Insights into the Fate and Risk Identification of Cyantraniliprole and Lufenuron Based on Pak Choi (Brassica rapa L. subsp. chinensis)
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Field Trials and Sample Collection
2.3. Analytical Procedures
2.4. Dietary Risk Assessment
2.5. Data Analysis
3. Results and Discussion
3.1. Quality Assurance/Quality Control
3.2. Dissipation Characteristics of CYA and LUF in Pak Choi
3.3. Terminal Levels of CYA and LUF in Pak Choi
3.4. Dietary Risk Assessment of Pesticides in Pak Choi
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADI | Acceptable Daily Intake |
ANOVA | Analysis of Variance |
BBCH | Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie |
CAC | Codex Alimentarius Commission |
CYA | Cyantraniliprole |
DFOP | Double First-Order in Parallel |
ESI | Electrospray Ionization |
FAO | Food and Agriculture Organization |
GAP | Good Agricultural Practice |
HPLC | High-Performance Liquid Chromatography |
HR | Highest Residue |
JMPR | Joint FAO/WHO Meeting on Pesticide Residues |
LOQ | Limit of Quantitation |
LSD | Least Significant Difference |
LUF | Lufenuron |
ME | Matrix Effect |
MeCN | Acetonitrile |
MRL | Maximum Residue Limit |
MRM | Multiple Reaction Monitoring |
MS/MS | Tandem Mass Spectrometry |
NEDI | National Estimated Daily Intake |
OECD | Organisation for Economic Co-operation and Development |
PHI | Pre-Harvest Interval |
PSA | Primary Secondary Amine |
RQ | Risk Quotient |
RSD | Relative Standard Deviation |
SFO | Single First-Order |
STMR | Supervised Trial Median Residue |
UHPLC | Ultra-High Performance Liquid Chromatography |
WHO | World Health Organization |
References
- Liu, Z.; Qin, M.; Li, R.; Peijnenburg, W.J.G.M.; Yang, L.; Liu, P.; Shi, Q. Transport Dynamics and Physiological Responses of Polystyrene Nanoplastics in Pakchoi: Implications for Food Safety and Environmental Health. J. Agric. Food Chem. 2025, 73, 10923–10933. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Ke, F.; You, S.; Wu, Z.; Liu, Q.; He, W.; Baxter, S.W.; Yuchi, Z.; Vasseur, L.; Gurr, G.M.; et al. Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore. Nat. Commun. 2020, 11, 2321. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Shao, X.; Lin, H.; Hu, J. Dissipation, residues and risk assessment of metaldehyde and niclosamide ethanolamine in pakchoi after field application. Food Chem. 2017, 229, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Qi, P.; Wang, X.; Wang, Z.; Sun, Y.; Wang, L.; Xu, X.; Xu, H.; Wang, Q.; Wang, X.; et al. Stereoselective Analysis and Degradation of Pyrisoxazole in Cabbage, Pakchoi, and Pepper by Liquid Chromatography Tandem Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 8295–8301. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Si, Z.; Zhao, X.; Yan, H.; Xu, B.; Chen, Y.; Cui, L. Deposition, dissipation, metabolism, and dietary risk assessment of chlorothalonil on pakchoi. J. Food Compos. Anal. 2024, 134, 106521. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Liu, H.; Wang, Z.; Qi, P.; Zhao, H.; Liu, Z.; Gu, C.; Di, S. Study on the Enantioselective Separation, Dissipation, and Residue of Chiral Fenpropathrin in Vegetables by Supercritical Fluid Chromatography-Tandem Mass Spectrometry (SFC-MS/MS). J. Agric. Food Chem. 2024, 72, 27106–27114. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Zhao, H.; Liu, Z.; Qi, P.; Wang, Z.; Gu, C.; Di, S. SFC-MS/MS enantioseparation, stereoselective behavior and risk assessment of the chiral pesticide bitertanol in four vegetables and soil. Food Chem. 2025, 481, 143943. [Google Scholar] [CrossRef]
- Resende, M.T.C.S.d.; Souza, D.d.S.; Carneiro, L.S.; Motta, J.V.d.O.; Silva, L.L.d.; Serrão, J.E. Pathogen-pesticide-host interaction: Apoptosis modulation by Nosema ceranae increases honeybee susceptibility to the insecticide cyantraniliprole. J. Hazard. Mater. 2025, 495, 139064. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, S.; Li, M.; Wang, Y.; Shi, X.; Liang, P.; Yin, M.; Shen, J.; Gao, X. Nanodelivery System Alters an Insect Growth Regulator’s Action Mode: From Oral Feeding to Topical Application. ACS Appl. Mater. Interfaces 2022, 14, 35105–35113. [Google Scholar] [CrossRef]
