Histological and Immunolabeling Techniques in Arabidopsis thaliana: A Practical Guide and Standardization Roadmap
Abstract
1. Introduction
2. Stages of Processing Plant Samples
2.1. Fixation and Dehydration
2.2. Impregnation
2.3. Cutting Instrument and Section Thickness
3. Specific Processing by Techniques: Protocol Description
3.1. Hematoxylin–Eosin (H-E)
3.2. Safranin–Fast Green (S-FG)
3.3. Toluidine Blue
3.4. Periodic Acid–Schiff (PAS)
3.5. Sudan
3.6. Specific Processing for IHC and IF
4. Focus of Studies: Cellular Morphology, Cell Differentiation, Detection of Suberin, Lignin, and Sugars, Cell Growth, Cell Death, and Protein Expression
5. Recommendations for Protocol Application
5.1. Flower
5.2. Leaf
5.3. Root
5.4. Seed
5.5. Stem
5.6. Considerations Regarding Section Thickness
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferjani, A.; Tsukagoshi, H.; Vassileva, V. Editorial: Model Organisms in Plant Science: Arabidopsis thaliana. Front. Plant Sci. 2023, 14, 1279230. [Google Scholar] [CrossRef]
- Lian, Q.; Huettel, B.; Walkemeier, B.; Mayjonade, B.; Lopez-Roques, C.; Gil, L.; Roux, F.; Schneeberger, K.; Mercier, R. A Pan-Genome of 69 Arabidopsis thaliana Accessions Reveals a Conserved Genome Structure throughout the Global Species Range. Nat. Genet. 2024, 56, 982–991. [Google Scholar] [CrossRef]
- Meinke, D.W.; Cherry, J.M.; Dean, C.; Rounsley, S.D.; Koornneef, M. Arabidopsis thaliana: A Model Plant for Genome Analysis. Science 1998, 282, 662–682. [Google Scholar] [CrossRef]
- Provart, N.J.; Alonso, J.; Assmann, S.M.; Bergmann, D.; Brady, S.M.; Brkljacic, J.; Browse, J.; Chapple, C.; Colot, V.; Cutler, S.; et al. 50 Years of Arabidopsis Research: Highlights and Future Directions. New Phytol. 2016, 209, 921–944. [Google Scholar] [CrossRef]
- Woodward, A.W.; Bartel, B. Biology in Bloom: A Primer on the Arabidopsis thaliana Model System. Genetics 2018, 208, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Gallardo, J.J.; González-Aguilera, K.L.; De Folter, S. EXPANSIN15 Is Involved in Flower and Fruit Development in Arabidopsis. Plant Reprod. 2024, 37, 259–270. [Google Scholar] [CrossRef]
- Li, S.; Guo, M.; Hong, W.; Li, M.; Zhu, X.; Guo, C.; Shu, Y. Overexpression of a White Clover WRKY Transcription Factor Improves Cold Tolerance in Arabidopsis. Agronomy 2025, 15, 1700. [Google Scholar] [CrossRef]
- Yaschenko, A.E.; Alonso, J.M.; Stepanova, A.N. Arabidopsis as a Model for Translational Research. Plant Cell 2025, 37, koae065. [Google Scholar] [CrossRef]
- Mostafiz, S.B.; Wagiran, A. Efficient Callus Induction and Regeneration in Selected Indica Rice. Agronomy 2018, 8, 77. [Google Scholar] [CrossRef]
- Chang, H.; Ji, W.; Xie, Y.; He, S.; Xie, Z.; Sun, F. Morphological Characterization of Metamorphosis in Stamens of Anemone Barbulata Turcz. (Ranunculaceae). Agronomy 2023, 13, 554. [Google Scholar] [CrossRef]
- Cheng, Y.; Lan, T.; Deng, K.; Wang, M.; Bao, S.; Han, D.; Xu, Y.; Wang, H.; Xu, N.; Guo, Z. Cytological Characterization of Vrnp 1, a Pollen-Free Male Sterile Mutant in Mung Bean (Vigna Radiata). Agronomy 2025, 15, 312. [Google Scholar] [CrossRef]
- Higazy, A.E.; El-Mahrouk, M.E.; El-Banna, A.N.; Maamoun, M.K.; El-Ramady, H.; Abdalla, N.; Dobránszki, J. Production of Black Cumin via Somatic Embryogenesis, Chemical Profile of Active Compounds in Callus Cultures and Somatic Embryos at Different Auxin Supplementations. Agronomy 2023, 13, 2633. [Google Scholar] [CrossRef]
- Kisvarga, S.; Barna, D.; Kovács, S.; Csatári, G.; Tóth, I.O.; Fári, M.G.; Makleit, P.; Veres, S.; Alshaal, T.; Bákonyi, N. Fermented Alfalfa Brown Juice Significantly Stimulates the Growth and Development of Sweet Basil (Ocimum Basilicum L.) Plants. Agronomy 2020, 10, 657. [Google Scholar] [CrossRef]
- Podwyszyńska, M.; Marasek-Ciolakowska, A. Micropropagation of Tulip via Somatic Embryogenesis. Agronomy 2020, 10, 1857. [Google Scholar] [CrossRef]
- Reisfeld, G.; Faigenboim, A.; Fox, H.; Zemach, H.; Eshed Williams, L.; David-Schwartz, R. Differentially Expressed Transcription Factors during Male and Female Cone Development in Pinus Halepensis. Agronomy 2022, 12, 1588. [Google Scholar] [CrossRef]
- Robledo-Torres, V.; González-Cortés, A.; Luna-García, L.R.; Mendoza-Villarreal, R.; Pérez-Rodríguez, M.Á.; Camposeco-Montejo, N. Histological Variations in Cucumber Grafted Plants and Their Effect on Yield. Agronomy 2024, 14, 1377. [Google Scholar] [CrossRef]
