structure: Its maintenance and improvement. J. Soil Sci. 1971, 22, 137–151. [Google Scholar] [CrossRef]
Pc | PR | kla/klb | db | TP | wCP | nCP | MP | FP | |
---|---|---|---|---|---|---|---|---|---|
(kPa) | (kPa) | (g/cm3) | (%) | (%) | (%) | (%) | (%) | ||
Pastures | |||||||||
BM | 30.22 ± 2.85 | 1896 b ±33.55 | 0.15 ± 0.14 | 0.69 ± 0.01 | 69.87 ± 0.41 | 8.82 b ± 0.56 | 13.21 ± 1.63 | 21.80 ± 1.13 | 26.04 ± 0.35 |
MSM | 30.78 ± 3.07 | 1899 b ± 56.86 | 0.08 ± 0.04 | 0.70 ± 0.01 | 69.84 ± 0.37 | 9.38 b ± 0.69 | 13.93 ± 1.21 | 20.46 ± 1.15 | 26.06 ± 0.32 |
NFP | 30.77 ± 0.97 | 2173 a ± 43.49 | 0.13 ± 0.06 | 0.70 ± 0.01 | 69.78 ± 0.27 | 13.03 a ± 0.62 | 10.78 ± 0.82 | 19.87 ± 0.83 | 26.11 ± 0.23 |
Significance | NS | ** | NS | NS | NS | ** | NS | NS | NS |
Cows | |||||||||
LC | 33.26 ± 2.28 | 2016 ± 59.25 | 0.12 ± 0.09 | 0.69 ± 0.01 | 69.99 ± 0.29 | 10.49 ± 1.02 | 13.00 ± 1.26 | 20.58 ± 0.97 | 25.93 ± 0.25 |
HC | 27.93 ± 0.86 | 1962 ± 56.14 | 0.12 ± 0.06 | 0.70 ± 0.01 | 69.67 ± 0.25 | 10.33 ± 0.56 | 12.28 ± 0.91 | 20.84 ± 0.77 | 26.21 ± 0.22 |
Significance | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Interaction | |||||||||
BM-LC | 33.78 ± 5.11 | 1931 ± 19.82 | 0.13 ± 0.29 | 0.71 ± 0.02 | 69.44 ± 0.66 | 8.90 ± 1.15 | 12.51 ± 3.18 | 21.63 ± 1.78 | 26.40 ± 0.57 |
BM-HC | 26.67 ± 1.35 | 1860 ± 62.84 | 0.17 ± 0.13 | 0.69 ± 0.01 | 70.23 ± 0.45 | 8.74 ± 0.51 | 13.92 ± 1.61 | 21.97 ± 1.80 | 25.67 ± 0.39 |
MSM-LC | 35.00 ± 5.33 | 1889 ± 81.64 | 0.15 ± 0.01 | 0.68 ± 0.01 | 70.36 ± 0.49 | 8.57 ± 1.14 | 14.79 ± 2.37 | 21.38 ± 2.15 | 25.61 ± 0.43 |
MSM-HC | 26.56 ± 0.95 | 1909 ± 97.06 | 0.01 ± 0.06 | 0.71 ± 0.01 | 69.32 ± 0.40 | 10.20 ± 0.67 | 13.07 ± 0.96 | 19.55 ± 1.08 | 26.51 ± 0.34 |
NFP-LC | 31.00 ± 1.92 | 2228 ± 31.21 | 0.08 ± 0.08 | 0.69 ± 0.01 | 70.18 ± 0.31 | 13.99 ± 0.79 | 11.70 ± 0.83 | 18.72 ± 0.91 | 25.77 ± 0.26 |
NFP-HC | 30.56 ± 0.99 | 2119 ± 74.18 | 0.17 ± 0.10 | 0.71 ± 0.01 | 69.39 ± 0.33 | 12.06 ± 0.59 | 9.86 ± 1.34 | 21.01 ± 1.15 | 26.45 ± 0.29 |
Significance | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Total | Tiller Density | Residual | |||||
---|---|---|---|---|---|---|---|
Herbage Mass | (N° Tiller m−2) | Herbage Mass | |||||
(kg MS ha−1) | Spring 1 | Summer | Autumn | Winter | Spring 2 | (kg MS ha−1) | |
Pasture | |||||||
BM | 7927 a ± 194.85 | 6510 ± 457.37 | 4223 a ± 367.11 | 8361 b ± 490.99 | 10,197 b ± 905.27 | 8621 ± 273.11 | 1469 a ± 29.20 |
MSM | 8382 a ± 190.83 | 6642 ± 322.86 | 3093 b ± 167.08 | 6791 b ± 462.41 | 10,706 b ± 1050.60 | 7178 ± 407.92 | 1350 b ± 19.69 |