- Qiao, Z.; Zhang, F.; Yao, X.; Yu, H.; Sun, S.; Li, X.; Zhang, J.; Jiang, X. Growth, DNA damage and biochemical toxicity of cyantraniliprole in earthworms (Eisenia fetida). Chemosphere 2019, 236, 124328. [Google Scholar] [CrossRef]
- Meng, Z.; Cui, J.; Liu, L.; Yang, C.; Bao, X.; Wang, J.; Chen, X. Toxicity effects of chlorantraniliprole in zebrafish (Danio rerio) involving in liver function and metabolic phenotype. Pestic. Biochem. Physiol. 2022, 187, 105194. [Google Scholar] [CrossRef]
- Ferreira de Menezes, A.C.; Luiz, K.G.; Velho, J.B.; Quadreli, D.H.; Regina da Costa, I.; Bomfim, L.P.; Stacy dos Santos Silva, M.; Ferreira, S.F.; Goulart de Andrade, F.; Ceccatto Gerardin, D.C.; et al. Oral administration of cyantraniliprole to wistar rats during pregnancy and lactation alters maternal behavior and harms the female reproductive system of pubertal and adult offspring. Food Chem. Toxicol. 2025, 197, 115272. [Google Scholar] [CrossRef]
- Saeed, S.; Afzal, G.; Ali, H.M.; Hussain, R.; Jabeen, R.; Kiran, S.; Iqbal, R.; Alam, S.; Jalal, A.; Nisa, Z.u.; et al. Patho-physiological effects of environmental relevant concentrations of lufenuron in male Japanese quails. Environ. Res. 2025, 274, 121203. [Google Scholar] [CrossRef]
- Basal, W.T.; Ahmed, A.R.T.; Mahmoud, A.A.; Omar, A.R. Lufenuron induces reproductive toxicity and genotoxic effects in pregnant albino rats and their fetuses. Sci. Rep. 2020, 10, 19544. [Google Scholar] [CrossRef]
- Jankowska, M.; Kaczyński, P.; Hrynko, I.; Rutkowska, E.; Iwaniuk, P.; Ilyasova, G.; Łozowicka, B. Dietary risk assessment of children and adults consuming fruit and vegetables with multiple pesticide residues. Chemosphere 2024, 369, 143858. [Google Scholar] [CrossRef]
- Su, Y.; Lu, J.; Liu, J.; Li, F.; Wang, N.; Lei, H.; Shen, X. Optimization of a QuEChERS–LC–MS/MS method for 51 pesticide residues followed by determination of the residue levels and dietary intake risk assessment in foodstuffs. Food Chem. 2024, 434, 137467. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Ren, X.; Zheng, L.; Wang, X.; Liu, T. A systematic analysis of residue and risk of cyantraniliprole in the water-sediment system: Does metabolism reduce its environmental risk? Environ. Int. 2023, 179, 108185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fang, N.; Li, Y.; Wang, X.; He, H.; Jiang, J.; Tang, T.; Xu, Z.; Zhao, X.; Li, Y. Uptake, translocation and distribution of cyantraniliprole in rice planting system. J. Hazard. Mater. 2022, 436, 129125. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, W.; Zhang, T.; Liang, G.; Hu, B.; Han, P.; Gong, W. Assessing transfer of pesticide residues from chrysanthemum flowers into tea solution and associated health risks. Ecotoxicol. Environ. Saf. 2020, 187, 109859. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, L.; Zhang, C.; Zhang, H.; Lian, K. Determination of 12 insect growth regulator residues in foods of different matrixes by modified QuEChERS and UPLC-MS/MS. RSC Adv. 2021, 11, 12162–12171. [Google Scholar] [CrossRef] [PubMed]
- Malhat, F.; Almaz, M.; Arief, M.; El-Din, K.; Fathy, M. Residue and Dissipation Dynamics of Lufenuron in Tomato Fruit Using QuEChERS Methodology. Bull. Environ. Contam. Toxicol. 2012, 89, 1037–1039. [Google Scholar] [CrossRef] [PubMed]
- Poornima, G.; Harischandra Naik, R.; Pallavi, M.S.; Saraswati, M.; Ratnamma, P.; Shwetha, A.; Paramasivam, M.; Bheemanna, M.; Udaykunar Nidoni, R. Determination of cyantraniliprole in green and red chilli fruits and Indian soil using LC-MS/MS and its dietary risk assessment. J. Food Compos. Anal. 2025, 141, 107294. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, X.; Zhao, H.; Wu, M.; He, H.; Zhang, C.; Tang, T.; Ping, L.; Li, Z. Residues of cyantraniliprole and its metabolite J9Z38 in rice field ecosystem. Chemosphere 2013, 93, 190–195. [Google Scholar] [CrossRef]
- OECD. Test No. 509: Crop Field Trial. 2021. Available online: https://www.oecd-ilibrary.org/environment/test-no-509-crop-field-trial_9789264076457-en (accessed on 16 September 2025).