- Bartolini, S.; Pappalettere, L.; Toffanin, A. Azospirillum Baldaniorum Sp245 Induces Anatomical Changes in Cuttings of Olive (Olea Europaea L., Cultivar Leccino): Preliminary Results. Agronomy 2023, 13, 301. [Google Scholar] [CrossRef]
- Isgandarova, T.Y.; Rustamova, S.M.; Aliyeva, D.R.; Rzayev, F.H.; Gasimov, E.K.; Huseynova, I.M. Antioxidant and Ultrastructural Alterations in Wheat During Drought-Induced Leaf Senescence. Agronomy 2024, 14, 2924. [Google Scholar] [CrossRef]
- Kersten, A.-K.; Scharf, S.; Bandte, M.; Martin, P.; Meurer, P.; Lentzsch, P.; Büttner, C. Softening of Processed Plant Virus Infected Cucumis Sativus L. Fruits. Agronomy 2021, 11, 1451. [Google Scholar] [CrossRef]
- Silva, P.H.D.; Neto, I.L.D.C.; Santos, R.M.F.; Martins, F.M.; Soares, J.M.D.S.; Nascimento, F.D.S.; Ramos, A.P.D.S.; Amorim, E.P.; Ferreira, C.F.; Ledo, C.A.D.S. Histological and Molecular Characterization of the Musa Spp. x Pseudocercospora Musae Pathosystem. Agronomy 2024, 14, 2328. [Google Scholar] [CrossRef]
- Tsyganova, A.V.; Kitaeva, A.B.; Gorshkov, A.P.; Kusakin, P.G.; Sadovskaya, A.R.; Borisov, Y.G.; Tsyganov, V.E. Glycyrrhiza Uralensis Nodules: Histological and Ultrastructural Organization and Tubulin Cytoskeleton Dynamics. Agronomy 2021, 11, 2508. [Google Scholar] [CrossRef]
- Kiernan, J.A. Histological and Histochemical Methods: Theory and Practice, 5th ed.; Scion: Banbury, UK, 2015; ISBN 978-1-907904-32-5. [Google Scholar]
- Horobin, R.W. Histochemistry; Elsevier Science: Amsterdam, The Netherlands, 2014; ISBN 978-1-4831-6468-7. [Google Scholar]
- Abedi, F.; Keitel, C.; Khoddami, A.; Marttila, S.; Pattison, A.L.; Roberts, T.H. Indigenous Australian Grass Seeds as Grains: Macrostructure, Microstructure and Histochemistry. AoB PLANTS 2023, 15, plad071. [Google Scholar] [CrossRef]
- De Almeida, V.P.; Monchak, I.T.; Da Costa Batista, J.V.; Grazi, M.; Ramm, H.; Raman, V.; Baumgartner, S.; Holandino, C.; Manfron, J. Investigations on the Morpho-Anatomy and Histochemistry of the European Mistletoe: Viscum Album L. Subsp. Album. Sci. Rep. 2023, 13, 4604. [Google Scholar] [CrossRef]
- Doolabh, K.; Naidoo, Y.; Dewir, Y.H.; Al-Suhaibani, N. Micromorphology, Ultrastructure and Histochemistry of Commelina Benghalensis L. Leaves and Stems. Plants 2021, 10, 512. [Google Scholar] [CrossRef]
- El Babili, F.; Rey-Rigaud, G.; Rozon, H.; Halova-Lajoie, B. State of Knowledge: Histolocalisation in Phytochemical Study of Medicinal Plants. Fitoterapia 2021, 150, 104862. [Google Scholar] [CrossRef]
- Yadav, V.; Arif, N.; Singh, V.P.; Guerriero, G.; Berni, R.; Shinde, S.; Raturi, G.; Deshmukh, R.; Sandalio, L.M.; Chauhan, D.K.; et al. Histochemical Techniques in Plant Science: More Than Meets the Eye. Plant Cell Physiol. 2021, 62, 1509–1527. [Google Scholar] [CrossRef]
- Blehová, A.; Murín, M.; Nemeček, P.; Gajdoš, P.; Čertík, M.; Kraic, J.; Matušíková, I. Alterations in Allocation and Composition of Lipid Classes in Euonymus Fruits and Seeds. Protoplasma 2021, 258, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.C.B.; De Araújo Silva-Cardoso, I.M.; De Oliveira Meira, R.; Scherwinski-Pereira, J.E. Somatic Embryogenesis and Plant Regeneration from Zygotic Embryos of the Palm Tree Euterpe Precatoria Mart. Plant Cell Tissue Organ Cult. 2022, 148, 667–686. [Google Scholar] [CrossRef]
- Guo, F.; Wang, H.; Lian, G.; Cai, G.; Liu, W.; Zhang, H.; Li, D.; Zhou, C.; Han, N.; Zhu, M.; et al. Initiation of Scutellum-Derived Callus Is Regulated by an Embryo-like Developmental Pathway in Rice. Commun. Biol. 2023, 6, 457. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xu, H.; Wu, H.; Shen, W.; Lin, J.; Zhao, Y. Seasonal Changes in Cambium Activity from Active to Dormant Stage Affect the Formation of Secondary Xylem in Pinus Tabulaeformis Carr. Tree Physiol. 2022, 42, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, X.; Ren, K.; Li, K.; Wei, M.; Wang, W.; Sheng, X. Light Deprivation-Induced Inhibition of Chloroplast Biogenesis Does Not Arrest Embryo Morphogenesis But Strongly Reduces the Accumulation of Storage Reserves during Embryo Maturation in Arabidopsis. Front. Plant Sci. 2017, 8, 1287. [Google Scholar] [CrossRef]
- Ovani, V.; Pérez-Márquez, S.; Rossi, M.L.; Martinelli, A.P.; Lavres, J.; Louvandini, H.; Abdalla, A.L. Unveiling the Aluminum Tolerance by Tithonia diversifolia Grown in Acid Soil: Insights from Morphological, Anatomical, and Nutritional Analysis. Land Degrad. Dev. 2024, 35, 3817–3831. [Google Scholar] [CrossRef]