NFP | 6048 b ± 83.73 | 7692 ± 718.25 | 4541 a ± 565.36 | 12,838 a ± 948.73 | 15,687 a ± 1261.62 | 9623 ± 711.98 | 1471 a ± 22.04 |
Significance | *** | NS | ** | *** | *** | NS | ** |
Cow | |||||||
LC | 7528 ± 390.95 | 7328 ± 440.30 | 3374 b ± 192.76 | 10,129 a ± 1161.61 | 12,099 ± 1150.67 | 8333 ± 602.90 | 1412 ± 22.62 |
HC | 7376 ± 367.09 | 6568 ± 430.75 | 4531 a ± 420.46 | 8531 b ± 834.84 | 12,294 ± 1293.11 | 8616 ± 441.56 | 1448 ± 30.37 |
Significance | NS | NS | ** | * | NS | NS | NS |
Interaction | |||||||
BM-LC | 7931 ± 322.45 | 7289 ± 601.94 | 3523 b ± 294.92 | 8891 ± 813.52 | 8891 c ± 813.52 | 8297 ± 230.01 | 1440 ± 42.15 |
BM-HC | 7923 ± 292.99 | 5730 ± 274.70 | 4923 a ± 310.86 | 7831 ± 512.14 | 11,502 b,c ± 1316.19 | 8945 ± 463.97 | 1498 ± 40.68 |
MSM-LC | 8573 ± 169.93 | 6748 ± 514.42 | 3173 b ± 275.67 | 7225 ± 31.67 | 12,457 b ± 1252.00 | 7003 ± 730.36 | 1361 ± 37.31 |
MSM-HC | 8190 ± 341.18 | 6536 ± 495.27 | 3013 b ± 239.26 | 6356 ± 937.56 | 8955 c ± 940.88 | 7353 ± 517.62 | 1339 ± 20.76 |
NFP-LC | 6081 ± 165.62 | 7947 ± 1157.08 | 3427 b ± 500.18 | 14,271 ± 1403.88 | 14,950 a,b ± 2094.37 | 9698 ± 1399.76 | 1435 ± 31.82 |
NFP-HC | 6014 ± 80.56 | 7438 ± 1084.32 | 5655 a ± 327.07 | 11,406 ± 691.37 | 16,425 a ± 1740.25 | 9549 ± 754.79 | 1507 ± 11.42 |
Significance | NS | NS | * | NS | * | NS | NS |
Nutritional Quality | |||||||||
---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Winter | |||||||
CP | DOM | ADF | CP | DOM | ADF | CP | DOM | ADF | |
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | |
Pasture | |||||||||
BM | 19.53 b ± 0.36 | 82 a ± 0.39 | 24 c ± 0.42 | 12.50 a ± 0.38 | 70 a ± 0.47 | 34 b ± 1.00 | 23.32 b ± 0.50 | 72 a ± 0.31 | 29 a ± 0.36 |
MSM | 21.28 a ± 0.51 | 80 b ± 0.25 | 25 b ± 0.56 | 13.18 a ± 0.65 | 62 c ± 0.22 | 37 a ± 0.40 | 25.83 a ± 0.65 | 69 b ± 0.19 | 28 a ± 0.46 |
NFP | 18.48 c ± 0.27 | 77 c ± 0.16 | 29 a ± 0.29 | 6.88 b ± 0.45 | 67 b ± 0.35 | 37 a ± 0.35 | 21.72 b ± 0.36 | 72 a ± 0.45 | 26 b ± 0.25 |
Significance | *** | *** | *** | *** | *** | ** | ** | *** | ** |
Cow | |||||||||
LC | 19.92 ± 0.65 | 80 ± 0.82 | 26 ± 0.83 | 11.05 ± 1.17 | 66 ± 1.19 | 36 ± 1.01 | 23.72 ± 0.80 | 71 ± 0.53 | 28 ± 0.44 |
HC | 19.59 ± 0.31 | 80 ± 0.73 | 26 ± 0.74 | 10.66 ± 0.97 | 67 ± 1.16 | 36 ± 0.39 | 23.53 ± 0.64 | 71 ± 0.62 | 27 ± 0.57 |
Significance | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Interaction | |||||||||
