An Unsupervised and Supervised Machine Learning Approach to Evidence Tetranychus mexicanus (McGregor) Activity in Fluorescence and Thermal Response in Passion Fruit
Abstract
1. Introduction
2. Materials and Methods
2.1. Place of Experiment
2.2. Experimental Design and Experiment Conduction
2.3. Physiological Assessments
2.3.1. Gas Exchange
2.3.2. Leaf Chlorophyll Index and Chlorophyll “a” Fluorescence
2.4. Leaf Temperature
2.5. Survival Rate and Individual Reproduction
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araújo, D.L.; Souto, A.G.L.; Cavalcante, A.G.; Cavalcante, L.F.; Pereira, W.E.; Melo, A.S. Physiological aspects of yellow passion fruit with use of hydrogel and mulching. Rev. Caatinga 2022, 35, 382–392. [Google Scholar] [CrossRef]
- Antunes, L.F.S.; Vaz, A.F.S.; Martelleto, L.A.P.; Leal, M.A.A.; Alves, R.S.; Ferreira, T.S.; Rumjanek, N.G.; Correia, M.E.F.; Rosa, R.C.C.; Guerra, J.G.M. Sustainable organic substrate production using millicompost in combination with different plant residues for the cultivation of Passiflora edulis seedlings. Environ. Technol. Innov. 2022, 28, 102612. [Google Scholar] [CrossRef]
- Souza, G.L.; Nascimento, A.P.; Silva, J.D.A.; Bezerra, F.T.; da Silva, R.Í.; Cavalcante, L.F.; Mendonça, R. Growth of wild passion fruit (Passiflora foetida L.) rootstock under irrigation water salinity. Rev. Bras. Eng. Agríc. Ambient. 2023, 27, 114–120. [Google Scholar] [CrossRef]
- Gull, A.; Lone, A.A.; Wani, N.U.I. Abiotic and Biotic Stress in Plants. In Abiotic and Biotic Stress in Plants; IntechOpen: London, UK, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- Du, B.; Haensch, R.; Alfarraj, S.; Rennenberg, H. Strategies of plants to overcome abiotic and biotic stresses. Biol. Rev. 2024, 99, 1524–1536. [Google Scholar] [CrossRef]
- Mahmood, S.U.; Mao, Y.; Inzamam, U.L.; Fang, X. Eriophyid mites in fruit crops: Biology, ecology, molecular aspects, and innovative control strategies. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13781. [Google Scholar] [CrossRef]
- Shukla, A. Mites. In Polyphagous Pests of Crops; Springer: Singapore, 2021; pp. 409–455. [Google Scholar] [CrossRef]
- Neves, L.G.; Bruckner, C.H.; Picanço, M.C.; Araújo, K.L.; Luz, P.B.; Serafim, M.E. Selection of full and half brothers families of yellow passionfruit resistant to Tetranychus mexicanus. Semin. Ciênc. Agrár. 2015, 36, 2507–2514. [Google Scholar] [CrossRef]
- Barrancas, J.F.; Silva, N.M.; Vasconcelos, G.J.N. Biological parameters of Tetranychus mexicanus (McGregor) (Acari: Tetranychidae) in papaya and passion fruit. Pesqui. Agropecu. Trop. 2022, 52, e72154. [Google Scholar] [CrossRef]
- Golan, K.; Kot, I.; Górska-Drabik, E.; Jurado, I.G.; Kmieć, K.; Łagowska, B. Physiological response of basil plants to twospotted spider mite (Acari: Tetranychidae) infestation. J. Econ. Entomol. 2019, 112, 948–956. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.A.; Reis, P.R.; Zacarias, M.S.; Altoé, B.F.; Barbosa, J.P.R.A.D. Influência da infestação de Oligonychus ilicis (McGregor, 1917) (Acari: Tetranychidae) sobre a taxa de fotossíntese potencial de folhas de cafeeiro. Arq. Inst. Biol. 2009, 76, 205–210. [Google Scholar] [CrossRef]