- Pérez-López, A.V.; Simpson, J.; Clench, M.R.; Gomez-Vargas, A.D.; Ordaz-Ortiz, J.J. Localization and Composition of Fructans in Stem and Rhizome of Agave tequilana Weber Var. Azul. Front. Plant Sci. 2021, 11, 608850. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, L.; Pan, X.; Šamaj, J. Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa Spp. AAA). PLoS ONE 2011, 6, e22992. [Google Scholar] [CrossRef]
- Yuan, B.; Yuan, J.-K.; Huang, C.-G.; Lian, J.-R.; Li, Y.-H.; Fan, X.-M.; Yuan, D.-Y. Pseudopollen in Camellia oleifera and Its Implications for Pollination Ecology and Taxonomy. Front. Plant Sci. 2022, 13, 1032187. [Google Scholar] [CrossRef]
- Lin, F. Handbook of Practical Immunohistochemistry: Frequently Asked Questions, 3rd ed.; Springer: New York, NY, USA, 2022; ISBN 978-3-030-83328-2. [Google Scholar]
- Nguyen, T. (Ed.) Immunohistochemistry: A Technical Guide to Current Practices; Cambridge Medicine; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-009-10772-3. [Google Scholar]
- Seymour, G.J.; Cullinan, M.P.; Heng, N.; Cooper, P.R. (Eds.) Oral Biology: Molecular Techniques and Applications, Methods in Molecular Biology, 3rd ed.; Springer: New York, NY, USA, 2023; ISBN 978-1-0716-2780-8. [Google Scholar]
- Suvarna, K.S.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-7020-6886-7. [Google Scholar]
- Bedetti, C.; Jorge, N.; Trigueiro, F.; Bragança, G.; Modolo, L.; Isaias, R. Detection of Cytokinins and Auxin in Plant Tissues Using Histochemistry and Immunocytochemistry. Biotech. Histochem. 2018, 93, 149–154. [Google Scholar] [CrossRef]
- Borkovcová, P.; Pekárová, B.; Válková, M.; Dopitová, R.; Brzobohatý, B.; Janda, L.; Hejátko, J. Antibodies against CKI1RD, a Receiver Domain of the Sensor Histidine Kinase in Arabidopsis thaliana: From Antigen Preparation to in Planta Immunolocalization. Phytochemistry 2014, 100, 6–15. [Google Scholar] [CrossRef]
- Huang, T.; Guillotin, B.; Rahni, R.; Birnbaum, K.D.; Wagner, D. A Rapid and Sensitive, Multiplex, Whole Mount RNA Fluorescence in Situ Hybridization and Immunohistochemistry Protocol. Plant Methods 2023, 19, 131. [Google Scholar] [CrossRef]
- Khoshravesh, R.; Lundsgaard-Nielsen, V.; Sultmanis, S.; Sage, T.L. Light Microscopy, Transmission Electron Microscopy, and Immunohistochemistry Protocols for Studying Photorespiration. In Photorespiration; Fernie, A.R., Bauwe, H., Weber, A.P.M., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1653, pp. 243–270. ISBN 978-1-4939-7224-1. [Google Scholar]
- Vafina, G.; Akhiyarova, G.; Korobova, A.; Finkina, E.I.; Veselov, D.; Ovchinnikova, T.V.; Kudoyarova, G. The Long-Distance Transport of Jasmonates in Salt-Treated Pea Plants and Involvement of Lipid Transfer Proteins in the Process. IJMS 2024, 25, 7486. [Google Scholar] [CrossRef]
- Viejo, M.; Yakovlev, I.; Fossdal, C.G. Immunochemical Detection of Modified Species of Cytosine in Plant Tissues. In DNA Modifications; Ruzov, A., Gering, M., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2021; Volume 2198, pp. 209–216. ISBN 978-1-0716-0875-3. [Google Scholar]
- Nakashima, J.; Pattathil, S.; Avci, U.; Chin, S.; Alan Sparks, J.; Hahn, M.G.; Gilroy, S.; Blancaflor, E.B. Glycome Profiling and Immunohistochemistry Uncover Changes in Cell Walls of Arabidopsis thaliana Roots during Spaceflight. npj Microgravity 2023, 9, 68. [Google Scholar] [CrossRef]
- Qi, H.; Wang, Y.; Bao, Y.; Bassham, D.C.; Chen, L.; Chen, Q.-F.; Hou, S.; Hwang, I.; Huang, L.; Lai, Z.; et al. Studying Plant Autophagy: Challenges and Recommended Methodologies. Adv. Biotechnol. 2023, 1, 2. [Google Scholar] [CrossRef]
- Wang, C.; Yan, X.; Meng, T.; Hu, T.; Pan, J. Immunofluorescence Analysis of Membrane-Associated Proteins for Clathrin-Mediated Endocytosis in Plant Root Cells. In Plant Protein Secretion; Jiang, L., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1662, pp. 151–157. ISBN 978-1-4939-7261-6. [Google Scholar]
- Wang, L.; Chen, Y.; Niu, D.; Tang, M.; An, J.; Xue, S.; Liu, X.; Gao, H. Improvements for Tissue-Chopping-Based Immunofluorescence Staining Method of Chloroplast Proteins. Plants 2023, 12, 841. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, F.; Jiao, Y.; Zhou, Q.; An, J.; Gao, H. Immunofluorescence Staining of Chloroplast Proteins with Frozen Sections of Plant Tissues. Plant Cell Rep. 2024, 43, 168. [Google Scholar] [CrossRef]