BM-LC | 19.69 bc ± 0.76 | 83 ± 0.49 | 24 ± 0.62 | 12.99 ± 0.56 | 70 ± 0.81 | 32 ± 1.61 | 23.02 ± 0.54 | 72 ± 0.29 | 29 ± 0.20 |
BM-HC | 19.36 c ± 0.17 | 82 ± 0.64 | 25 ± 0.64 | 12.02 ± 0.42 | 70 ± 0.66 | 35 ± 0.66 | 23.62 ± 0.94 | 72 ± 0.61 | 28 ± 0.66 |
MSM-LC | 22.00 a ± 0.61 | 80 ± 0.44 | 25 ± 0.49 | 13.56 ± 1.06 | 62 ± 0.30 | 37 ± 0.72 | 26.56 ± 0.54 | 69 ± 0.25 | 27 ± 0.34 |
MSM-HC | 20.55 b ± 0.63 | 79 ± 0.28 | 26 ± 1.11 | 12.80 ± 0.91 | 62 ± 0.32 | 37 ± 0.51 | 25.11 ± 1.13 | 69 ± 0.22 | 28 ± 0.90 |
NFP-LC | 18.07 d ± 0.43 | 77 ± 0.10 | 29 ± 0.41 | 6.60 ± 0.16 | 67 ± 0.32 | 37 ± 0.58 | 21.59 ± 0.77 | 72 ± 0.41 | 26 ± 0.27 |
NFP-HC | 18.88 c,d ± 0.15 | 77 ± 0.35 | 29 ± 0.47 | 7.15 ± 0.96 | 68 ± 0.67 | 36 ± 0.20 | 21.86 ± 0.23 | 72 ± 0.81 | 25 ± 0.34 |
Significance | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Herbage Intake (kg DM MW−1 ha−1) | |||||
---|---|---|---|---|---|
Spring 1 | Summer | Autumn | Winter | Spring 2 | |
Pasture | |||||
BM | 0.83 ± 0.05 | 0.62 a ± 0.05 | 0.65 c ± 0.01 | 0.37 c ± 0.01 | 0.79 b ± 0.03 |
MSM | 1.04 ± 0.07 | 0.41 b ±0.03 | 1.01 a ± 0.03 | 0.52 a ± 0.02 | 0.71 b ± 0.04 |
NFP | 0.78 ± 0.04 | 0.43 b ± 0.03 | 0.90 b ± 0.02 | 0.46 b ± 0.02 | 0.93 a ± 0.03 |
Significance | NS | ** | *** | *** | ** |
Cow | |||||
LC | 0.89 ± 0.06 | 0.52 ± 0.05 | 0.85 ± 0.06 | 0.44 ± 0.03 | 0.79 ± 0.04 |
HC | 0.88 ± 0.06 | 0.45 ± 0.04 | 0.85 ± 0.05 | 0.46 ± 0.02 | 0.82 ± 0.04 |
Significance | NS | NS | NS | NS | NS |
Interaction | |||||
BM-LC | 0.74 ± 0.04 | 0.68 ± 0.08 | 0.64 ± 0.01 | 0.36 ± 0.02 | 0.74 ± 0.06 |
BM-HC | 0.91 ± 0.05 | 0.55 ± 0.06 | 0.66 ± 0.02 | 0.39 ± 0.01 | 0.84 ± 0.01 |
MSM-LC | 1.13 ± 0.02 | 0.45 ± 0.03 | 1.02 ± 0.03 | 0.51 ± 0.03 | 0.73 ± 0.06 |
MSM-HC | 0.96 ± 0.13 | 0.37 ± 0.02 | 0.99 ± 0.05 | 0.52 ± 0.03 | 0.68 ± 0.05 |
NFP-LC | 0.79 ± 0.02 | 0.42 ± 0.06 | 0.90 ± 0.03 | 0.45 ± 0.02 | 0.91 ± 0.03 |
NFP-HC | 0.76 ± 0.09 | 0.43 ± 0.04 | 0.90 ± 0.05 | 0.47 ± 0.03 | 0.95 ± 0.05 |
Significance | NS | NS | NS | NS | NS |
Bite Rate (Bite Number min−1) | |||||
---|---|---|---|---|---|
Spring 1 | Summer | Autumn | Winter | Spring 2 | |
Pasture | |||||
BM | 60.40 ± 2.16 | 57.69 b ± 1.29 | 68.68 ± 1.56 | 71.76 ± 3.32 | - |
MSM | 62.40 ± 0.68 | 63.36 a ± 1.78 | 68.88 ± 1.59 | 66.82 ± 1.56 | 68.23 ± 2.48 |
NFP | 60.89 ± 1.30 | 55.24 b ± 1.75 | 68.88 ± 1.59 | 66.82 ± 1.56 | 63.92 ± 1.18 |
Significance | NS | ** | NS | NS | NS |
Cow | |||||
LC | 60.98 ± 1.15 | 58.00 ± 1.82 | 70.25 ± 0.96 | 68.27 ± 1.66 | 68.95 ± 2.34 |