- Akyazi, R.; Soysal, M. Effect of Tetranychus urticae and Polyphagotarsonemus latus (Acari: Tetranychidae, Tarsonemidae) at different infestation levels and feeding durations on chlorophyll content of bean plants. Plant Prot. Bulletin. 2024, 64, 5–13. [Google Scholar] [CrossRef]
- Garcia, A.; Talavera-Mateo, L.; Petrik, I.; Oklestkova, J.; Novak, O.; Santamaria, M.E. Spider mite infestation triggers coordinated hormonal trade-offs enabling plant survival with a fitness cost. Physiol. Plant. 2024, 176, e14479. [Google Scholar] [CrossRef] [PubMed]
- Palma, G.R.; Mello, R.F.; Godoy, W.A.; Engel, E.; Lau, D.; Markham, C.; Moral, R.A. Forecasting insect abundance using time series embedding and machine learning. Ecol. Inform. 2025, 85, 102934. [Google Scholar] [CrossRef]
- Mittal, M.; Gupta, V.; Aamash, M.; Upadhyay, T. Machine learning for pest detection and infestation prediction: A comprehensive review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2024, 14, e1551. [Google Scholar] [CrossRef]
- Tramboo, H.A.; Sherwani, A.; Ahmad, M.M.; Khan, A.A.; Malik, A.A.; Jaiswal, R.; Shah, M.A. Canopy stratification, seasonal dynamics, and machine learning-based forecasting of Tetranychus urticae Koch on cucumber under polyhouse conditions. J. Plant Dis. Prot. 2025, 132, 1–16. [Google Scholar] [CrossRef]
- Tongkaw, A.; Tongkaw, S. A comparative analysis of machine learning algorithms for allergy scale prediction. In Proceedings of the 2025 11th International Conference on Engineering, Applied Sciences, and Technology (ICEAST), Phuket, Thailand, 2–5 May 2025; IEEE: New York, NY, USA; pp. 69–72. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Freire, J.L.O.; Dias, T.J.; Cavalcante, L.F.; Fernandes, P.D.; Lima Neto, A.J. Quantum yield and gas exchange in yellow passion fruit under salinity water, biofertilization and mulch. Rev. Ciênc. Agron. 2014, 45, 82–91. [Google Scholar] [CrossRef]
- Jesie, R.S.; Premi, M.G. Improved Tunicate Swarm Optimization Based Hybrid Convolutional Neural Network for Classification of Leaf Diseases and Nutrient Deficiencies in Rice (Oryza). Agronomy 2024, 14, 1851. [Google Scholar] [CrossRef]
- R Core Team. R Language Definition; R Foundation for Statistical Computing: Vienna, Austria, 2024; Volume 3, p. 116. [Google Scholar]
- Więckowska, B.; Kubiak, K.B.; Jóźwiak, P.; Moryson, W.; Stawińska-Witoszyńska, B. Cohen’s kappa coefficient as a measure to assess classification improvement following the addition of a new marker to a regression model. Int. J. Environ. Res. Public Health 2022, 19, 10213. [Google Scholar] [CrossRef]
- Blumenthal, J.; Megherbi, D.B.; Lussier, R. Unsupervised machine learning via hidden Markov models for accurate clustering of plant stress levels based on imaged chlorophyll fluorescence profiles and their rate of change in time. Comput. Electron. Agric. 2020, 174, 105064. [Google Scholar] [CrossRef]