- Żabka, A.; Gocek, N.; Polit, J.T.; Maszewski, J. Epigenetic Modifications Evidenced by Isolation of Proteins on Nascent DNA and Immunofluorescence in Hydroxyurea-Treated Root Meristem Cells of Vicia Faba. Planta 2023, 258, 95. [Google Scholar] [CrossRef]
- Koroleva, O.A.; Davies, A.; Deeken, R.; Thorpe, M.R.; Tomos, A.D.; Hedrich, R. Identification of a New Glucosinolate-Rich Cell Type in Arabidopsis Flower Stalk. Plant Physiol. 2000, 124, 599–608. [Google Scholar] [CrossRef]
- Mazur, E.; Benková, E.; Friml, J. Vascular Cambium Regeneration and Vessel Formation in Wounded Inflorescence Stems of Arabidopsis. Sci. Rep. 2016, 6, 33754. [Google Scholar] [CrossRef]
- Szydlowski, N.; Ragel, P.; Raynaud, S.; Lucas, M.M.; Roldán, I.; Montero, M.; Muñoz, F.J.; Ovecka, M.; Bahaji, A.; Planchot, V.; et al. Starch Granule Initiation in Arabidopsis Requires the Presence of Either Class IV or Class III Starch Synthases. Plant Cell 2009, 21, 2443–2457. [Google Scholar] [CrossRef]
- Ruzin, S.E. Plant Microtechnique and Microscopy; Oxford University Press: New York, NY, USA, 1999; ISBN 978-0-19-508956-1. [Google Scholar]
- Cai, Y.; Yan, J.; Tu, W.; Deng, Z.; Dong, W.; Gao, H.; Xu, J.; Zhang, N.; Yin, L.; Meng, Q.; et al. Expression of Sucrose Transporters from Vitis vinifera Confer High Yield and Enhances Drought Resistance in Arabidopsis. IJMS 2020, 21, 2624. [Google Scholar] [CrossRef]
- Flaishman, M.A.; Loginovsky, K.; Lev-Yadun, S. Regenerative Xylem in Inflorescence Stems of Arabidopsis thaliana. J. Plant Growth Regul. 2003, 22, 253–258. [Google Scholar] [CrossRef]
- Inada, N.; Wildermuth, M.C. Novel Tissue Preparation Method and Cell-Specific Marker for Laser Microdissection of Arabidopsis Mature Leaf. Planta 2005, 221, 9–16. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Huang, H.; Huo, H.; Nguyen, C.D.; Pian, R.; Li, H.; Ouyang, K.; Chen, X. Cloning and Characterization of the Lignin Biosynthesis Genes NcCSE and NcHCT from Neolamarckia Cadamba. AMB Express 2019, 9, 152. [Google Scholar] [CrossRef]
- Little, C.H.A.; MacDonald, J.E.; Olsson, O. Involvement of Indole-3-Acetic Acid in Fascicular and Interfascicular Cambial Growth and Interfascicular Extraxylary Fiber Differentiation in Arabidopsis thaliana Inflorescence Stems. Int. J. Plant Sci. 2002, 163, 519–529. [Google Scholar] [CrossRef]
- Livingston, D.P.; Van, K.; Premakumar, R.; Tallury, S.P.; Herman, E.M. Using Arabidopsis thaliana as a Model to Study Subzero Acclimation in Small Grains. Cryobiology 2007, 54, 154–163. [Google Scholar] [CrossRef]
- Orzechowska, M.; Gurdek, S.; Siwinska, D.; Piekarska-Stachowiak, A. Cytogenetic Characterization of the Arabidopsis thaliana Natural Tetraploid Ecotype Warschau Stability during in Vitro Regeneration. Plant Cell Tissue Organ Cult. 2016, 126, 553–560. [Google Scholar] [CrossRef]
- Rodriguez, M.V.; Tano, J.; Ansaldi, N.; Carrau, A.; Srebot, M.S.; Ferreira, V.; Martínez, M.L.; Cortadi, A.A.; Siri, M.I.; Orellano, E.G. Anatomical and Biochemical Changes Induced by Gluconacetobacter Diazotrophicus Stand Up for Arabidopsis thaliana Seedlings From Ralstonia Solanacearum Infection. Front. Plant Sci. 2019, 10, 1618. [Google Scholar] [CrossRef]
- Tsabary, G.; Shani, Z.; Roiz, L.; Levy, I.; Riov, J.; Shoseyov, O. Abnormal ‘wrinkled’ Cell Walls and Retarded Development of Transgenic Arabidopsis thaliana Plants Expressing Endo-1,4-β-Glucanase (Cell) Antisense. Plant Mol. Biol. 2003, 51, 213–224. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Wang, Z.; Zhang, R.; Liu, P.; Liu, M.; Liu, Z.; Zhao, Z.; Wang, L.; Chen, X.; et al. The Regulation of Cell Wall Lignification and Lignin Biosynthesis during Pigmentation of Winter jujube. Hortic. Res. 2021, 8, 238. [Google Scholar] [CrossRef]
- D’Ambrogio de Argüeso, A. Manual de técnicas en histología vegetal, 1st ed.; Hemisferio Sur: Buenos Aires, Argentina, 1986; ISBN 978-950-504-360-6. [Google Scholar]
- Moreno-Sanz, P.; D’Amato, E.; Nebish, A.; Costantini, L.; Grando, M.S. An Optimized Histological Proceeding to Study the Female Gametophyte Development in Grapevine. Plant Methods 2020, 16, 61. [Google Scholar] [CrossRef]
- Yeung, E.C.T.; Stasolla, C.; Sumner, M.J.; Huang, B.Q. (Eds.) Plant Microtechniques and Protocols, 1st ed.; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-19944-3. [Google Scholar]