- Fan, Z.; Liu, F.; Ren, X.; Cheng, Y.; Wu, M.; Zhang, H.; Zhao, L.; Chen, Z. Large-scale fate tendency of lufenuron during cabbage cultivation: New insights into dietary risk and models comparison. Ecotoxicol. Environ. Saf. 2025, 303, 118824. [Google Scholar] [CrossRef] [PubMed]
- JMPR. CYANTRANILIPROLE. 2015. Available online: https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation13/Cyantraniliprole.pdf (accessed on 16 September 2025).
- JMPR. LUFENURON. 2015. Available online: https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation2015/LUFENURON__286_.pdf (accessed on 16 September 2025).
- Tong, L.; Li, L.; Suzhen, L.; Xin, R.; Manni, W.; Fengjiao, L.; Youpu, C.; Zenglong, C. Integrating processing factors and large-scale cabbage cultivation to understand the fate tendency and health risks of tolfenpyrad using deterministic and probabilistic models. J. Hazard. Mater. 2025, 486, 137131. [Google Scholar] [CrossRef]
- Wei, D.; Wu, X.; Ji, M.; Xu, J.; Dong, F.; Liu, X.; Zheng, Y. Carboxin and its major metabolites residues in peanuts: Levels, dietary intake and chronic intake risk assessment. Food Chem. 2019, 275, 169–175. [Google Scholar] [CrossRef]
- Cui, K.; Fang, L.; Ding, R.; Ni, R.; Liang, J.; Li, T.; Wang, J.; Liu, J.; Guan, S.; Dong, Z.; et al. Dissipation and metabolism of fluxapyroxad, oxathiapiprolin and penthiopyrad in grapes: A comprehensive risk assessment from field to raisins. Food Chem. 2025, 485, 144510. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, Y.; Dong, F.; Wu, X.; Pan, X.; Xu, J. Insight into abiotic and biotic transformations of fenaminstrobin in water and soil: Kinetics, transformation mechanism and ecotoxicity. J. Hazard. Mater. 2025, 493, 138324. [Google Scholar] [CrossRef]
- EURL. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. 2024. Available online: https://eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727 (accessed on 16 September 2025).