- Yang, R.; Qi, Y.; Zhang, H.; Wang, H.; Zhang, J.; Ma, X.; Ma, C. A study on the object-based high-resolution remote sensing image classification of crop planting structures in the Loess Plateau of eastern Gansu Province. Remote Sens. 2024, 16, 2479. [Google Scholar] [CrossRef]
- Moustaka, J.; Meyling, N.V.; Hauser, T.P. Root-associated entomopathogenic fungi modulate their host plant’s photosystem II photochemistry and response to herbivorous insects. Molecules 2021, 26, 207. [Google Scholar] [CrossRef]
- Goltsev, V.N.; Kalaji, H.M.; Paunov, M.; Bąba, W.; Horaczek, T.; Mojski, J.; Allakhverdiev, S.I. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ. J. Plant Physiol. 2016, 63, 869–893. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, H.; Jing, T.; Li, T.; Li, J.; Kong, L.; Zhu, F. Application of chlorophyll fluorescence analysis technique in studying the response of lettuce (Lactuca sativa L.) to cadmium stress. Sensors 2024, 24, 1501. [Google Scholar] [CrossRef] [PubMed]
- Pszczółkowski, P.; Sawicka, B.; Skiba, D.; Barbaś, P.; Noaema, A.H. The use of chlorophyll fluorescence as an indicator of predicting potato yield, its dry matter and starch in the conditions of using microbiological preparations. Appl. Sci. 2023, 13, 10764. [Google Scholar] [CrossRef]
- Silva, P.R.; Santos, C.E.M.; Silva, R.S.; Silva, É.M.; Lopes, M.C.; Paes, J.S.; Picanço, M.C. Assessing the resistance of passion fruit genotypes as control method to Tetranychus mexicanus. Crop Prot. 2022, 128, 104990. [Google Scholar] [CrossRef]
- Ruffatto, K.; Silva, L.C.O.; Neves, C.D.O.; Kuntzler, S.G.; Lima, J.C.; Almeida, F.A.; Sperotto, R.A. Unravelling soybean responses to early and late Tetranychus urticae (Acari: Tetranychidae) infestation. Plant Biol. 2024, 26, 1223–1239. [Google Scholar] [CrossRef]
- Hsu, M.H.; Chen, C.C.; Lin, K.H.; Huang, M.Y.; Yang, C.M.; Huang, W.D. Photosynthetic responses of Jatropha curcas to spider mite injury. Photosynthetica 2015, 53, 349–355. [Google Scholar] [CrossRef]
- Bueno, A.D.F.; Bueno, R.C.O.D.F.; Nabity, P.D.; Higley, L.G.; Fernandes, O.A. Photosynthetic response of soybean to twospotted spider mite (Acari: Tetranychidae) injury. Braz. Arch. Biol. Technol. 2009, 52, 825–834. [Google Scholar] [CrossRef]
- Caillon, R.; Suppo, C.; Casas, J.; Woods, H.A.; Pincebourde, S. Warming decreases thermal heterogeneity of leaf surfaces: Implications for behavioural thermoregulation by arthropods. Funct. Ecol. 2014, 28, 1449–1458. [Google Scholar] [CrossRef]
- Stavrinides, M.C.; Daane, K.M.; Lampinen, B.D.; Mills, N.J. Plant water stress, leaf temperature, and spider mite (Acari: Tetranychidae) outbreaks in California vineyards. Environ. Entomol. 2010, 39, 1232–1241. [Google Scholar] [CrossRef]
- Parmagnani, A.S.; Mannino, G.; Brillada, C.; Novero, M.; Dall’Osto, L.; Maffei, M.E. Biology of Two-Spotted Spider Mite (Tetranychus urticae): Ultrastructure, Photosynthesis, Guanine Transcriptomics, Carotenoids and Chlorophylls Metabolism, and Decoyinine as a Potential Acaricide. Int. J. Mol. Sci. 2023, 24, 1715. [Google Scholar] [CrossRef]
