Effects and Mechanisms of Granulated Compost on Soil Nitrogen Supply and Crop Uptake: Preliminary Evidence from a 15N Tracing Field Experiment in Tobacco
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Trial Site
2.2. Preparation of Test Material
2.2.1. Preparation of 15N-Labeled Compost
2.2.2. Preparation of Granular Compost
2.3. Experimental Design
2.4. Sample Collection and Processing
2.4.1. Soil Sampling
2.4.2. Plant Sampling
2.5. Measurements
2.5.1. Soil N Pools and N Content of Plants
2.5.2. Preparation of Samples to Measure δ15N
2.6. Calculation
2.7. Statistical Analyses
3. Results
3.1. Soil N Pools
3.2. Fertilizer-Derived N Among Soil N Pools
3.3. N in Tobacco Organs
3.4. Soil N and Fertilizer N in Tobacco Plants
3.5. Yield
4. Discussion
4.1. N Supply in the Soil-Fertilizer System with Granular Fertilizer Amendment
4.2. Nitrogen Release from Granular Fertilizer to Soil
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIT | Mineralization–Immobilization–Turnover |
TN | Total Nitrogen |
MBN | Microbial Biomass Nitrogen |
DON | Dissolved Organic Nitrogen |
HWON | Hot Water-soluble Organic Nitrogen |
HCl-N | Hydrochloric Acid-hydrolysable Nitrogen |
SSN | Stable Soil Nitrogen |
TOC | Total Organic Carbon |
TP | Total Phosphorus |
Olsen-P | Available Phosphorus |
AK | Available Potassium |
PEN | Promotion Efficiency of Nitrogen |
APE | Atom Percent Excess |
References
- Yu, Y.L.; Wang, Y.; Yang, B. Effects of organic fertilizer substitution strategies on nitrogen loss from crop production in Taihu Lake Basin: A case study of Jinting Town, Suzhou, China. Sustain. Horiz. 2025, 13, 100–132. [Google Scholar] [CrossRef]
- Vaziritabar, Y.; Frei, M.; Yan, F. Enhancing nitrogen use efficiency and plant productivity in long-term precrop/crop rotation and fertilization management. Field Crops Res. 2024, 306, 109–210. [Google Scholar] [CrossRef]
- Pei, Y.; Chen, X.W.; Niu, Z.H. Effects of nitrogen fertilizer substitution by cow manure on yield, net GHG emissions, carbon and nitrogen footprints in sweet maize farmland in the Pearl River Delta in China. J. Clean. Prod. 2023, 399, 136676. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, P.; Dong, S. Combined application of organic and inorganic fertilizers mitigates ammonia and nitrous oxide emissions in a maize field. Nutr. Cycl. Agroecosyst. 2020, 117, 13–27. [Google Scholar] [CrossRef]
- Fan, B.; Li, J.; Fenton, O. Higher maize yields and lower ammonia emissions by replacing synthetic nitrogen fertiliser with manure in the North China plain. Nutr. Cycl. Agroecosyst. 2022, 127, 1–13. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Wang, J. The quality and quantity of exogenous organic carbon input control microbial NO3− immobilization: A meta-analysis. Soil Biol. Biochem. 2017, 115, 357–363. [Google Scholar] [CrossRef]
- Sharifi, M.; Zebarth, B.J.; Miller, J.J. Soil nitrogen mineralization in a soil with long-term history of fresh and composted manure contaning straw or wood-chip bedding. Nutr. Cycl. Agroecosyst. 2014, 99, 63–78. [Google Scholar] [CrossRef]
