Modeling the Impact of Future Temperature Increases on Olive Oil Accumulation Patterns in the Iberian Peninsula
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Layout
2.2. Method for Determining the Oil Content
2.3. Procedure for Defining the Oil Accumulation Pattern
2.4. Statistical Analysis
2.5. Modeling of the Oil Accumulation Pattern Under Historical and Future Climate Projections
3. Results
3.1. Component Analysis
3.2. Olive Oil Accumulation Pattern Functions Based on Summer Temperatures
3.3. Future Projections of the Olive Oil Accumulation Pattern
3.3.1. Temperature Projections
3.3.2. Date of Maximum Oil Content (DMOC)
3.3.3. Maximum Oil Content (MOC)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Data. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data (accessed on 13 June 2024).
- MAPA. Encuesta Sobre Superficies y Rendimientos de Cultivos. Resultados Provisionales Nacionales y Autonómicos. ESYRCE; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2023. [Google Scholar]
- Gabaldón-Leal, C.; Ruiz-Ramos, M.; de la Rosa, R.; León, L.; Belaj, A.; Rodríguez, A.; Santos, C.; Lorite, I.J. Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain. Int. J. Climatol. 2017, 37, 940–957. [Google Scholar] [CrossRef]
- Cabezas, J.M.; Ruiz-Ramos, M.; Soriano, M.A.; Gabaldón-Leal, C.; Santos, C.; Lorite, I.J. Identifying adaptation strategies to climate change for Mediterranean olive orchards using impact response surfaces. Agric. Syst. 2020, 185, 102937. [Google Scholar] [CrossRef]
- Gómez-Limón, J.A.; Picazo-Tadeo, A.J.; Reig-Martínez, E. Eco-efficiency assessment of olive farms in Andalusia. Land Use Policy 2012, 29, 395–406. [Google Scholar] [CrossRef]
- Ponti, L.; Gutierrez, A.P.; Ruti, P.M.; Dell’Aquila, A. Fine-scale ecological and economic assessment of climate change in the Mediterranean Basin reveals winners and losers. Proc. Natl. Acad. Sci. USA 2014, 111, 15. [Google Scholar] [CrossRef] [PubMed]
- Koubouris, G.C.; Metzidakis, I.T.; Vasilakakis, M.D. Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Environ. Exp. Bot. 2009, 67, 209–214. [Google Scholar] [CrossRef]
- García-Inza, G.P.; Castro, D.N.; Hall, A.J.; Rousseaux, M.C. Responses to temperature of fruit dry weight, oil concentration, and oil fatty acid composition in olive (Olea europaea L. var. ‘Arauco’). Eur. J. Agron. 2014, 54, 107–115. [Google Scholar] [CrossRef]
- Ben-Ari, G.; Biton, I.; Many, Y.; Namdar, D.; Samach, A. Elevated Temperatures Negatively Affect Olive Productive Cycle and Oil Quality. Agronomy 2021, 11, 1492. [Google Scholar] [CrossRef]
- Miserere, A.; Searles, P.S.; Rousseaux, M.C. Influence of experimental warming on the rate and duration of fruit growth and oil accumulation in young olive trees (cvs. Arbequina, Coratina). Plants 2023, 12, 1942. [Google Scholar] [CrossRef] [PubMed]