- Wang, X.; Chen, L.; Ren, X.; Kang, S.; Zhao, L.; Zhang, H.; Li, X.; Chen, Z. Fate characteristics and risk quantification of cyflumetofen from tomato cultivation to processing based on large–scale applications. J. Hazard. Mater. 2024, 465, 133496. [Google Scholar] [CrossRef]
- Maldonado-Reina, A.J.; López-Ruiz, R.; Marín Sáez, J.; Romero-González, R.; Garrido Frenich, A. Tracing the dissipation of difenoconazole, its metabolites and co-formulants in tomato: A comprehensive analysis by chromatography coupled to high resolution mass spectrometry in laboratory and greenhouse trials. Environ. Pollut. 2024, 349, 123924. [Google Scholar] [CrossRef]
- Tang, T.; Ji, C.; Xu, Z.; Zhang, C.; Zhao, M.; Zhao, X.; Wang, Q. Degradation Kinetics and Transformation Products of Levonorgestrel and Quinestrol in Soils. J. Agric. Food Chem. 2019, 67, 4160–4169. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Liu, L.; Liu, J.; Luo, Y.; Fu, S.; Lu, P.; Hu, D.; Zhang, Y. A comprehensive assessment of the dimethachlon and its metabolites: Field degradation, processing factors and toxicity. J. Food Compos. Anal. 2025, 146, 107969. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Ren, X.; Li, W.; Chen, L.; Zhao, L. Fate and occurrence of indoxacarb during radish cultivation for multi-risk assessment. Ecotoxicol. Environ. Saf. 2023, 259, 115065. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, C.; Zhu, Y.; Wu, M.; Cai, X.; Ping, L.; Li, Z. Determination of Residues of Cyantraniliprole and Its Metabolite J9Z38 in Watermelon and Soil Using Ultra-Performance Liquid Chromatography/Mass Spectrometry. J. AOAC Int. 2013, 96, 1448–1452. [Google Scholar] [CrossRef]
- Žunić, A.; Vuković, S.; Lazić, S.; Šunjka, D.; Bošković, D. The efficacy of novel diamide insecticides in Grapholita molesta suppression and their residues in peach fruits. Plant Prot. Sci. 2020, 56, 46–51. [Google Scholar] [CrossRef]
- Malhat, F.; Kasiotis, K.M.; Shalaby, S. Magnitude of cyantraniliprole residues in tomato following open field application: Pre-harvest interval determination and risk assessment. Environ. Monit. Assess. 2018, 190, 116. [Google Scholar] [CrossRef]
- Lee, J.; Jung, M.W.; Lee, J.; Lee, J.; Shin, Y.; Kim, J.-H. Dissipation of the Insecticide Cyantraniliprole and Its Metabolite IN-J9Z38 in Proso Millet during Cultivation. Sci. Rep. 2019, 9, 11648. [Google Scholar] [CrossRef]
- Dong, B.; Zhao, Q.; Hu, J. Dissipation kinetics of emamectin benzoate and lufenuron residues in cabbage grown under field conditions. Environ. Monit. Assess. 2015, 187, 765. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, W.; Deng, P.; Luo, X.; Xiong, Z.; Li, Z.; Ning, Y.; Liu, Y.; Chen, A. Dissipation, residues and risk assessment of lufenuron during kumquat growing and processing. J. Food Compos. Anal. 2022, 112, 104643. [Google Scholar] [CrossRef]
- Fang, Y.-f.; Huang, Y.-p.; Liu, D.-f.; Huang, Y.; Guo, W.; David, J. Photocatalytic degradation of the dye sulforhodamine-B: A comparative study of different light sources. J. Environ. Sci. 2007, 19, 97–102. [Google Scholar] [CrossRef]