- Shah, Z.; Ahmad, R.S.; Rahman, H.U. Soil microbial biomass and activities as influenced by green manure legumes and N fertilizer in rice–wheat system. Pak. J. Bot. 2010, 42, 2589–2598. [Google Scholar]
- Sabahi, H.; Veisi, H.; Soufizadeh, S. Effect of fertilization systems on soil microbial biomass and mineral nitrogen during Canola (Brassica napus L.) development stages. Commun. Soil Sci. Plant Anal. 2009, 41, 1665–1673. [Google Scholar] [CrossRef]
- Abdelrahman, H.M.; Olk, D.C.; Dinnes, D. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions. J. Soils Sediments 2016, 16, 2375–2384. [Google Scholar] [CrossRef]
- Nannipieri, P.; Eldor, P. The chemical and functional characterization of soil N and its biotic components. Soil Biol. Biochem. 2009, 41, 2357–2369. [Google Scholar] [CrossRef]
- Wu, Y.; Gan, M.; Huang, X. Fractions and mineralization potential of the sediment organic nitrogen in Daya Bay, South China Sea: Anthropogenic influence and ecological implications. Mar. Pollut. Bull. 2020, 160, 51–58. [Google Scholar] [CrossRef]
- Ding, S.; Li, C.; Ding, X. An exploration of manure derived N in soils using 15N after the application of biochar, straw and a mix of both. Sci. Total Environ. 2022, 804, 150239. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Pan, G.; Lavallee, J.M. Rethinking sources of nitrogen to cereal crops. Glob. Change Biol. 2020, 26, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, B.; Zhang, J. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biol. Biochem. 2015, 91, 222–231. [Google Scholar] [CrossRef]
- Webb, J.R.; Awale, R.; Quayle, W.C. Poultry litter increased irrigated cotton N uptake with limited improvement on 15N-labelled urea recovery over one season. Nutr. Cycl. Agroecosyst. 2023, 125, 137–152. [Google Scholar] [CrossRef]
- Smith, C.J.; Chalk, P.M. The residual value of fertiliser N in crop sequences: An appraisal of 60 years of research using 15N tracer. Field Crops Res. 2018, 217, 66–74. [Google Scholar] [CrossRef]
- Yang, X.; Li, G.; Jia, X. Net nitrogen mineralization delay due to microbial regulation following the addition of granular organic fertilizer. Geoderma 2020, 359, 113994. [Google Scholar] [CrossRef]
- Totsche, K.U.; Rennert, T.; Gerzabek, M.H. Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science. J. Plant Nutr. Soil Sci. 2010, 173, 88–99. [Google Scholar] [CrossRef]
- Uddin, M.K.; Yeasmin, S.; Mohiuddin, K.M. Peat-Based Organo-Mineral Fertilizer Improves Nitrogen Use Efficiency, Soil Quality, and Yield of Baby Corn (Zea mays L.). Sustainability 2023, 15, 9086. [Google Scholar] [CrossRef]
- Liang, Z.; Cao, B.; Jiao, Y. Effect of the combined addition of mineral nitrogen and crop residue on soil respiration, organic carbon sequestration, and exogenous nitrogen in stable organic matter. Appl. Soil Ecol. 2022, 171, 104324. [Google Scholar] [CrossRef]