- Rodrigues Marques, J.P.; Kasue Misaki Soares, M. Handbook of Techniques in Plant Histopathology, 1st ed.; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-031-14659-6. [Google Scholar]
- Principles and Techniques of Electron Microscopy: Biological Applications, 4th ed.; Hayat, M.A., Ed.; Cambridge University Press: Cambridge, UK, 2000; ISBN 978-0-521-63287-4. [Google Scholar]
- Matsuoka, K.; Sato, R.; Matsukura, Y.; Kawajiri, Y.; Iino, H.; Nozawa, N.; Shibata, K.; Kondo, Y.; Satoh, S.; Asahina, M. Wound-Inducible ANAC071 and ANAC096 Transcription Factors Promote Cambial Cell Formation in Incised Arabidopsis Flowering Stems. Commun. Biol. 2021, 4, 369. [Google Scholar] [CrossRef]
- Arents, H.E.; Eswaran, G.; Glanc, M.; Mähönen, A.P.; De Rybel, B. Means to Quantify Vascular Cell File Numbers in Different Tissues. In Plant Cell Division; Caillaud, M.-C., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2022; Volume 2382, pp. 155–179. ISBN 978-1-0716-1743-4. [Google Scholar]
- Chu, Z.; Chen, H.; Zhang, Y.; Zhang, Z.; Zheng, N.; Yin, B.; Yan, H.; Zhu, L.; Zhao, X.; Yuan, M.; et al. Knockout of the AtCESA2 Gene Affects Microtubule Orientation and Causes Abnormal Cell Expansion in Arabidopsis. Plant Physiol. 2007, 143, 213–224. [Google Scholar] [CrossRef]
- Koizumi, K.; Wu, S.; MacRae-Crerar, A.; Gallagher, K.L. An Essential Protein That Interacts with Endosomes and Promotes Movement of the SHORT-ROOT Transcription Factor. Curr. Biol. 2011, 21, 1559–1564. [Google Scholar] [CrossRef]
- Pogorelko, G.; Lionetti, V.; Fursova, O.; Sundaram, R.M.; Qi, M.; Whitham, S.A.; Bogdanove, A.J.; Bellincampi, D.; Zabotina, O.A. Arabidopsis and Brachypodium Distachyon Transgenic Plants Expressing Aspergillus Nidulans Acetylesterases Have Decreased Degree of Polysaccharide Acetylation and Increased Resistance to Pathogens. Plant Physiol. 2013, 162, 9–23. [Google Scholar] [CrossRef]
- Singh, P.; Kumari, A.; Khaladhar, V.C.; Singh, N.; Pathak, P.K.; Kumar, V.; Kumar, R.J.; Jain, P.; Thakur, J.K.; Fernie, A.R.; et al. Serine Hydroxymethyltransferase6 Is Involved in Growth and Resistance against Pathogens via Ethylene and Lignin Production in Arabidopsis. Plant J. 2024, 119, 1920–1936. [Google Scholar] [CrossRef]
- Woerlen, N.; Allam, G.; Popescu, A.; Corrigan, L.; Pautot, V.; Hepworth, S.R. Repression of BLADE-ON-PETIOLE Genes by KNOX Homeodomain Protein BREVIPEDICELLUS Is Essential for Differentiation of Secondary Xylem in Arabidopsis Root. Planta 2017, 245, 1079–1090. [Google Scholar] [CrossRef]
- Du, Q.; Avci, U.; Li, S.; Gallego-Giraldo, L.; Pattathil, S.; Qi, L.; Hahn, M.G.; Wang, H. Activation of miR165b Represses AtHB15 Expression and Induces Pith Secondary Wall Development in Arabidopsis. Plant J. 2015, 83, 388–400. [Google Scholar] [CrossRef]
- Mazur, E.; Kurczyńska, E.U.; Friml, J. Cellular Events during Interfascicular Cambium Ontogenesis in Inflorescence Stems of Arabidopsis. Protoplasma 2014, 251, 1125–1139. [Google Scholar] [CrossRef]
- Nylander, M.; Svensson, J.; Palva, E.T.; Welin, B.V. Stress-Induced Accumulation and Tissue-Specific Localization of Dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 2001, 45, 263–279. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Liu, B.; Wang, C.; Jin, L.; Zhao, Q.; Yuan, M. Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 Functions in Directional Cell Growth by Destabilizing Cortical Microtubules. Plant Cell 2007, 19, 877–889. [Google Scholar] [CrossRef]
- Basiri, E.; Jafari Marandi, S.; Arbabian, S.; Majd, A.; Malboobi, M.A. Development of Male and Female Gametophytes and Embryogenesis in the Arabidopsis thaliana. Biologia 2021, 76, 853–863. [Google Scholar] [CrossRef]
- Kihira, M.; Taniguchi, K.; Kaneko, C.; Ishii, Y.; Aoki, H.; Koyanagi, A.; Kusano, H.; Suzui, N.; Yin, Y.-G.; Kawachi, N.; et al. Arabidopsis thaliana FLO2 Is Involved in Efficiency of Photoassimilate Translocation, Which Is Associated with Leaf Growth and Aging, Yield of Seeds and Seed Quality. Plant Cell Physiol. 2017, 58, 440–450. [Google Scholar] [CrossRef]
- Kitahara, K.; Hibino, Y.; Aida, R.; Matsumoto, S. Ectopic Expression of the Rose AGAMOUS-like MADS-Box Genes ‘MASAKO C1 and D1’ Causes Similar Homeotic Transformation of Sepal and Petal in Arabidopsis and Sepal in Torenia. Plant Sci. 2004, 166, 1245–1252. [Google Scholar] [CrossRef]