- Hamze, L.M.; Miserere, A.; Molina, M.S.; Maestri, D.; Searles, P.S.; Rousseaux, M.C. Influence of environmental growth temperature on tocopherol and sterol oil concentrations in olive fruit. J. Sci. Food Agric. 2023, 102, 2741–2749. [Google Scholar] [CrossRef]
- Dag, A.; Harlev, G.; Lavee, S.; Zipori, I.; Kerem, Z. Optimizing olive harvest time under hot climatic conditions of Jordan Valley, Israel. Eur. J. Lipid. Technol. 2014, 116, 169–176. [Google Scholar] [CrossRef]
- López-Bernal, A.; Fernandes-Silva, A.A.; Vega, V.A.; Hidalgo, J.C.; León, L.; Testi, L.; Villalobos, F.J. A fruit growth approach to estimate oil content in olives. Eur. J. Agron. 2021, 123, 126206. [Google Scholar] [CrossRef]
- Galán, C.; García-Mozo, H.; Vázquez, L.; Ruiz, L.; Díaz de la Guardia, C.; Domínguez-Vilches, E. Modelling olive crop yield in Andalusia, Spain. Agron. J. 2008, 100, 98–104. [Google Scholar] [CrossRef]
- Iniesta, F.; Testi, L.; Orgaz, F.; Villalobos, F.J. The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. Eur. J. Agron. 2009, 30, 258–265. [Google Scholar] [CrossRef]
- Torres, M.; Pierantozzi, P.; Searles, P.; Rousseaux, M.C.; García-Inza, G.; Miserere, A.; Bodoira, R.; Contreras, C.; Maestri, D. Olive cultivation in the southern hemisphere: Flowering, water requirements and oil quality responses to new crop environments. Front. Plant Sci. 2017, 8, 1830. [Google Scholar] [CrossRef]
- Lavee, S.; Wodner, M. Factors affecting the nature of oil accumulation in fruit of olive (Olea europaea L.) cultivars. J. Hortic. Sci. 1991, 66, 583–591. [Google Scholar] [CrossRef]
- Moriana, A.; Orgaz, F.; Pastor, M.; Fereres, E. Yield responses of a mature olive orchard to water deficits. J. Am. Soc. Hortic. Sci. 2003, 128, 425–431. [Google Scholar] [CrossRef]
- Fernández, J.E.; Perez-Martin, A.; Torres-Ruiz, J.M.; Cuevas, M.V.; Rodriguez-Domínguez, C.M.; Elsayed-Farag, S.; Morales-Sillero, A.; García, J.M.; Hernandez-Santana, V.; Diaz-Espejo, A. A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density. Plant Soil. 2013, 372, 279–295. [Google Scholar] [CrossRef]
- Rondanini, D.P.; Castro, D.N.; Searles, P.S.; Rousseaux, M.C. Contrasting patterns of fatty acid composition and oil accumulation during fruit growth in several olive varieties and locations in a non-Mediterranean region. Eur. J. Agron. 2014, 52, 237–246. [Google Scholar] [CrossRef]
- Navas-López, J.F.; León, L.; Trentacoste, E.R.; De la Rosa, R. Multi-environment evaluation of oil accumulation pattern parameters in olive. Plant Physiol. Biochem. 2019, 139, 485–494. [Google Scholar] [CrossRef]
- López-Bernal, A.; Morales, A.; García-Tejera, O.; Testi, L.; Orgaz, F.; De Melo-Abreu, J.P.; Villalobos, F.J. OliveCan: A process-based model of development, growth and yield of olive orchards. Front. Plant Sci. 2018, 9, 632. [Google Scholar] [CrossRef]
- Beltrán, G.; Del Río, C.; Sánchez, S.; Martínez, L. Seasonal changes in olive fruit characteristics and oil accumulation during ripening process. J. Sci. Food Agric. 2004, 84, 1783–1790. [Google Scholar] [CrossRef]
