Irrigation Frequency Strategies and Deep Fertilization in Potato Crop
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Area
2.2. Treatments and Experimental Design
2.3. Potato Nutrition
2.4. Tuber Planting and Agronomic Practices
2.5. Irrigation Management
2.6. Water Consumption
2.7. Measured Variables
2.8. Data Analysis
3. Results
3.1. Soil Water Potential
3.2. Potato Water Demand
3.3. Plant Height, Cumulative NDVI, and Gas Exchange
3.4. Fresh Biomass and Leaf Area Index (LAI)
3.5. Marketable Yield, Average Tuber Weight, and Water Productivity
3.6. Root System
3.7. Tuber Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| B | Boron |
| Bd | Soil bulk density |
| Ca | Calcium |
| CO2 | Carbon dioxide |
| Cr | Capillary rise |
| Cwa | Humid temperate climate with dry winter and hot summer |
| DAP | Days after planting |
| DEA | Department of Agricultural Engineering |
| DF | Depth fertilization |
| Dp | Deep percolation |
| ETc | Crop evapotranspiration |
| ETo | Reference evapotranspiration |
| IE | Irrigation efficiency |
| gs | Stomatal conductance |
| ID | Irrigation depth |
| IF | Irrigation frequency |
| K | Potassium |
| K2O | Potassium |
| KCl | Potassium chloride |
| LAI | Leaf area index |
| Mg | Magnesium |
| N | Nitrogen |
| n | Van Genuchten water retention curve parameter |
| NDVI | Normalized difference vegetation index |
| OM | Organic matter |
| P | Phosphorus |
| P2O5 | Phosphorus |
| Pe | Effective precipitation |
| pH | Hydrogen potential |
| Pn | Net photosynthesis |
| PP | Pluvial precipitation |
| PWA | Percentage of wetted area |
| RH | Relative humidity |
| Ro | Surface runoff |
| S | Sulfur |
| SR | Solar radiation |
| T | Air temperature |
| UFV | Federal University of Vicosa |
| USA | United States of America |
| WC | Water consumption |
| WS | Wind speed |
| Zr | Effective rooting depth |
| α | Van Genuchten air entry pressure parameter |
| Δθ | Soil water depth variation |
| θa | Actual soil moisture |
| θFC | Field capacity |
| θPWP | Permanent wilting point |
| θr | Van Genuchten residual soil moisture |
| θs | Van Genuchten saturated soil moisture |
References
- Fara, S.J.; Delazari, F.T.; Gomes, R.S.; Araújo, W.L.; Silva, D.J.H. Stomata opening and productiveness response of fresh market tomato under different irrigation intervals. Sci. Hortic. 2019, 255, 86–95. [Google Scholar] [CrossRef]
- Oliveira, G.A.; Ribeiro, O.L.; Araújo, G.G.L.; Campos, F.S.; Tabosa, J.N.; Regitano Neto, A.; Silva, T.G.F.; Loures, D.R.S.; Gois, G.C. Pearl millet genotypes irrigated with brackish water under different levels of agricultural gypsum. Grasses 2025, 4, 13. [Google Scholar] [CrossRef]
- Abbas, F.; Siddique, T.; Fan, R.; Azeem, M. Role of gypsum in conserving soil moisture macronutrients uptake and improving wheat yield in the rainfed area. Water 2023, 15, 1011. [Google Scholar] [CrossRef]
- Pan, S.; Wen, X.; Wang, Z.; Ashraf, U.; Tian, H.; Duan, M.; Mo, Z.; Fan, P.; Tang, X. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Res. 2017, 203, 139–149. [Google Scholar] [CrossRef]
- Wu, M.; Li, G.; Li, W.; Liu, J.; Liu, M.; Jiang, C.; Li, Z. Nitrogen fertilizer deep placement for increased grain yield and nitrogen recovery efficiency in rice grown in subtropical China. Front. Plant Sci. 2017, 8, 1227. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, J.H.; Lin, X.; Chen, Z.Q. Effect of irrigation and fertilization on soybean growth and yield in different soil types. Mol. Soil Biol. 2024, 15, 216–226. [Google Scholar] [CrossRef]