- Warpeha, K.M.; Park, Y.-D.; Williamson, P.R. Susceptibility of Intact Germinating Arabidopsis thaliana to Human Fungal Pathogens Cryptococcus Neoformans and C. Gattii. Appl. Environ. Microbiol. 2013, 79, 2979–2988. [Google Scholar] [CrossRef]
- Alabdallah, O.; Ahou, A.; Mancuso, N.; Pompili, V.; Macone, A.; Pashkoulov, D.; Stano, P.; Cona, A.; Angelini, R.; Tavladoraki, P. The Arabidopsis Polyamine Oxidase/Dehydrogenase 5 Interferes with Cytokinin and Auxin Signaling Pathways to Control Xylem Differentiation. J. Exp. Bot. 2017, 68, 997–1012. [Google Scholar] [CrossRef]
- Spaninks, K.; Lamers, G.; Lieshout, J.V.; Offringa, R. Light Quality Regulates Apical and Primary Radial Growth of Arabidopsis thaliana and Solanum lycopersicum. Sci. Hortic. 2023, 317, 112082. [Google Scholar] [CrossRef]
- Sugimoto, H.; Tanaka, T.; Muramoto, N.; Kitagawa-Yogo, R.; Mitsukawa, N. Transcription Factor NTL9 Negatively Regulates Arabidopsis Vascular Cambium Development during Stem Secondary Growth. Plant Physiol. 2022, 190, 1731–1746. [Google Scholar] [CrossRef]
- Golisz-Mocydlarz, A.; Zakrzewska-Placzek, M.; Krzyszton, M.; Diachenko, N.; Piotrowska, J.; Kalbarczyk, W.; Mara-sek-Ciolakowska, A.; Kufel, J. The Arabidopsis deNADding Enzyme DXO1 Modulates the Plant Immunity Response. Plant Cell Environ. 2025. ahead of print. [Google Scholar] [CrossRef]
- Herrera-Ubaldo, H.; De Folter, S. Exploring Cell Wall Composition and Modifications During the Development of the Gynoecium Medial Domain in Arabidopsis. Front. Plant Sci. 2018, 9, 454. [Google Scholar] [CrossRef]
- Hossain, Z.; Amyot, L.; McGarvey, B.; Gruber, M.; Jung, J.; Hannoufa, A. The Translation Elongation Factor eEF-1Bβ1 Is Involved in Cell Wall Biosynthesis and Plant Development in Arabidopsis thaliana. PLoS ONE 2012, 7, e30425. [Google Scholar] [CrossRef]
- Kim, H.; Zhou, J.; Kumar, D.; Jang, G.; Ryu, K.H.; Sebastian, J.; Miyashima, S.; Helariutta, Y.; Lee, J.-Y. SHORTROOT-Mediated Intercellular Signals Coordinate Phloem Development in Arabidopsis Roots. Plant Cell 2020, 32, 1519–1535. [Google Scholar] [CrossRef]
- Sánchez, F.; Manrique, P.; Mansilla, C.; Lunello, P.; Wang, X.; Rodrigo, G.; López-González, S.; Jenner, C.; González-Melendi, P.; Elena, S.F.; et al. Viral Strain-Specific Differential Alterations in Arabidopsis Developmental Patterns. MPMI 2015, 28, 1304–1315. [Google Scholar] [CrossRef]
- Wang, Q.; Lei, S.; Yan, J.; Song, Y.; Qian, J.; Zheng, M.; Hsu, Y.-F. UBC6, a Ubiquitin-Conjugating Enzyme, Participates in Secondary Cell Wall Thickening in the Inflorescence Stem of Arabidopsis. Plant Physiol. Biochem. 2023, 205, 108152. [Google Scholar] [CrossRef]
- Aghajafari, M.; Behboodi, B.S.; Pirayesh, S. Study on the Morphology of Genus Arabidopsis in Iran. AJPS 2013, 04, 23–27. [Google Scholar] [CrossRef]
- Bai, M.; Gao, H.; Yang, Y.; Wu, H. Changes in the Content of Pollen Total Lipid and TAG in Arabidopsis thaliana DGAT1 Mutant As11. AoB PLANTS 2023, 15, plad012. [Google Scholar] [CrossRef]
- Chawla, M.; Verma, V.; Kapoor, M.; Kapoor, S. A Novel Application of Periodic Acid–Schiff (PAS) Staining and Fluorescence Imaging for Analysing Tapetum and Microspore Development. Histochem Cell Biol. 2017, 147, 103–110. [Google Scholar] [CrossRef]
- Li, Z.; Liu, S.-L.; Montes-Serey, C.; Walley, J.W.; Aung, K. PLASMODESMATA-LOCATED PROTEIN 6 Regulates Plasmodesmal Function in Arabidopsis Vasculature. Plant Cell 2024, 36, 3543–3561. [Google Scholar] [CrossRef]
- Paulraj, S.; Lopez-Villalobos, A.; Yeung, E.C. Shoot Apical Meristem Ontogeny in Arabidopsis Embryo Explants Treated with Abscisic Acid. Botany 2015, 93, 445–452. [Google Scholar] [CrossRef]
- Zell, M.B.; Fahnenstich, H.; Maier, A.; Saigo, M.; Voznesenskaya, E.V.; Edwards, G.E.; Andreo, C.; Schleifenbaum, F.; Zell, C.; Drincovich, M.F.; et al. Analysis of Arabidopsis with Highly Reduced Levels of Malate and Fumarate Sheds Light on the Role of These Organic Acids as Storage Carbon Molecules. Plant Physiol. 2010, 152, 1251–1262. [Google Scholar] [CrossRef]
- De Giorgi, J.; Piskurewicz, U.; Loubery, S.; Utz-Pugin, A.; Bailly, C.; Mène-Saffrané, L.; Lopez-Molina, L. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination. PLoS Genet. 2015, 11, e1005708. [Google Scholar] [CrossRef]
- Delude, C.; Fouillen, L.; Bhar, P.; Cardinal, M.-J.; Pascal, S.; Santos, P.; Kosma, D.K.; Joubès, J.; Rowland, O.; Domergue, F. Primary Fatty Alcohols Are Major Components of Suberized Root Tissues of Arabidopsis in the Form of Alkyl Hydroxycinnamates. Plant Physiol. 2016, 171, 1934–1950. [Google Scholar] [CrossRef]