- Montanaro, G.; Carlomagno, A.; Petrozza, A.; Cellini, F.; Manolikaki, I.; Koubouris, G.; Nuzzo, V. Predicting oil accumulation by fruit image processing and linear models in traditional and super high-density olive cultivars. Front. Plant Sci. 2024, 15, 1456800. [Google Scholar] [CrossRef]
- Cinosi, N.; Portarena, S.; Almadi, L.; Berrettini, A.; Torres, M.; Pierantozzi, P.; Villa, F.; Galletti, A.; Famiani, F.; Farinelli, D. Use of portable devices and an innovative and non-destructive index for in-field monitoring of olive fruit ripeness. Agriculture 2023, 13, 194. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on uav-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Villalobos, F.J.; López-Bernal, A.; García-Tejera, O.; Testi, L. Is olive crop modelling ready to assess the impacts of global change? Front. Plant Sci. 2023, 14, 1249793. [Google Scholar] [CrossRef]
- Gavilán, P.; Lorite, I.J.; Tornero, S.; Berengena, J. Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agric. Water Manag. 2006, 81, 257–281. [Google Scholar] [CrossRef]
- Fernández, F.J.; Ladux, J.L.; Hammami, S.B.M.; Rapoport, H.F.; Searles, P.S. Fruit, mesocarp, and endocarp responses to crop load and to different estimates of source: Sink ratio in olive (cv. Arauco) at final harvest. Sci. Hortic. 2018, 234, 49–57. [Google Scholar] [CrossRef]
- Hamze, L.M.; Rousseaux, M.C.; Searles, P.S.; Trentacoste, E.R. Fruit growth and oil accumulation of olive (Olea europaea L.) cultivars at different locations along a latitudinal-altitudinal gradient. Horticulturae 2024, 10, 1339. [Google Scholar] [CrossRef]
- Trentacoste, E.R.; Puertas, C.M.; Sadras, V.O. Modelling the intraspecific variation in the dynamics of fruit growth, oil and water concentration in olive (Olea europaea L.). Eur. J. Agron. 2012, 38, 83–93. [Google Scholar] [CrossRef]
- Monleon-Getino, A. ANOVA Caso no Balanceado: Suma de Cuadrados de Tipo I, II, III y IV; Technical report; Barcelona, Spain, 2017. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression. Package “Car”; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://CRAN.R-project.org/package=car (accessed on 9 September 2024).
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application, Chapter 5; Cambridge University Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Olivoto, T.; Lúcio, A.D.C.; Souza, V.Q.; Nardino, M.; Diel, M.I.; Sari, B.G.; Krysczun, D.K.; Meira, D.; Meier, C. Confidence interval width for Pearson’s correlation coefficient: A Gaussian-independent estimator based on sample size and strength of association. Agron. J. 2018, 110, 503–510. [Google Scholar] [CrossRef]
- Peng, R.D. Package ‘Simpleboot’: Simple Bootstrap Routines. R Package. Version 1.1-8. 2024. Available online: https://github.com/rdpeng/simpleboot (accessed on 15 May 2024).