- Querejeta, J.I.; Ren, W.; Prieto, I. Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, water-use efficiency and productivity. New Phytol. 2021, 230, 1378–1393. [Google Scholar] [CrossRef]
- Bauke, S.L.; Amelung, W.; Bol, R.; Brandt, L.; Brüggemann, N.; Kandeler, E.; Meyer, N.; Or, D.; Schnepf, A.; Schloter, M.; et al. Soil water status shapes nutrient cycling in agroecosystems from micrometer to landscape scales. J. Plant Nutr. Soil Sci. 2022, 185, 773–792. [Google Scholar] [CrossRef]
- Maire, H.; Mohsen, Z.; Pascal, B.; Mathias, H.; Maren, D. Root and rhizosphere traits for enhanced water and nutrients uptake efficiency in dynamic environments. Front. Plant Sci. 2024, 15, 1383373. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, M.; Tian, Y.; Zhao, M.; Zhang, B.; Zeng, K.; Zhao, M.; Yin, B. Urea deep placement in combination with Azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field. Field Crops Res. 2018, 218, 141–149. [Google Scholar] [CrossRef]
- Li, L.; Wu, T.; Li, Y.; Hu, X.; Wang, Z.; Liu, J.; Qin, W.; Ashraf, U. Deep fertilization improves rice productivity and reduces ammonia emissions from rice fields in China; a meta-analysis. Field Crops Res. 2022, 289, 108704. [Google Scholar] [CrossRef]
- Chen, G.; Cai, T.; Wang, J.; Wang, Y.; Ren, L.; Wu, P.; Zhang, P.; Jia, Z. Suitable fertilizer application depth enhances the efficient utilization of key resources and improves crop productivity in rainfed farmland on the Loess Plateau, China. Front. Plant Sci. 2022, 13, 900352. [Google Scholar] [CrossRef]
- Li, S.; Liu, Z.; Li, J.; Liu, Z.; Gu, X.; Shi, L. Cow manure compost promotes maize growth and ameliorates soil quality in saline-alkali soil: Role of fertilizer addition rate and application depth. Sustainability 2022, 14, 10088. [Google Scholar] [CrossRef]
- Wu, P.; Liu, F.; Chen, G.; Wang, J.; Huang, F.; Cai, T.; Zhang, P.; Jia, Z. Can deep fertilizer application enhance maize productivity by delaying leaf senescence and decreasing nitrate residue levels? Field Crops Res. 2022, 277, 108417. [Google Scholar] [CrossRef]
- Zhang, N.; Luo, H.; Li, H.; Bao, M.; Liu, E.; Shan, W.; Ren, X.; Jia, Z.; Siddique, K.H.M.; Zhang, P. Maximizing potato tuber yields and nitrogen use efficiency in semi-arid environments by precision fertilizer depth application. Eur. J. Agron. 2024, 156, 127147. [Google Scholar] [CrossRef]
- Ma, Q.; Rengel, Z.; Rose, T. The effectiveness of deep placement of fertilisers is determined by crop species and edaphic conditions in Mediterranean-type environments: A review. Soil Res. 2009, 47, 19–32. [Google Scholar] [CrossRef]
- Jia, X.; Wang, Y.; Zhang, Q.; Lin, S.; Zhang, Y.; Du, M.; Chen, M.; Ye, J.; Wu, Z.; Wang, H. Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality. Front. Plant Sci. 2023, 14, 1179960. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Z.; Li, J. Effects of phosphorus fertilizer type and dripline depth on root and soil nutrient distribution, nutrient uptake, and maize yield under subsurface drip fertigation. Field Crops Res. 2024, 318, 109585. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Islam, A.; Singh, U.; Sander, B.O. Effects of integrated plant nutrition systems with fertilizer deep placement on rice yields and nitrogen use efficiency under different irrigation regimes. Heliyon 2023, 9, e23110. [Google Scholar] [CrossRef]
- Susin, F.M.C.; Silvestre, W.P.; Cocco, C.; Dal Magro, T.; Pauletti, G.F.; Conte, E.D. Soil chemical parameters with the use of agricultural gypsum and effects on the apple tree crop. Int. J. Plant Biol. 2023, 14, 986–997. [Google Scholar] [CrossRef]