- Efetova, M.; Zeier, J.; Riederer, M.; Lee, C.-W.; Stingl, N.; Mueller, M.; Hartung, W.; Hedrich, R.; Deeken, R. A Central Role of Abscisic Acid in Drought Stress Protection of Agrobacterium -Induced Tumors on Arabidopsis. Plant Physiol. 2007, 145, 853–862. [Google Scholar] [CrossRef]
- Franke, R.; Briesen, I.; Wojciechowski, T.; Faust, A.; Yephremov, A.; Nawrath, C.; Schreiber, L. Apoplastic Polyesters in Arabidopsis Surface Tissues–A Typical Suberin and a Particular Cutin. Phytochemistry 2005, 66, 2643–2658. [Google Scholar] [CrossRef]
- Li, Y.; Beisson, F.; Ohlrogge, J.; Pollard, M. Monoacylglycerols Are Components of Root Waxes and Can Be Produced in the Aerial Cuticle by Ectopic Expression of a Suberin-Associated Acyltransferase. Plant Physiol. 2007, 144, 1267–1277. [Google Scholar] [CrossRef]
- Niñoles, R.; Ruiz-Pastor, C.M.; Arjona-Mudarra, P.; Casañ, J.; Renard, J.; Bueso, E.; Mateos, R.; Serrano, R.; Gadea, J. Transcription Factor DOF4.1 Regulates Seed Longevity in Arabidopsis via Seed Permeability and Modulation of Seed Storage Protein Accumulation. Front. Plant Sci. 2022, 13, 915184. [Google Scholar] [CrossRef]
- Ranathunge, K.; Schreiber, L. Water and Solute Permeabilities of Arabidopsis Roots in Relation to the Amount and Composition of Aliphatic Suberin. J. Exp. Bot. 2011, 62, 1961–1974. [Google Scholar] [CrossRef]
- Sutka, M.; Li, G.; Boudet, J.; Boursiac, Y.; Doumas, P.; Maurel, C. Natural Variation of Root Hydraulics in Arabidopsis Grown in Normal and Salt-Stressed Conditions. Plant Physiol. 2011, 155, 1264–1276. [Google Scholar] [CrossRef]
- Ueda, H.; Mitsuhara, I.; Tabata, J.; Kugimiya, S.; Watanabe, T.; Suzuki, K.; Yoshida, S.; Kitamoto, H. Extracellular Esterases of Phylloplane Yeast Pseudozyma Antarctica Induce Defect on Cuticle Layer Structure and Water-Holding Ability of Plant Leaves. Appl. Microbiol. Biotechnol. 2015, 99, 6405–6415. [Google Scholar] [CrossRef]
- Wan, J.; Wang, R.; Zhang, P.; Sun, L.; Ju, Q.; Huang, H.; Lü, S.; Tran, L.-S.; Xu, J. MYB70 Modulates Seed Germination and Root System Development in Arabidopsis. iScience 2021, 24, 103228. [Google Scholar] [CrossRef]
- Carocho, M. Natural Secondary Metabolites: From Nature, Through Science, to Industry, 1st ed.; Springer: Cham, Switzerland, 2023; ISBN 978-3-031-18587-8. [Google Scholar]
- Makkar, H.P.S.; Siddhuraju, P.; Becker, K. Plant Secondary Metabolites; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2007; ISBN 978-1-59745-425-4. [Google Scholar]
- Mérillon, J.-M.; Ramawat, K.G. (Eds.) Plant Specialized Metabolites: Phytochemistry, Ecology and Biotechnology, 1st ed.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2025; ISBN 978-3-031-51158-5. [Google Scholar]
- Bolte, S.; Lanquar, V.; Soler, M.-N.; Beebo, A.; Satiat-Jeunemaître, B.; Bouhidel, K.; Thomine, S. Distinct Lytic Vacuolar Compartments Are Embedded Inside the Protein Storage Vacuole of Dry and Germinating Arabidopsis thaliana Seeds. Plant Cell Physiol. 2011, 52, 1142–1152. [Google Scholar] [CrossRef]
- Valle, L.D. (Ed.) Immunohistochemistry and Immunocytochemistry: Methods and Protocols, 1st ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2022; ISBN 978-1-0716-1948-3. [Google Scholar]
- Castillo-Olamendi, L.; Bravo-Garcìa, A.; Morán, J.; Rocha-Sosa, M.; Porta, H. AtMCP1b, a Chloroplast-Localised Metacaspase, Is Induced in Vascular Tissue after Wounding or Pathogen Infection. Funct. Plant Biol. 2007, 34, 1061. [Google Scholar] [CrossRef]
- Regmi, K.C.; Zhang, S.; Gaxiola, R.A. Apoplasmic Loading in the Rice Phloem Supported by the Presence of Sucrose Synthase and Plasma Membrane-Localized Proton Pyrophosphatase. Ann. Bot. 2015, 117, mcv174. [Google Scholar] [CrossRef]
- Kim, J.S.; Daniel, G. Immunolocalization of Hemicelluloses in Arabidopsis thaliana Stem. Part I: Temporal and Spatial Distribution of Xylans. Planta 2012, 236, 1275–1288. [Google Scholar] [CrossRef]
- Cromer, L.; Tiscareno-Andrade, M.; Lefranc, S.; Chambon, A.; Hurel, A.; Brogniez, M.; Guérin, J.; Le Masson, I.; Adam, G.; Charif, D.; et al. Rapid Meiotic Prophase Chromosome Movements in Arabidopsis thaliana Are Linked to Essential Reorganization at the Nuclear Envelope. Nat. Commun. 2024, 15, 5964. [Google Scholar] [CrossRef]
- Han, H.; Yan, A.; Li, L.; Zhu, Y.; Feng, B.; Liu, X.; Zhou, Y. A Signal Cascade Originated from Epidermis Defines Apical-Basal Patterning of Arabidopsis Shoot Apical Meristems. Nat. Commun. 2020, 11, 1214. [Google Scholar] [CrossRef] [PubMed]