- Frieler, K.; Lange, S.; Piontek, F.; Reyer, C.P.O.; Schewe, J.; Warszawski, L.; Zhao, F.; Chini, L.; Denvil, S.; Emanuel, K.; et al. Assessing the impacts of 1.5 °C global warming—Simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model. Dev. 2017, 10, 4321–4345. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Arnell, N.W.; Ebi, K.L.; Lotze-Campen, H.; Raes, F.; Rapley, C.; Smith, M.S.; Cramer, W.; Frieler, K.; Reyer, C.P.O.; et al. Assessing inter-sectoral climate change risks: The role of ISIMIP. Environ. Res. Lett. 2017, 12, 010301. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Lange, S.; Büchner, M. ISIMIP3b bias-adjusted atmospheric climate input data (v1.1). ISIMIP Repository, 15 May 2021. [Google Scholar] [CrossRef]
- Cabezas, J.M.; Ruiz-Ramos, M.; Soriano, M.A.; Santos, C.; Gabaldón-Leal, C.; Lorite, I.J. Impact of climate change on economic components of Mediterranean olive orchards. Agric. Water Manag. 2021, 248, 106760. [Google Scholar] [CrossRef]
- Nissim, Y.; Shlobert, M.; Biton, I.; Many, Y.; Doron-Faigenboim, A.; Zemach, H.; Hovav, R.; Kerem, Z.; Avidan, B.; Ben-Ari, G. High temperature environment reduces olive oil yield and quality. PLoS ONE 2020, 15, e0231956. [Google Scholar] [CrossRef] [PubMed]
- Benlloch-Gonzalez, M.; Sanchez-Lucas, R.; Bejaoui, M.A.; Benlloch, M.; Fernández-Escobar, R. Global warming effects on yield and fruit maturation of olive trees growing under field conditions. Sci. Hortic. 2019, 249, 162–167. [Google Scholar] [CrossRef]
- Miserere, A.; Searles, P.S.; Rousseaux, M.C. Oil yield components and biomass production responses to warming during the oil accumulation phase in young olive trees. Sci. Hortic. 2022, 291, 110618. [Google Scholar] [CrossRef]
- Lavee, S.; Wodner, M. The effect of yield, harvest time and fruit size on the oil content in fruits of irrigated olive trees (Olea europaea), cvs. Barnea and Manzanillo. Sci. Hortic. 2004, 99, 267–277. [Google Scholar] [CrossRef]
- Mailer, R.J.; Ayton, J.; Conlan, D. Influence of harvest timing on olive (Olea europaea) oil accumulation and fruit characteristics under Australian conditions. J. Food Agric. Environ. 2007, 5, 58–63. [Google Scholar]
- Rallo, L.; Díez, C.M.; Morales-Sillero, A.; Miho, H.; Priego-Capote, F.; Rallo, P. Quality of olives: A focus on agricultural preharvest factors. Sci. Hortic. 2018, 233, 491–509. [Google Scholar] [CrossRef]
- García-Inza, G.P.; Hernández, M.L.; Miserere, A.; Sicardo, M.D.; Martínez-Rivas, J.M.; Rousseaux, M.C. Transcriptional regulation of oil synthesis and fatty acid desaturation in olive fruit under elevated growth temperature. Physiol. Plant. 2024, 176, e14149. [Google Scholar] [CrossRef]
- Lorite, I.J.; Cabezas-Luque, J.M.; Arquero, O.; Gabaldón-Leal, C.; Santos, C.; Rodríguez, A.; Ruiz-Ramos, M.; Lovera, M. The role of phenology in the climate change impacts and adaptation strategies for tree crops: A case study on almond orchards in Southern Europe. Agric. For. Meteorol. 2020, 294, 10814. [Google Scholar] [CrossRef]