- Lan, T.; Yang, G.; Li, J.; Chi, D.; Zhang, K. Residue, dissipation and dietary intake risk assessment of tolfenpyrad in four leafy green vegetables under greenhouse conditions. Food Chem. X 2022, 13, 100241. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Li, L.; Ren, X.; Zhang, M.; Li, W.; Chen, Z. Occurrence and fate characteristics of isoproturon from garlic cultivation to household processing: Implication for human exposure. J. Hazard. Mater. 2023, 448, 130936. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, S.; Zhang, W.; Cheng, Y.; Liu, Z.; Zhang, N.; Xu, J.; Wu, X.; Dong, F.; Zheng, Y.; et al. Sensitive and portable intelligent detection platform construction and dietary risk assessment of procymidone in Chinese leek, cowpea and celery. Food Chem. 2025, 465, 142081. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, W.; Zha, C.; Wang, Z.; Yu, J.; Wu, L.; Zhang, X.; Luo, F.; Chen, Z.; Zhou, L. Occurrence, fate and dietary risk assessment of pesticides in chrysanthemum from garden to cup. J. Hazard. Mater. 2025, 493, 138363. [Google Scholar] [CrossRef]
- Wei, L.; Wang, K.; Liang, X.; Shi, Y.; Pan, X.; Wu, X.; Xu, J.; Dong, F.; Zheng, Y. Occurrence and risk assessment of mycotoxins and their modified forms in maize from typical planting regions of China. Food Chem. 2025, 483, 144253. [Google Scholar] [CrossRef]
Cultivation Condition | Trial Sites | Growth Stages (BBCH) | Climate Factors | ||
---|---|---|---|---|---|
Climate Type | A.T. a (°C) | A.R. b (mm) | |||
Greenhouse | Trial #1 Liaoning | 15 | Temperate continental climate | 6~8 | 500~700 |
Trial #2 Shanxi | 46 | Warm temperate subhumid continental monsoon climate | 9.8 | 418~483 | |
Trial #3 Beijing | 45 | Continental monsoon climate | 11.6 | 602.5 | |
Trial #4 Shandong | 43 | Temperate monsoon climate | 12.8 | 500 | |
Trial #5 Anhui | 15 | Subtropical Monsoon Climate and Temperate Monsoon Climate | 15.7 | 800~930 | |
Open–field | Trial #6 Zhejiang | 33 | Subtropical monsoon humid climate | 15.3~16.2 | 1150~1550 |
Trial #7 Hunan | 41 | Subtropical monsoon humid climate | 17 | 1400 | |
Trial #8 Guizhou | 19 | Subtropical monsoon humid climate | 16.9 | 1157.6 | |
Trial #9 Yunnan | 34 | Alpine climate | 15.2 | 1236.9 | |
Trial #10 Guangdong | 45 | Subtropical monsoon humid climate | 22 | 1681.2 |
Compounds | Matrix | Regression Equation | R2 | ME (%) | Average Recovery, % (RSD, %) | ||
---|---|---|---|---|---|---|---|
0.04 mg/kg | 0.1 mg/kg | 1 mg/kg | |||||
CYA | acetonitrile | Y = 30,305.0 X + 725.82 | 0.9988 | - | - | - | - |
pak choi | Y = 32,873.5 X + 455.629 | 0.9956 | 8.5% | 80 ± 2.2 | 90 ± 4.7 | 100 ± 1.7 | |
LUF | acetonitrile | Y = 34,541.3 X + 259.292 | 0.9923 | - | - | - | - |
pak choi | Y = 35,303.8 X + 282.159 | 0.9906 | 2.2% | 97 ± 4.4 | 86 ± 4.5 | 94 ± 3.8 |
Dissipation Patterns | Parameters | #10 | #4 | #7 | #6 | ||||
---|---|---|---|---|---|---|---|---|---|
LUF | CYA | LUF | CYA | LUF | CYA | LUF | CYA | ||
SFO | DT50 (d) | 2.02 | 3.26 | 2.59 | 3.04 | 4.35 | 5.3 | 5.13 | 5.41 |
R2 | 0.9961 | 0.9631 | 0.9971 | 0.9992 | 0.9873 | 0.9883 | 0.9680 | 0.9636 | |
χ2 error (%) | 8.09 | 15.6 | 5.13 | 2.49 | 6.75 | 5.34 | 10.3 | 10.4 | |
DFOP | DT50 (d) | 1.7 | 3.26 | 2.54 | 2.93 | 4 | 4.85 | 5.13 | 5.41 |
R2 | 0.9999 | 0.9631 | 0.9972 | 0.9997 | 0.9911 | 0.9933 | 0.9678 | 0.9636 | |
χ2 error (%) | 1.09 | 22.3 | 7.1 | 1.85 | 7.9 | 5.66 | 14.7 | 14.8 | |
7-day dissipation rate | 90.0 | 88.2 | 87.5 | 80.9 | 73.2 | 63.5 | 54.5 | 50.8 | |
14-day dissipation rate | 92.6 | 93.4 | 95.2 | 89.1 | 87.0 | 82.7 | 92.7 | 91.5 |
Compounds | STMR (mg/kg) | HR (mg/kg) |
---|---|---|