- Li, C.; Ding, S.; Du, C. The Transformation Dynamics and Homogeneity of Different N Fractions in Compost following Glucose Addition. Agriculture 2021, 11, 971. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.; Liu, Y. Participation of urea-N absorbed on biochar granules among soil and tobacco plant (Nicotiana tabacum L.) and its potential environmental impact. Agric. Ecosyst. Environ. 2021, 313, 107371. [Google Scholar]
- Stevenson, F.J. Organic Forms of Soil Nitrogen; Wiley: Hoboken, NJ, USA, 1982. [Google Scholar]
- Stark, J.M.; Hart, S.C. Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci. Soc. Am. J. 1996, 60, 1846–1855. [Google Scholar] [CrossRef]
- Tong, B.; Hou, Y.; Wang, S. Partial substitution of urea fertilizers by manure increases crop yield and nitrogen use efficiency of a wheat–maize double cropping system. Nutr. Cycl. Agroecosyst. 2022, 127, 12–21. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Resch, M.C.; Schütz, M. Strengthened plant-microorganism interaction after topsoil removal cause more deterministic microbial assembly processes and increased soil nitrogen mineralization. Sci. Total Environ. 2024, 950, 175031. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Brüggemann, N. Sustaining crop productivity while reducing environmental nitrogen losses in the subtropical wheat–maize cropping systems: A comprehensive case study of nitrogen cycling and balance. Agric. Ecosyst. Environ. 2016, 231, 1–14. [Google Scholar] [CrossRef]
- Gai, X.; Liu, H.; Liu, J. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agric. Water Manag. 2018, 208, 384–392. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, L.; Li, Y. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fertil. Soils 2017, 53, 77–87. [Google Scholar] [CrossRef]
- Gardner, J.B.; Drinkwater, L.E. The fate of nitrogen in grain cropping systems: A meta-analysis of N-15 field experiments. Ecol. Appl. 2009, 19, 2167–2184. [Google Scholar] [CrossRef]
- Scheer, C.; Rütting, T. Use of 15N tracers to study nitrogen flows in agro-ecosystems: Transformation, losses and plant uptake. Nutr. Cycl. Agroecosyst. 2023, 125, 89–93. [Google Scholar] [CrossRef]
- Choi, W.J.; Lee, S.M.; Han, G.H. Available organic carbon controls nitrification and immobilization of ammonium in an acid loam-textured soil. J. Appl. Biol. Chem. 2006, 49, 28–32. [Google Scholar]
- Elmajdoub, B.; Marschner, P. Salinity reduces the ability of soil microbes to utilise cellulose. Biol. Fertil. Soils 2013, 49, 379–386. [Google Scholar] [CrossRef]
- Dessureault-Rompré, J.; Zebarth, B.J.; Burton, D.L. Are soil mineralizable nitrogen pools replenished during the growing season in agricultural soils? Soil Sci. Soc. Am. J. 2013, 77, 512–524. [Google Scholar] [CrossRef]
- Torbert, H.A.; Hoeft, R.G.; Vandenheuvel, R.M. Effect of moisture regime on recovery and utilization of fertilizer N applied to corn. Commun. Soil Sci. Plant Anal. 1992, 23, 1409–1426. [Google Scholar] [CrossRef]
- Wei, Q.; Zhao, H.; Zhou, K. Study on nitrogen accumulation of tobacco by using 15N trace technique in tobacco-rice rotation in yellow soil. Southwest China J. Agric. Sci. 2018, 31, 347–353. [Google Scholar]