- Shruthi; Prakash, N.B.; Dhumgond, P.; Goiba, P.M.; Laxmanarayanan, M. The benefits of gypsum for sustainable management and utilization of acid soils. Plant Soil 2024, 504, 5–28. [Google Scholar] [CrossRef]
- Beling, R.R. Anuário Brasileiro de Horti & Fruti; Editora Gazeta Santa Cruz: Santa Cruz do Sul, Brazil, 2021; p. 104. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa Solos: Brasília, Brazil, 2018; p. 356. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo; Embrapa Solos: Brasília, Brazil, 2017; p. 574. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.C.; Guimarães, P.T.G.; Alvarez, V.H. Recomendações Para o uso de Corretivos e Fertilizantes em Minas Gerais; Comissão de Fertilidade do Solo do Estado de Minas Gerais: Viçosa, Brazil, 1999; p. 359. [Google Scholar]
- Fernandes, A.M.; Soratto, R.P.; Silva, B.L. Extração e exportação de nutrientes em cultivares de batata: I—macronutrientes. Rev. Bras. Cienc. Solo 2011, 35, 2039–2056. [Google Scholar] [CrossRef]
- Assunção, N.S.; Fernandes, A.M.; Soratto, R.P.; Mota, L.H.S.O.; Ribeiro, N.P.; Leonel, M. Tuber yield and quality of two potato cultivars in response to nitrogen fertilizer management. Potato Res. 2021, 64, 147–166. [Google Scholar] [CrossRef]
- Fontes, P.C.R.; Nick, C. Olericultura Teoria e Prática; Editora UFV: Viçosa, Brazil, 2019; p. 632. [Google Scholar]
- Nick, C.; Borém, A. Batata do Plantio a Colheita; Editora UFV: Viçosa, Brazil, 2017; p. 221. [Google Scholar]
- Van Genuchten, M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Souza, S.A.; Vieira, J.H.; Farias, D.B.S.; Silva, G.H.; Aleman, C.C. Impact of irrigation frequency and planting density on bean’s morpho-physiological and productive traits. Water 2020, 12, 2468. [Google Scholar] [CrossRef]
- Silva, G.H.; Cunha, F.F.; Morais, C.V.; Freitas, A.R.J.; Silva, D.J.H.; Souza, C.M. Mulching materials and wetted soil percentages on zucchini cultivation. Cienc. Agrotec. 2020, 44, 6720. [Google Scholar] [CrossRef]
- Keller, J.; Bliesner, R.D. Sprinkler and Trickle Irrigation; Avi Book: New York, NY, USA, 1990; p. 659. [Google Scholar]
- Bernardo, S.; Mantovani, E.C.; Silva, D.D.; Soares, A.A. Manual de Irrigação; Editora UFV: Viçosa, MG, Brazil, 2019; p. 545. [Google Scholar]
- Antunes, W.C.; Provart, N.J.; Williams, T.C.R.; Loureiro, M.E. Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity. Plant Cell Environ. 2012, 35, 747–759. [Google Scholar] [CrossRef]
- Ramírez, D.A.; Yactayo, W.; Rens, L.R.; Rolando, J.L.; Palacios, S.; Mendiburu, F.; Mares, V.; Barreda, C.; Loayza, H.; Monneveux, P.; et al. Defining biological thresholds associated to plant water status for monitoring water restriction effects: Stomatal conductance and photosynthesis recovery as key indicators in potato. Agric. Water Manag. 2016, 177, 369–378. [Google Scholar] [CrossRef]
- CEAGESP. Batata—Solanum tuberosum L.: Normas de Classificação; Companhia de Entrepostos e Armazéns Gerais de São Paulo: São Paulo, Brazil, 2015; p. 6. [Google Scholar]
- Gao, X.; Shaw, W.S.; Tenuta, M.; Gibson, D. Yield and nitrogen use of irrigated processing potato in response to placement, timing and source of nitrogen fertilizer in Manitoba. Am. J. Potato Res. 2018, 95, 513–525. [Google Scholar] [CrossRef]
- Ferreira, E.B.; Cavalcanti, P.P.; Nogueira, D.A. ExpDes.pt: Pacote Experimental Designs, 1.0 version; CRAN: São Paulo, Brazil, 2021. Available online: https://cran.r-project.org/web/packages/ExpDes.pt/index.html (accessed on 27 November 2024).