- Dag, A.; Karem, Z.; Yogev, N.; Zipori, I.; Lavee, S.; Ben-David, E. The influence of time of harvest and maturity index on olive oil yield and quality. Sci. Hortic. 2011, 127, 358–366. [Google Scholar] [CrossRef]
- Gucci, R.; Lodolini, E.; Rapoport, H.F. Productivity of olive trees with different water status and crop load. J. Hortic. Sci. Biotech. 2007, 82, 648–656. [Google Scholar] [CrossRef]
Locations | TmaxJL | TmaxAG | TmaxS |
---|---|---|---|
(°C) | (°C) | (°C) | |
Antequera | 35.1 | 35.4 | 30.6 |
Baena | 36.7 | 36.5 | 30.5 |
Córdoba | 37.0 | 37.3 | 32.4 |
La Rambla | 35.6 | 37.3 | 32.6 |
Úbeda | 37.3 | 36.7 | 31.1 |
Location | Antequera | Baena | Córdoba | La Rambla | Úbeda | Total | |
---|---|---|---|---|---|---|---|
Year | |||||||
2017 | Arb | Arb | Arb | Arb | Arb | 19 | |
Hoj | Hoj | Hoj | Hoj | Hoj | |||
Kor | Kor | Kor | Kor | Kor | |||
Pic | Pic | Pic | Pic | ||||
2018 | Arb | Arb | Arb | 12 | |||
Hoj | Hoj | Hoj | |||||
Kor | Kor | Kor | |||||
Pic | Pic | Pic | |||||
2019 | Arb | Arb | Arb | 11 | |||
Hoj | |||||||
Kor | Kor | Kor | Kor | ||||
Pic | Pic | Pic | |||||
2020 | Arb | Arb | Arb | 11 | |||
Hoj | Hoj | ||||||
Kor | Kor | Kor | |||||
Pic | Pic | Pic | |||||
Total | 15 | 6 | 14 | 7 | 11 | 53 |
DSOA (DOY) | DMOC (DOY) | LOA (days) | ROA | MOC (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SV | df | MS | MS | MS | MS | MS | |||||
Years | 3 | 836 | ** | 224 | ns | 735 | * | 0.0035 | ns | 64 | ** |
Locations | 4 | 578 | ** | 95 | ns | 859 | * | 0.0046 | ns | 67 | ** |
Varieties | 3 | 214 | ns | 151 | ns | 631 | ns | 0.0076 | * | 27 | ns |
Error | 42 | 126 | 87 | 241 | 0.0019 | 11 | |||||
Total | 52 | ||||||||||
CV | 5.6 | 3.0 | 13.7 | 13.4 | 7.3 | ||||||
Grand Mean | 200 | 313 | 113 | 0.33 | 45 |
DSOA (DOY) | DMOC (DOY) | LOA (days) | ROA (-) | MOC (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Mean | Mean | Mean | Mean | ||||||
Cultivars | ||||||||||
Arbequina | 198 | A | 311 | A | 113 | AB | 0.33 | AB | 46.9 | A |
Hojiblanca | 196 | A | 319 | A | 123 | A | 0.32 | AB | 44.1 | A |
Koroneiki | 201 | A | 314 | A | 113 | AB | 0.30 | B | 43.8 | A |
Picual | 206 | A | 310 | A | 105 | B | 0.36 | A | 45.4 | A |
Years | ||||||||||
2017 | 203 | A | 311 | A | 108 | AB | 0.34 | A | 48.1 | A |
2018 | 205 | A | 320 | A | 116 | AB | 0.30 | A | 44.1 | B |
2019 | 206 | A | 312 | A | 105 | B | 0.32 | A | 44.0 | B |
2020 | 187 | B | 311 | A | 124 | A | 0.35 | A | 44.0 | B |
Locations | ||||||||||
Antequera | 201 | A | 313 | A | 111 | BC | 0.34 | A | 46.5 | A |
Baena | 185 | B | 313 | A | 129 | A | 0.33 | A | 49.2 | A |
Córdoba | 199 | AB | 318 | A | 119 | AB | 0.30 | A | 42.9 | B |
La Rambla | 208 | A | 311 | A | 103 | C | 0.33 | A | 44.3 | AB |
Úbeda | 207 | A | 312 | A | 104 | C | 0.35 | A | 42.4 | B |
Simple Regression Formula | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | n | Corr. | Sig. | R2 | y | = | β | (Variable) | + | α |