- Yang, Y.C.; Tong, Z.H.; Geng, Y.Q. Bio-based polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water retention urea fertilizers. J. Agric. Food Chem. 2013, 61, 8166–8174. [Google Scholar] [CrossRef]
- Geng, J.B.; Ma, Q.; Zhang, M. Synchronized relationships between nitrogen release of controlled release nitrogen fertilizers and nitrogen requirements of cotton. Field Crops Res. 2015, 184, 9–16. [Google Scholar] [CrossRef]
- Liu, R.; Qin, H.; Wang, Q. Transcriptome analysis of nitrogen assimilation preferences in Burkholderia sp. M6-3 and Arthrobacter sp. M7-15. Front. Microiol. 2025, 16, 1559884. [Google Scholar] [CrossRef] [PubMed]
- Canarini, A.; Mariotte, P.; Ingram, L. Mineral-associated soil carbon is resistant to drought but sensitive to legumes and microbial biomass in an Australian grassland. Ecosystems 2018, 21, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhang, S.L.; Wu, Y.Y. Decoding soil carbon and nitrogen dynamics: The integrated role of biotic and abiotic drivers in subtropical forests. Catena 2025, 256, 109069. [Google Scholar] [CrossRef]
- Johnson, D.; Cheng, W.; Burke, I. Biotic and abiotic nitrogen retention in a variety of forest soils. Soil Sci. Soc. Am. J. 2000, 64, 1503–1514. [Google Scholar] [CrossRef]
- Moritsuka, N.; Yanai, J.; Mori, K. Biotic and abiotic processes of nitrogen immobilization in the soil-residue interface. Soil Biol. Biochem. 2004, 36, 1141–1148. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, Z.; Du, L. Effect of Deep Placement of Large Granular Fertilizer on Ammonia Volatilization, Soil Nitrogen Distribution and Rice Growth. Agronomy 2022, 12, 2066. [Google Scholar] [CrossRef]
Treatment | Upper-Leaf | Mid-Leaf | Lower-Leaf | Upper-Shoot | Mid-Shoot | Lower-Shoot | Root | |
---|---|---|---|---|---|---|---|---|
Yellowing of the lower leaf | CK | 30.7 ± 0.89 Aa (n) | 17.5 ± 0.51 Aa (n) | 13.5 ± 0.39 a (n) | 8.6 ± 0.25 Ac (n) | 8.4 ± 0.24 Ab (n) | 8.2 ± 0.23 Ac (n) | 12.0 ± 0.35 Ac (n) |
G2 | 6.2 ± 0.18 Bc (96.8) | 9.4 ± 0.27 Bc (96.6) | 8.8 ± 0.25 b (96.8) | 21.9 ± 0.63 Aa (96.8) | 22 ± 0.64 Aa (97.0) | 17.6 ± 0.51 Aa (97.5) | 24.1 ± 0.70 Aa (97.1) | |
G4 | 9.9 ± 0.29 Bb (97.7) | 14.3 ± 0.41 Bb (97.6) | 7.2 ± 0.20 c (99.0) | 17.3 ± 0.50 Ab (97.4) | 23.7 ± 0.68 Aa (97.3) | 12.3 ± 0.35 Ab (98.3) | 17.6 ± 0.51 Ab (97.7) | |
Yellowing of the upper leaf | CK | 18.4 ± 0.53 Ba (n) | 17.4 ± 0.52 Ab (n) | 13.5 ± 0.39 a (n) | 8.9 ± 0.26 Ab (n) | 4.7 ± 0.14 Bc (n) | 4.8 ± 0.14 Bb (n) | 10.1 ± 0.29 Ac (n) |
G2 | 14.4 ± 0.42 Ab (97.5) | 13.1 ± 0.38 Ac (97.8) | 8.8 ± 0.25 b (96.8) | 17.4 ± 0.50 Ba (97.7) | 20.6 ± 1.17 Aa (97.5) | 12.0 ± 0.35 Ba (96.5) | 20.2 ± 0.58 Ba (97.2) | |
G4 | 15.2 ± 0.44 Ab (96.7) | 20.2 ± 0.58 Aa (96.7) | 7.2 ± 0.20 c (99.0) | 8.3 ± 0.24 Bb (97.8) | 13.3 ± 0.38 Bb (97.0) | 3.9 ± 0.11 Bb (96.2) | 16.2 ± 0.47 Ab (96.5) |
Index | Position | Treatment | ||
---|---|---|---|---|
CK | G2 | G4 | ||
N input (kg ha−1) | 95 | 58 | 58 | |