- R Development Core Team. R: A Language and Environment for Statistical Computing, 4.4.2 version; R Development Core Team: Vienna, Austria, 2024. Available online: www.r-project.org/ (accessed on 27 November 2024).
- Wang, F.X.; Kang, Y.; Liu, S.P.; Hou, X.Y. Effects of soil matric potential on potato growth under drip irrigation in the North China Plain. Agric. Water Manag. 2007, 88, 34–42. [Google Scholar] [CrossRef]
- Ali, S.; Hayat, K.; Iqbal, A.; Xie, L. Implications of abscisic acid in the drought stress tolerance of plants. Agronomy 2020, 10, 1323. [Google Scholar] [CrossRef]
- Mekonnen, L. Effects of irrigation interval on growth analysis of soybean [(Glycine max (L.) Merr.]. J. Nat. Sci. Res. 2018, 8, 15–17. [Google Scholar]
- Okasha, E.M.; El-Metwally, I.M.; Taha, N.M.; Darwesh, R.K. Impact of drip and gated pipe irrigation systems, irrigation intervals on yield, productivity of irrigation water and quality of two common bean (Phaseolus vulgaris L.) cultivars in heavy clay soil. Egypt. J. Chem. 2020, 63, 5103–5116. [Google Scholar] [CrossRef]
- Bossolani, J.W.; Crusciol, C.A.C.; Moretti, L.G.; Garcia, A.; Portugal, J.R.; Bernart, L.; Vilela, R.G.; Caires, E.F.; Amado, T.J.C.; Calonego, J.C.; et al. Improving soil fertility with lime and phosphogypsum enhances soybean yield and physiological characteristics. Agron. Sustain. Dev. 2022, 42, 26. [Google Scholar] [CrossRef]
- Miah, A.M.; Gaihre, Y.K.; Hunter, G.; Singh, U.; Hossain, S.A. Fertilizer deep placement increases rice production: Evidence from farmers’ fields in southern Bangladesh. Agron. J. 2016, 108, 805–812. [Google Scholar] [CrossRef]
- Niedziński, T.; Rutkowska, B.; Łabętowicz, J.; Szulc, W. Effect of deep placement fertilization on the distribution of biomass, nutrients, and root system development in potato plants. Plants 2023, 12, 1880. [Google Scholar] [CrossRef]
- Evangelista, R.M.; Nardin, I.; Fernandes, A.M.; Soratto, R.P. Qualidade nutricional e esverdeamento pós-colheita de tubérculos de cultivares de batata. Pesqui. Agropecu. Bras. 2011, 46, 953–960. [Google Scholar] [CrossRef]
- Silva, E.F.; Jadoski, S.O.; Martinkoski, L. Water depletion depth for irrigation of potato cultivar ágata. Eng. Agríc. 2019, 39, 34–43. [Google Scholar] [CrossRef]
- Amare, D.G.; Abebe, Z.K. Review on the effect of irrigation interval on different crop production. Int. J. Plant Soil Sci. 2020, 32, 1–13. [Google Scholar] [CrossRef]