CYA | 0.18 | 0.29 |
LUF | 0.16 | 0.25 |
Compouds | Registered Crops | Crop Classification | China | CAC | USA | Australia | South Korea | Europe | Japan |
---|---|---|---|---|---|---|---|---|---|
CYA | Rice | Rice and rice products | 0.2 * | 0.01 | 0.02 | -- | 0.05 | 0.01 | 0.05 |
Corn | Other cereals | -- | 0.01 * | -- | -- | -- | 0.01 | 0.01 | |
Pakchoi | Fresh vegetables | 7 | -- | -- | -- | -- | -- | 3 | |
Pepper | Fresh vegetables | 1 | -- | 2 | -- | 1.0 | -- | -- | |
Tomato | Fresh vegetables | 0.2 | -- | 2 | -- | 0.5 | 1 | 2 | |
Cabbage | Fresh vegetables | 0.5 | -- | 3 | -- | -- | 2 | 2 | |
Cowpea | Fresh vegetables | 2 | -- | 1 | -- | -- | -- | -- | |
Pumpkin | Fresh vegetables | -- | -- | 0.7 | -- | -- | 0.4 | 0.4 | |
Pea | Fresh vegetables | 2 | 0.3 | 0.2 | -- | -- | -- | 2 | |
Cucumber | Fresh vegetables | 0.2 | -- | 0.7 | -- | 0.5 | 0.4 | 0.3 | |
Watermelon | Fresh fruits | 0.05 * | -- | 0.7 | -- | 0.3 | 0.4 | 0.3 | |
Cotton | Cooking oil | 1.5 * | 1.5 | 1.5 | 0.01 | 1.5 | 1.5 | 2 | |
Scallion | Cooking salt | 8 * | 8 | 8 | -- | 2.0 | 8 | 8 | |
LUF | Corn | Other cereals | -- | 0.01 * | -- | -- | -- | 0.01 | 0.05 |
Potato | Potatoes | 0.05 * | 0.01 | -- | -- | -- | 0.01 | 0.02 | |
Chinese chives | Fresh vegetables | 3 | -- | -- | -- | -- | 0.02 | -- | |
Spinach | Fresh vegetables | -- | -- | -- | -- | -- | 0.01 | -- | |
Tomato | Fresh vegetables | 3 | 0.4 | -- | -- | -- | 0.4 | 0.5 | |
Chinese broccoli | Fresh vegetables | -- | -- | -- | -- | -- | -- | -- | |
Mustard greens | Fresh vegetables | -- | -- | -- | -- | -- | -- | -- | |
Turnip | Fresh vegetables | -- | -- | -- | -- | -- | -- | -- | |
Cabbage | Fresh vegetables | 1 | -- | -- | -- | 0.2 | 0.01 | 0.7 | |
Cauliflower | Fresh vegetables | -- | -- | -- | -- | -- | 0.01 | -- | |
Green beans | Fresh vegetables | 1 | -- | -- | -- | -- | -- | -- | |
Apple | Fresh fruits | 1 * | -- | -- | -- | 0.3 | 1 | 0.7 | |
Lychee | Fresh fruits | -- | -- | -- | -- | -- | 0.01 | ||
Grape | Fresh fruits | -- | -- | -- | -- | 2.0 | 0.01 | 1 | |
Citrus | Fresh fruits | 0.5 | -- | -- | -- | -- | -- | 0.3 | |
Cotton | Cooking oil | 0.05 * | -- | -- | -- | -- | 0.01 | -- | |
Scallion | Cooking salt | -- | -- | -- | -- | 1.0* | 0.01 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Li, R.; Liu, T.; Li, R.; Fang, F.; Liang, H. Insights into the Fate and Risk Identification of Cyantraniliprole and Lufenuron Based on Pak Choi (Brassica rapa L. subsp. chinensis). Agronomy 2025, 15, 2289. https://doi.org/10.3390/agronomy15102289
Zhu Y, Li R, Liu T, Li R, Fang F, Liang H. Insights into the Fate and Risk Identification of Cyantraniliprole and Lufenuron Based on Pak Choi (Brassica rapa L. subsp. chinensis). Agronomy. 2025; 15(10):2289. https://doi.org/10.3390/agronomy15102289
Chicago/Turabian StyleZhu, Yuxiao, Rumei Li, Tongjin Liu, Ruijuan Li, Feng Fang, and Hui Liang. 2025. "Insights into the Fate and Risk Identification of Cyantraniliprole and Lufenuron Based on Pak Choi (Brassica rapa L. subsp. chinensis)" Agronomy 15, no. 10: 2289. https://doi.org/10.3390/agronomy15102289
APA StyleZhu, Y., Li, R., Liu, T., Li, R., Fang, F., & Liang, H. (2025). Insights into the Fate and Risk Identification of Cyantraniliprole and Lufenuron Based on Pak Choi (Brassica rapa L. subsp. chinensis). Agronomy, 15(10), 2289. https://doi.org/10.3390/agronomy15102289