- Parzych, W.; Godel-Jędrychowska, K.; Świdziński, M.; Niedojadło, J.; Kurczyńska, E.; Niedojadło, K. Bioimaging Insights into Structural Pathways of Cell-to-Cell Communication within the Male (MGU) and Female (FGU) Germ Units of Arabidopsis thaliana. Plant Cell Rep. 2025, 44, 56. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Li, R.; Chen, K.; Zheng, C.; Li, Z.; Wang, T.; Ma, C.; Li, B.; Wang, X.; Sun, F.; et al. Characterization of Arabidopsis thaliana Thylakoid Lumen 7.6 Protein Functions in Photosystem II Assembly. Commun. Biol. 2025, 8, 490. [Google Scholar] [CrossRef] [PubMed]
- Sahrawy, M.; Fernández-Trijueque, J.; Vargas, P.; Serrato, A.J. Comprehensive Expression Analyses of Plastidial Thioredoxins of Arabidopsis thaliana Indicate a Main Role of Thioredoxin M2 in Roots. Antioxidants 2022, 11, 1365. [Google Scholar] [CrossRef]
- Wang, L.; Tang, M.; Huang, W.; An, J.; Liu, X.; Gao, H. A Tissue-Chopping Based Immunofluorescence Staining Method for Chloroplast Proteins. Front. Plant Sci. 2022, 13, 910569. [Google Scholar] [CrossRef]
- Plant Physiology and Development, 7th ed.; Taiz, L., Møller, I.M., Murphy, A.S., Zeiger, E., Eds.; Oxford University Press: New York, NY, USA, 2022; ISBN 978-0-19-761422-8. [Google Scholar]
- Agrios, G. Fitopatología, 3rd ed.; Editorial Limusa: Ciudad de México, México, 1998. [Google Scholar]
- Bhaskar, T.; Pandey, A. (Eds.) Biomass, Biofuels, Biochemicals: Lignin Biorefinery; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 978-0-12-820294-4. [Google Scholar]
Technique | Chemical Nature | Animal Tissue Staining | Plant Tissue Staining | Applications |
---|---|---|---|---|
Hematoxylin-Eosin | H: Cationic/E: Anionic | H: Nuclei/E: Cytoplasm | H: Nuclei/E: Cytoplasm | General structural staining |
Safranin-Fast Green | S: Cationic/FG: Anionic | S: Nuclei/FG: Connective tissue | S: Lignified structures (sclerenchyma, xylem); FG: Non-lignified structures (parenchyma, phloem, collenchyma, epidermis) | Identification of lignified vs. non-lignified tissues |
Toluidine Blue | Cationic, Metachromasia | Nuclei—Connective tissue | Lignified structures (sclerenchyma, xylem); Non-lignified (parenchyma, phloem, collenchyma, epidermis) | Differentiation of cell wall composition |
PAS | Aldehyde group binding | Carbohydrates | Starch detection | Detection of polysaccharides |
Sudan | Liposoluble dye | Lipids—neutral fats | Suberin detection | Localization of lipids and suberin |
Step | Process/Solution | Time of Exposure |
---|---|---|
1 | Fixation | 72 h minimum |
2 | Ethanol 96° | 2 days |
3 | Ethanol 100° | 1 day |
4 | Ethanol 100°—Xylol (3:1) | 2 h |
5 | Ethanol 100°—Xylol (1:1) | 2 h |
6 | Ethanol 100°—Xylol (1:3) | 1 h |
7 | Pure Xylol | Overnight |
8 | Xylol—Paraffin (3:1) | 2 h |
9 | Xylol—Paraffin (1:1) | 2 h |
10 | Xylol—Paraffin (1:3) | 1 h |
11 | Pure Paraffin | Overnight |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdebenito, S.; Rubio, A.; Moller, A.; Santa Cruz, J.; Castillo, P.; Providell, M.L.; Cáceres, C.; Calbucheo, D.; Hernández, I.; Peñaloza, P. Histological and Immunolabeling Techniques in Arabidopsis thaliana: A Practical Guide and Standardization Roadmap. Agronomy 2025, 15, 2357. https://doi.org/10.3390/agronomy15102357
Valdebenito S, Rubio A, Moller A, Santa Cruz J, Castillo P, Providell ML, Cáceres C, Calbucheo D, Hernández I, Peñaloza P. Histological and Immunolabeling Techniques in Arabidopsis thaliana: A Practical Guide and Standardization Roadmap. Agronomy. 2025; 15(10):2357. https://doi.org/10.3390/agronomy15102357
Chicago/Turabian StyleValdebenito, Samuel, Alexis Rubio, Alejandra Moller, Javier Santa Cruz, Priscila Castillo, Mayra Lirayén Providell, Camila Cáceres, Diego Calbucheo, Ignacia Hernández, and Patricia Peñaloza. 2025. "Histological and Immunolabeling Techniques in Arabidopsis thaliana: A Practical Guide and Standardization Roadmap" Agronomy 15, no. 10: 2357. https://doi.org/10.3390/agronomy15102357
APA StyleValdebenito, S., Rubio, A., Moller, A., Santa Cruz, J., Castillo, P., Providell, M. L., Cáceres, C., Calbucheo, D., Hernández, I., & Peñaloza, P. (2025). Histological and Immunolabeling Techniques in Arabidopsis thaliana: A Practical Guide and Standardization Roadmap. Agronomy, 15(10), 2357. https://doi.org/10.3390/agronomy15102357