HC | 61.48 ± 1.31 | 59.52 ± 1.65 | 67.38 ± 1.30 | 68.66 ± 2.28 | 63.20 ± 0.78 |
Significance | NS | NS | NS | NS | NS |
Interaction | |||||
BM-LC | 61.00 ± 3.02 | 57.56 ± 2.11 | 71.78 ± 0.81 | 74.23 ± 1.98 | - |
BM-HC | 59.80 ± 3.73 | 57.82 ± 1.97 | 65.59 ± 1.37 | 69.28 ± 6.70 | - |
MSM-LC | 62.98 ± 1.24 | 61.91 ± 3.64 | 69.48 ± 2.09 | 65.29 ± 1.15 | 72.62 ± 3.00 |
MSM-HC | 61.82 ± 0.68 | 64.82 ± 0.70 | 68.27 ± 2.82 | 68.36 ± 2.92 | 63.84 ± 1.57 |
NFP-LC | 58.95 ± 1.03 | 54.55 ± 2.92 | 69.48 ± 2.09 | 65.29 ± 1.15 | 65.28 ± 2.24 |
NFP-HC | 62.83 ± 1.91 | 55.94 ± 2.51 | 68.27 ± 2.82 | 68.36 ± 2.92 | 62.56 ± 0.36 |
Significance | NS | NS | NS | NS | NS |
Livestock Behaviour | |||
---|---|---|---|
Grazing | Walking | Standing | |
(min) | (min) | (min) | |
Pasture | |||
BM | 56.89 ± 1.38 | 1.56 ± 0.31 | 16.53 ± 2.33 |
MSM | 57.19 ± 1.85 | 1.13 ± 0.20 | 16.20 ± 2.70 |
NFP | 53.27 ± 1.22 | 1.48 ± 0.22 | 21.18 ± 1.82 |
Significance | NS | NS | NS |
Cow | |||
LC | 57.59 ± 1.36 | 1.66 ± 0.20 | 15.02 ± 1.97 |
HC | 53.98 ± 0.99 | 1.12 ± 0.16 | 21.25 ± 1.40 |
Significance | NS | NS | NS |
Interaction | |||
BM-LC | 59.02 ± 2.14 | 2.15 ± 0.37 | 12.67 ± 3.41 |
BM-HC | 54.75 ± 0.65 | 0.97 ± 0.09 | 20.39 ± 0.81 |
MSM-LC | 59.46 ± 2.68 | 1.39 ± 0.26 | 12.18 ± 3.39 |
MSM-HC | 54.93 ± 2.20 | 0.87 ± 0.24 | 20.21 ± 2.97 |
NFP-LC | 54.28 ± 1.47 | 1.44 ± 0.33 | 20.20 ± 1.81 |
NFP-HC | 52.26 ± 2.07 | 1.53 ± 0.36 | 23.16 ± 3.34 |
Significance | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrón, M.; López, I.F.; Dörner, J.; Cartmill, A.D.; Balocchi, O.A.; Saldivia, E. Effect of Varying Dairy Cow Size and Live Weight on Soil Structure and Pasture Attributes. Agronomy 2025, 15, 2367. https://doi.org/10.3390/agronomy15102367
Negrón M, López IF, Dörner J, Cartmill AD, Balocchi OA, Saldivia E. Effect of Varying Dairy Cow Size and Live Weight on Soil Structure and Pasture Attributes. Agronomy. 2025; 15(10):2367. https://doi.org/10.3390/agronomy15102367
Chicago/Turabian StyleNegrón, Mary, Ignacio F. López, José Dörner, Andrew D. Cartmill, Oscar A. Balocchi, and Eladio Saldivia. 2025. "Effect of Varying Dairy Cow Size and Live Weight on Soil Structure and Pasture Attributes" Agronomy 15, no. 10: 2367. https://doi.org/10.3390/agronomy15102367
APA StyleNegrón, M., López, I. F., Dörner, J., Cartmill, A. D., Balocchi, O. A., & Saldivia, E. (2025). Effect of Varying Dairy Cow Size and Live Weight on Soil Structure and Pasture Attributes. Agronomy, 15(10), 2367. https://doi.org/10.3390/agronomy15102367