- Ferreira, L.Y.M.; Sousa, A.G.; Silva, J.L.; Santos, J.P.N.; Souza, D.G.N.; Orellana, L.C.B.; Santana, S.F.; Vasconcelos, L.B.C.M.; Oliveira, A.R.; Aguiar, E.R.G.R. Characterization of the Virome Associated with the Two-Spotted Spider Mite, Tetranychus urticae. Viruses 2024, 16, 1532. [Google Scholar] [CrossRef]
- Yamada, M.; Thiesen, L.V.; Iost Filho, F.H.; Yamamoto, P.T. Hyperspectral imaging and machine learning: A promising tool for the early detection of Tetranychus urticae Koch infestation in cotton. Agriculture 2024, 14, 1573. [Google Scholar] [CrossRef]
- Rioja, C.; Zhurov, V.; Bruinsma, K.; Grbic, M.; Grbic, V. Plant–herbivore interactions: A case of an extreme generalist, the two-spotted spider mite Tetranychus urticae. Mol. Plant Microbe Interact. 2017, 30, 935–945. [Google Scholar] [CrossRef]
- Acevedo, F.E.; Smith, P.; Peiffer, M.; Helms, A.; Tooker, J.; Felton, G.W. Phytohormones in Fall Armyworm Saliva Modulate Defense Responses in Plants. J. Chem. Ecol. 2019, 45, 598–609. [Google Scholar] [CrossRef]
- Rosa-Diaz, I.; Rowe, J.; Cayuela-Lopez, A.; Arbona, V.; Díaz, I.; Jones, A.M. Spider mite herbivory induces an ABA-driven stomatal defense. Plant Physiol. 2024, 195, 2970–2984. [Google Scholar] [CrossRef]
Source | R2 | F | p > F |
---|---|---|---|
Model | 0.8660 | 51.73 | 0.01 |
Residual effect | 0.1339 | ||
Total | 1.0000 |
Mite Variable | Accuracy | Kappa | Sensitivity | Specificity | Samples (No.) |
---|---|---|---|---|---|
Reproduction rate | 75.00% | 0.50 | 100.00% | 100.00% | 100 |
Total | 99.99% | 0.99 | 100.00% | 100.00% | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Cunha Lima, M.A.; Ferret, E.B.; da Costa, M.M.L.; da Silva, M.T.; da Silva, R.Í.L.; Monteiro, S.S.; de Albuquerque, M.B.; Malaquias, J.B. An Unsupervised and Supervised Machine Learning Approach to Evidence Tetranychus mexicanus (McGregor) Activity in Fluorescence and Thermal Response in Passion Fruit. Agronomy 2025, 15, 2297. https://doi.org/10.3390/agronomy15102297
da Cunha Lima MA, Ferret EB, da Costa MML, da Silva MT, da Silva RÍL, Monteiro SS, de Albuquerque MB, Malaquias JB. An Unsupervised and Supervised Machine Learning Approach to Evidence Tetranychus mexicanus (McGregor) Activity in Fluorescence and Thermal Response in Passion Fruit. Agronomy. 2025; 15(10):2297. https://doi.org/10.3390/agronomy15102297
Chicago/Turabian Styleda Cunha Lima, Maria Alaíne, Eleazar Botta Ferret, Magaly Morgana Lopes da Costa, Mariana Tamires da Silva, Roberto Ítalo Lima da Silva, Shirley Santos Monteiro, Manoel Bandeira de Albuquerque, and José Bruno Malaquias. 2025. "An Unsupervised and Supervised Machine Learning Approach to Evidence Tetranychus mexicanus (McGregor) Activity in Fluorescence and Thermal Response in Passion Fruit" Agronomy 15, no. 10: 2297. https://doi.org/10.3390/agronomy15102297
APA Styleda Cunha Lima, M. A., Ferret, E. B., da Costa, M. M. L., da Silva, M. T., da Silva, R. Í. L., Monteiro, S. S., de Albuquerque, M. B., & Malaquias, J. B. (2025). An Unsupervised and Supervised Machine Learning Approach to Evidence Tetranychus mexicanus (McGregor) Activity in Fluorescence and Thermal Response in Passion Fruit. Agronomy, 15(10), 2297. https://doi.org/10.3390/agronomy15102297