Recovery of nitrogen (kg ha−1) | Upper leaf | 10.86 ± 1.34 ab | 12.83 ± 0.70 a | 9.86 ± 0.62 b |
Middle leaf | 9.74 ± 0.67 a | 7.42 ± 0.54 b | 9.22 ± 0.27 a | |
Lower leaf | 7.97 ± 1.02 a | 5.43 ± 0.33 b | 5.85 ± 0.43 b | |
Total for leaf | 28.57 ± 2.06 a | 25.67 ± 1.05 a | 24.93 ± 1.11 a | |
Shoot | 8.09 ± 1.15 b | 25.45 ± 1.81 a | 8.60 ± 0.77 b | |
Root | 6.67 ± 0.63 c | 12.13 ± 0.24 a | 8.63 ± 0.34 b | |
Total | 43.34 ± 3.47 b | 63.27 ± 2.19 a | 42.17 ± 1.97 b | |
Stimulatory effect (%) | Upper leaf | n | 38.67 | 29.28 |
Middle leaf | n | 44.10 | 29.03 | |
Lower leaf | n | 30.25 | 28.40 | |
The all leaves | n | 38.42 ± 2.82 a | 28.98 ± 1.26 b | |
Stem | n | 35.27 ± 1.00 a | 32.13 ± 0.45 b | |
Root | n | 34.51 | 27.18 | |
Total tobacco | n | 36.07 ± 0.40 a | 29.17 ± 0.17 b |
Month | Treatment | Upper-Leaf | Mid-Leaf | Lower-Leaf | Upper-Shoot | Mid-Shoot | Lower-Shoot | Root |
---|---|---|---|---|---|---|---|---|
Yellowing of the lower leaf | CK | 288.42 ± 25.86 b | 361.22 ± 44.90 c | 406.56 ± 63.90 a | 274.98 ± 22.35 c | 403.52 ± 65.08 b | 604.13 ± 84.50 b | 791.58 ± 115.89 b |
G2 | 336.20 ± 62.53 ab | 439.38 ± 40.38 bc | 333.24 ± 24.99 b | 346.21 ± 27.38 bc | 490.72 ± 44.64 ab | 719.32 ± 74.42 ab | 930.89 ± 46.10 a | |
G4 | 392.08 ± 33.96 a | 582.08 ± 35.21 a | 381.25 ± 35.21 a | 512.53 ± 33.20 a | 617.87 ± 31.62 a | 887.51 ± 31.99 a | 877.10 ± 69.48 ab | |
Yellowing of the upper leaf | CK | 629.54 ± 77.72 b | 596.86 ± 41.36 a | 406.56 ± 63.90 a | 369.09 ± 59.97 a | 493.79 ± 69.20 a | 630.14 ± 89.83 a | 705.44 ± 66.21 a |
G2 | 891.15 ± 48.38 a | 566.16 ± 41.02 a | 333.24 ± 24.99 a | 300.36 ± 13.44 a | 320.76 ± 47.55 b | 515.83 ± 23.12 bc | 600.72 ± 12.10 bc | |
G4 | 648.84 ± 48.60 b | 456.36 ± 16.06 b | 381.25 ± 35.21 a | 265.32 ± 38.33 a | 334.08 ± 41.50 ab | 502.35 ± 22.22 b | 532.89 ± 25.12 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Guo, F.; Wu, S.; Fu, X.; Zhao, X.; Li, G. Effects and Mechanisms of Granulated Compost on Soil Nitrogen Supply and Crop Uptake: Preliminary Evidence from a 15N Tracing Field Experiment in Tobacco. Agronomy 2025, 15, 2345. https://doi.org/10.3390/agronomy15102345
Wang C, Guo F, Wu S, Fu X, Zhao X, Li G. Effects and Mechanisms of Granulated Compost on Soil Nitrogen Supply and Crop Uptake: Preliminary Evidence from a 15N Tracing Field Experiment in Tobacco. Agronomy. 2025; 15(10):2345. https://doi.org/10.3390/agronomy15102345
Chicago/Turabian StyleWang, Chen, Fenglei Guo, Shuaipeng Wu, Xinjing Fu, Xiaorong Zhao, and Guitong Li. 2025. "Effects and Mechanisms of Granulated Compost on Soil Nitrogen Supply and Crop Uptake: Preliminary Evidence from a 15N Tracing Field Experiment in Tobacco" Agronomy 15, no. 10: 2345. https://doi.org/10.3390/agronomy15102345
APA StyleWang, C., Guo, F., Wu, S., Fu, X., Zhao, X., & Li, G. (2025). Effects and Mechanisms of Granulated Compost on Soil Nitrogen Supply and Crop Uptake: Preliminary Evidence from a 15N Tracing Field Experiment in Tobacco. Agronomy, 15(10), 2345. https://doi.org/10.3390/agronomy15102345