- Zhang, G.; Shen, D.; Ming, B.; Xie, R.; Jin, X.; Liu, C.; Hou, P.; Xue, J.; Chen, J.; Zhang, W.; et al. Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China. Crop J. 2019, 7, 322–334. [Google Scholar] [CrossRef]




| Growing Season | 2020 | 2021 | ||
|---|---|---|---|---|
| Depth (cm) | 0–20 | 20–40 | 0–20 | 20–40 |
| pH in H2O | 5.60 | 5.60 | 5.30 | 4.90 |
| P (mg dm−3) | 25.9 | 10.5 | 14.9 | 5.3 |
| K (mg dm−3) | 100 | 38 | 118 | 47 |
| S (mg dm−3) | 3.3 | 10.1 | 3.2 | 9.8 |
| Ca (cmolc dm−3) | 2.77 | 2.01 | 2.50 | 1.51 |
| Mg (cmolc dm−3) | 0.85 | 0.44 | 0.83 | 0.37 |
| OM (dag kg−1) | 2.96 | 2.10 | 3.22 | 2.15 |
| B (mg dm−3) | 0.04 | 0.00 | 0.13 | 0.13 |
| Clay (dag kg−1) | 604 | 634 | 604 | 634 |
| Silt (dag kg−1) | 206 | 212 | 206 | 212 |
| Sand (dag kg−1) | 190 | 154 | 190 | 154 |
| Bd (g cm−3) | 1.10 | 1.16 | 1.15 | 1.20 |
| θFC (m3 m−3) | 0.40 | 0.45 | 0.40 | 0.45 |
| θPWP (m3 m−3) | 0.20 | 0.26 | 0.20 | 0.26 |
| Growing Season | Irrigation Frequency | ETo (mm) | ID (mm) | Pe (mm) | Δθ (mm) | ETc (mm) |
|---|---|---|---|---|---|---|
| 2020 | IF1 | 187.7 | 209.5 | 14.1 | 21.4 | 202.2 |
| IF4 | 187.7 | 201.2 | 14.1 | 13.3 | 202.0 | |
| IF7 | 187.7 | 180.4 | 14.1 | 20.6 | 173.9 | |
| IF10 | 187.7 | 164.0 | 14.1 | 12.7 | 165.4 | |
| 2021 | IF1 | 176.7 | 162.7 | 58.7 | 14.0 | 207.4 |
| IF4 | 176.7 | 152.6 | 58.7 | 11.2 | 200.1 | |
| IF7 | 176.7 | 140.1 | 58.7 | 10.6 | 188.2 | |
| IF10 | 176.7 | 131.6 | 58.7 | 8.9 | 181.4 |
| Treatments | Cumulative NDVI | Plant Height (cm) | Pn (µmol CO2 m−2 s−1) | gs (mol H2O m−2 s−1) | |||
|---|---|---|---|---|---|---|---|
| Growing season | 2020 | 2021 | 2020 | 2021 | 2020 | 2020 | |
| Irrigation frequency (IF) | IF1 | 35.0 ± 2.1 | 32.2 ± 1.1 | 48.1 ± 2.9 a | 43.1 ± 3.3 | 22.4 ± 1.9 ab | 0.43 ± 0.09 ab |
| IF4 | 35.8 ± 1.8 | 32.5 ± 2.3 | 48.1 ± 2.8 a | 43.7 ± 4.6 | 24.2 ± 2.1 a | 0.45 ± 0.07 a | |
| IF7 | 35.1 ± 2.0 | 32.4 ± 1.8 | 45.6 ± 3.8 ab | 42.4 ± 4.4 | 23.2 ± 1.2 a | 0.44 ± 0.05 a | |
| IF10 | 34.8 ± 2.8 | 31.2 ± 2.6 | 42.9 ± 3.6 b | 41.8 ± 2.7 | 20.7 ± 1.6 b | 0.36 ± 0.10 b | |
| Depth fertilization (DF) | DF10 | 35.0 ± 2.3 | 32.0 ± 2.1 | 46.1 ± 3.0 | 44.3 ± 3.7 a | 22.6 ± 2.2 | 0.43 ± 0.10 |
| DF20 | 35.4 ± 2.0 | 32.1 ± 2.0 | 46.2 ± 4.6 | 41.2 ± 3.2 b | 22.7 ± 2.1 | 0.41 ± 0.07 | |
| Significance test (p–values) | |||||||
| IF | 0.696 | 0.362 | 0.005 | 0.614 | 0.002 | 0.019 | |
| DF | 0.541 | 0.860 | 0.909 | 0.006 | 0.833 | 0.170 | |
| IF × DF | 0.256 | 0.368 | 0.320 | 0.236 | 0.995 | 0.638 | |
| Treatments | Fresh Biomass per Plant (g) | Leaf Area Index (m2 m−2) | |||