Arbequina | 14 | −0.52 | ** | 0.30 | DSOA | = | −3.22 ** | (TminJL) | + | 261 |
Picual | 13 | −0.52 | ** | 0.31 | DSOA | = | −4.25 ** | (TmeanJL) | + | 324 |
Arbequina | 14 | 0.49 | ** | 0.26 | DMOC | = | 3.41 ** | (TminS) | + | 256 |
Picual | 13 | 0.56 | ** | 0.34 | DMOC | = | 8.17 ** | (TmeanS) | + | 118 |
Arbequina | 14 | −0.75 | ** | 0.58 | ROA | = | −0.03 ** | (TminS) | + | 0.90 |
Picual | 13 | −0.59 | ** | 0.37 | ROA | = | −0.04 ** | (TmeanS) | + | 1.21 |
Arbequina | 14 | −0.37 | ** | 0.17 | MOC | = | −1.32 ** | (TmaxAG) | + | 94.8 |
Picual | 13 | −0.48 | ** | 0.26 | MOC | = | −3.19 ** | (TmaxAG) | + | 162 |
Picual | |||||||
Location | H | NF_2.6 | NF_7.0 | NF_8.5 | FF_2.6 | FF_7.0 | FF_8.5 |
Beja | 60.6 | 51.2 | 48.9 | 47.5 | 51.3 | 43.3 | 39.7 |
Jerez | 61.2 | 54.8 | 53.4 | 52.9 | 55.2 | 50.2 | 48.0 |
Córdoba | 49.7 | 40.1 | 37.6 | 36.4 | 40.6 | 32.5 | 28.5 |
Úbeda | 53.7 | 42.4 | 39.0 | 37.4 | 42.8 | 32.3 | 27.2 |
Reus | 70.3 | 59.9 | 57.0 | 55.7 | 60.6 | 50.2 | 46.2 |
Mérida | 52.5 | 42.2 | 39.9 | 38.3 | 42.7 | 34.0 | 30.0 |
Antequera | 56.3 | 46.6 | 44.1 | 42.9 | 47.1 | 39.1 | 35.1 |
Lorca | 62.4 | 54.2 | 51.6 | 50.7 | 54.8 | 46.9 | 43.1 |
Arbequina | |||||||
Location | H | NF_2.6 | NF_7.0 | NF_8.5 | FF_2.6 | FF_7.0 | FF_8.5 |
Beja | 52.8 | 48.9 | 48.0 | 47.4 | 49.0 | 45.7 | 44.2 |
Jerez | 53.1 | 50.5 | 49.8 | 49.6 | 50.6 | 48.5 | 47.6 |
Córdoba | 48.3 | 44.3 | 43.3 | 42.8 | 44.6 | 41.2 | 39.6 |
Úbeda | 50.0 | 45.3 | 43.9 | 43.3 | 45.5 | 41.1 | 39.0 |
Reus | 56.8 | 52.5 | 51.3 | 50.8 | 52.9 | 48.5 | 46.9 |
Mérida | 49.5 | 45.2 | 44.3 | 43.6 | 45.4 | 41.8 | 40.2 |
Antequera | 51.0 | 47.0 | 46.0 | 45.5 | 47.2 | 43.9 | 42.3 |
Lorca | 53.6 | 50.2 | 49.1 | 48.7 | 50.4 | 47.2 | 45.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabezas, J.M.; Alza, J.O.; de la Rosa, R.; Santos, C.; del Río-Celestino, M.; Lorite, I.J. Modeling the Impact of Future Temperature Increases on Olive Oil Accumulation Patterns in the Iberian Peninsula. Agronomy 2025, 15, 2262. https://doi.org/10.3390/agronomy15102262
Cabezas JM, Alza JO, de la Rosa R, Santos C, del Río-Celestino M, Lorite IJ. Modeling the Impact of Future Temperature Increases on Olive Oil Accumulation Patterns in the Iberian Peninsula. Agronomy. 2025; 15(10):2262. https://doi.org/10.3390/agronomy15102262
Chicago/Turabian StyleCabezas, José Manuel, José Osmar Alza, Raúl de la Rosa, Cristina Santos, Mercedes del Río-Celestino, and Ignacio Jesús Lorite. 2025. "Modeling the Impact of Future Temperature Increases on Olive Oil Accumulation Patterns in the Iberian Peninsula" Agronomy 15, no. 10: 2262. https://doi.org/10.3390/agronomy15102262
APA StyleCabezas, J. M., Alza, J. O., de la Rosa, R., Santos, C., del Río-Celestino, M., & Lorite, I. J. (2025). Modeling the Impact of Future Temperature Increases on Olive Oil Accumulation Patterns in the Iberian Peninsula. Agronomy, 15(10), 2262. https://doi.org/10.3390/agronomy15102262