|---|---|---|---|---|---|
| Growing season | 2020 | 2021 | 2020 | 2021 | |
| Irrigation frequency (IF) | IF1 | 473 ± 175 | 558 ± 161 a | 2.10 ± 0.74 ab | 2.01 ± 0.63 |
| IF4 | 566 ± 69 | 476 ± 153 ab | 2.63 ± 0.38 a | 1.81 ± 0.55 | |
| IF7 | 466 ± 85 | 491 ± 78 ab | 2.22 ± 0.44 ab | 1.91 ± 0.48 | |
| IF10 | 382 ± 175 | 386 ± 52 b | 1.72 ± 0.79 b | 1.55 ± 0.12 | |
| Depth fertilization (DF) | DF10 | 461 ± 154 | 483 ± 145 | 2.15 ± 0.73 | 1.86 ± 0.52 |
| DF20 | 482 ± 140 | 473 ± 120 | 2.18 ± 0.63 | 1.78 ± 0.49 | |
| Significance test (p–values) | |||||
| IF | 0.067 | 0.041 | 0.036 | 0.209 | |
| DF | 0.648 | 0.804 | 0.873 | 0.619 | |
| IF × DF | 0.676 | 0.531 | 0.854 | 0.356 | |
| Treatments | Marketable Yield (Mg ha−1) | Average Tuber Weight (g) | Water Productivity (kg m−3) | ||||
|---|---|---|---|---|---|---|---|
| Growing season | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
| Irrigation frequency (IF) | IF1 | 33.6 ± 3.1 | 23.6 ± 6.1 | 127 ± 14 | 91 ± 7 | 16.6 ± 1.5 | 11.4 ± 3.0 b |
| IF4 | 33.6 ± 3.4 | 28.7 ± 6.8 | 124 ± 11 | 93 ± 16 | 16.6 ± 1.7 | 14.3 ± 3.4 ab | |
| IF7 | 29.7 ± 3.0 | 25.8 ± 8.7 | 123 ± 18 | 90 ± 15 | 17.1 ± 1.8 | 13.7 ± 4.6 ab | |
| IF10 | 29.6 ± 4.0 | 27.4 ± 7.4 | 116 ± 10 | 90 ± 11 | 17.9 ± 2.4 | 15.1 ± 4.1 a | |
| Depth fertilization (DF) | DF10 | 31.2 ± 3.1 | 26.7 ± 7.9 | 126 ± 14 | 92 ± 14 | 16.9 ± 1.7 | 13.8 ± 4.2 |
| DF20 | 32.0 ± 4.5 | 26.1 ± 6.9 | 119 ± 14 | 90 ± 11 | 17.2 ± 2.1 | 13.5 ± 3.7 | |
| Significance test (p–values) | |||||||
| IF | 0.078 | 0.154 | 0.228 | 0.924 | 0.618 | 0.022 | |
| DF | 0.597 | 0.703 | 0.060 | 0.662 | 0.636 | 0.699 | |
| IF × DF | 0.808 | 0.693 | 0.016 | 0.837 | 0.802 | 0.718 | |
| Treatments | 0–10 cm | 10–20 cm | 20–30 cm | 30–40 cm | |||||
|---|---|---|---|---|---|---|---|---|---|
| Growing season | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
| Irrigation frequency (IF) | IF1 | 0.24 ± 0.11 | 1.09 ± 0.14 | 0.08 ± 0.04 | 0.09 ± 0.02 | 0.10 ± 0.04 | 0.04 ± 0.02 | 0.12 ± 0.02 a | 0.06 ± 0.03 |
| IF4 | 0.30 ± 0.13 | 1.04 ± 0.12 | 0.07 ± 0.03 | 0.08 ± 0.03 | 0.08 ± 0.03 | 0.05 ± 0.02 | 0.08 ± 0.02 ab | 0.12 ± 0.11 | |
| IF7 | 0.21 ± 0.09 | 0.93 ± 0.12 | 0.07 ± 0.02 | 0.06 ± 0.02 | 0.07 ± 0.02 | 0.05 ± 0.02 | 0.09 ± 0.02 ab | 0.06 ± 0.05 | |
| IF10 | 0.20 ± 0.11 | 0.99 ± 0.09 | 0.06 ± 0.03 | 0.11 ± 0.04 | 0.06 ± 0.02 | 0.05 ± 0.03 | 0.07 ± 0.03 b | 0.10 ± 0.02 | |
| Depth fertilization (DF) | DF10 | 0.26 ± 0.10 | 0.97 ± 0.10 | 0.08 ± 0.03 | 0.08 ± 0.03 | 0.09 ± 0.03 a | 0.05 ± 0.02 | 0.09 ± 0.03 | 0.07 ± 0.05 |
| DF20 | 0.22 ± 0.12 | 1.05 ± 0.14 | 0.17 ± 0.03 | 0.06 ± 0.03 | 0.07 ± 0.02 b | 0.05 ± 0.03 | 0.09 ± 0.03 | 0.10 ± 0.10 | |
| Significance test (p–values) | |||||||||
| IF | 0.375 | 0.196 | 0.830 | 0.685 | 0.179 | 0.785 | 0.042 | 0.537 | |
| DF | 0.424 | 0.104 | 0.079 | 0.132 | 0.022 | 0.700 | 0.327 | 0.832 | |
| IF × DF | 0.285 | 0.989 | 0.475 | 0.497 | 0.300 | 0.838 | 0.825 | 0.462 | |
| Treatments | Specific Gravity | Dry Matter (%) | Soluble Solids (Brix) | ||||
|---|---|---|---|---|---|---|---|
| Growing season | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
| Irrigation frequency (IF) | IF1 | 1.090 ± 0.004 c | 1.069 ± 0.003 | 14.2 ± 1.5 b | 13.3 ± 1.4 b | 5.35 ± 0.31 b | 4.49 ± 0.21 |
| IF4 | 1.092 ± 0.002 bc | 1.074 ± 0.011 | 15.0 ± 1.6 ab | 14.2 ± 1.1 ab | 5.18 ± 0.14 b | 4.45 ± 0.33 | |
| IF7 | 1.097 ± 0.004 a | 1.073 ± 0.005 | 15.8 ± 1.4 ab | 14.2 ± 0.7 ab | 5.90 ± 0.71 a | 4.46 ± 0.28 | |
| IF10 | 1.096 ± 0.005 ab | 1.076 ± 0.003 | 16.7 ± 1.2 a | 15.3 ± 0.7 a | 5.53 ± 0.26 ab | 4.49 ± 0.39 | |
| Depth fertilization (DF) | DF10 | 1.094 ± 0.005 | 1.071 ± 0.004 | 15.6 ± 1.9 | 14.4 ± 1.4 | 5.39 ± 0.32 | 4.49 ± 0.35 |
| DF20 | 1.094 ± 0.005 | 1.074 ± 0.008 | 15.3 ± 1.4 | 14.0 ± 1.0 | 5.58 ± 0.59 | 4.51 ± 0.25 | |
| Significance test (p–values) | |||||||
| IF | <0.001 | 0.119 | 0.003 | 0.002 | 0.006 | 0.828 | |
| DF | 0.485 | 0.171 | 0.520 | 0.214 | 0.170 | 0.830 | |
| IF × DF | 0.815 | 0.744 | 0.152 | 0.661 | 0.535 | 0.104 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, G.H.d.; Pereira, A.R.; Vieira, J.H.; Freitas, E.M.d.; Cunha, F.F.d. Irrigation Frequency Strategies and Deep Fertilization in Potato Crop. Agronomy 2025, 15, 2351. https://doi.org/10.3390/agronomy15102351
Silva GHd, Pereira AR, Vieira JH, Freitas EMd, Cunha FFd. Irrigation Frequency Strategies and Deep Fertilization in Potato Crop. Agronomy. 2025; 15(10):2351. https://doi.org/10.3390/agronomy15102351
Chicago/Turabian StyleSilva, Gustavo Henrique da, Alécio Rodrigues Pereira, Joslanny Higino Vieira, Elis Marina de Freitas, and Fernando França da Cunha. 2025. "Irrigation Frequency Strategies and Deep Fertilization in Potato Crop" Agronomy 15, no. 10: 2351. https://doi.org/10.3390/agronomy15102351
APA StyleSilva, G. H. d., Pereira, A. R., Vieira, J. H., Freitas, E. M. d., & Cunha, F. F. d. (2025). Irrigation Frequency Strategies and Deep Fertilization in Potato Crop. Agronomy, 15(10), 2351. https://doi.org/10.3390/agronomy15102351

