Residual Effect of Silicate Agromineral Application on Soil Acidity, Mineral Availability, and Soybean Anatomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Experiment
2.2. Soil Features
2.3. Silicon-Based Agromineral
2.4. Experimental Design
2.5. Plant
2.5.1. Plant Height, Chemical Analysis, and Dry Matter Production of Soybean Aboveground Biomass
2.5.2. Silicon Analysis in Plants
2.5.3. Anatomical Analysis of Plant Tissue
2.6. Soil
2.6.1. Chemical Analysis
2.6.2. Soil Available Silicon Analysis
2.7. Statistical Analysis
3. Results
3.1. Soil
3.2. Plant
4. Discussion
4.1. Main Outcomes
4.2. Agronomic and Practical Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Acronyms and Abbreviations
Abbreviation Acronym | Meaning |
SA | Silicate agrominerals |
CF | Conventional fertilizers |
SB | Sum of bases |
CEC | Cation-exchange capacity |
BS | Base saturation |
PTE | Potentially toxic elements |
TQ | Typic Quartzipsamment |
RH | Rhodic Hapludox |
L + CMF | Application of lime + conventional mineral fertilization |
PRNT | Relative total neutralizing power |
SEM | Scanning electron microscopy |
DAE | Days after emergence |
ADM | Aboveground dry matter |
PH | Plant height |
CV | Coefficient of variation |
°C | Celsius degrees |
nm | Nanometer |
mm | Millimeter |
cm | Centimeter |
mL | Milliliter |
g | Gram |
mg kg−1 | Milligrams per kilogram |
mg L−1 | Milligrams per liter |
g L−1 | Grams per liter |
g kg−1 | Grams per kilogram |
g per plant | Grams per plant |
Mg ha−1 | Megagrams per hectare |
mol L−1 | Moles per liter |
mmolc kg−1 | Millimoles of charge per kilogram |
References
- Mishra, R.; Tripathi, M.K.; Sikarwar, R.S.; Singh, Y.; Tripathi, N. Soybean (Glycine Max L. Merrill): A Multipurpose Legume Shaping Our World. Plant Cell Biotechnol. Mol. Biol. 2024, 25, 17–37. [Google Scholar] [CrossRef]
- Makwana, K.; Soybeans for Global Nutrition: A Numbers Story. Sustainable Nutrition Initiative 2024. Available online: https://sustainablenutritioninitiative.com/soybeans-for-global-nutrition-a-numbers-story/ (accessed on 19 October 2024).
- Companhia Nacional de Abastecimento Acompanhamento da Safra Brasileira de Grãos. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (accessed on 19 October 2023).
- Confederação da Agricultura e Pecuária Jazidas e Bioinsumos Minimizam Falta de Fertilizante Estrangeiro. Available online: https://www.cnabrasil.org.br/ (accessed on 19 October 2023).
- Plano Nacional de Fertilizantes 2050. Available online: https://static.poder360.com.br/2022/03/plano-nacional-de-fertilizantes-brasil-2050.pdf (accessed on 19 October 2023).
- Ogino, C.M.; Vieira Filho, J.E.R. Preços de fertilizantes impactando a produção agrícola brasileira. BRUA 2022, 27, 151–154. [Google Scholar] [CrossRef]
- Mbissik, A.; Elghali, A.; Ouabid, M.; Raji, O.; Bodinier, J.-L.; El Messbahi, H. Alkali-Hydrothermal Treatment of K-Rich Igneous Rocks for Their Direct Use as Potassic Fertilizers. Minerals 2021, 11, 140. [Google Scholar] [CrossRef]
- Ramos, C.G.; Querol, X.; Oliveira, M.L.S.; Pires, K.; Kautzmann, R.M.; Oliveira, L.F.S. A Preliminary Evaluation of Volcanic Rock Powder for Application in Agriculture as Soil a Remineralizer. Sci. Total Environ. 2015, 512–513, 371–380. [Google Scholar] [CrossRef]
- Ramos, C.G.; dos Santos de Medeiros, D.; Gomez, L.; Oliveira, L.F.S.; Schneider, I.A.H.; Kautzmann, R.M. Evaluation of Soil Re-Mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize Crops. Nat. Resour. Res. 2020, 29, 1583–1600. [Google Scholar] [CrossRef]
- Dalmora, A.C.; Ramos, C.G.; Silva Oliveira, M.L.; Silva Oliveira, L.F.; Homrich Schneider, I.A.; Kautzmann, R.M. Application of Andesite Rock as a Clean Source of Fertilizer for Eucalyptus Crop: Evidence of Sustainability. J. Clean. Prod. 2020, 256, 120432. [Google Scholar] [CrossRef]
- Ramos, C.G.; Hower, J.C.; Blanco, E.; Oliveira, M.L.S.; Theodoro, S.H. Possibilities of Using Silicate Rock Powder: An Overview. Geosci. Front. 2022, 13, 101185. [Google Scholar] [CrossRef]
- Kelemen, P.B.; McQueen, N.; Wilcox, J.; Renforth, P.; Dipple, G.; Vankeuren, A.P. Engineered Carbon Mineralization in Ultramafic Rocks for CO2 Removal from Air: Review and New Insights. Chem. Geol. 2020, 550, 119628. [Google Scholar] [CrossRef]
- Kelland, M.E.; Wade, P.W.; Lewis, A.L.; Taylor, L.L.; Sarkar, B.; Andrews, M.G.; Lomas, M.R.; Cotton, T.E.A.; Kemp, S.J.; James, R.H.; et al. Increased Yield and CO2 Sequestration Potential with the C4 Cereal Sorghum Bicolor Cultivated in Basaltic Rock Dust-Amended Agricultural Soil. Glob. Change Biol. 2020, 26, 3658–3676. [Google Scholar] [CrossRef] [PubMed]
- Beerling, D.J.; Kantzas, E.P.; Lomas, M.R.; Wade, P.; Eufrasio, R.M.; Renforth, P.; Sarkar, B.; Andrews, M.G.; James, R.H.; Pearce, C.R.; et al. Potential for Large-Scale CO2 Removal via Enhanced Rock Weathering with Croplands. Nature 2020, 583, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Theodoro, S.H.; de Paula Medeiros, F.; Ianniruberto, M.; Jacobson, T.K.B. Soil Remineralization and Recovery of Degraded Areas: An Experience in the Tropical Region. J. S. Am. Earth Sci. 2021, 107, 103014. [Google Scholar] [CrossRef]
- Manning, D.A.C.; Theodoro, S.H. Enabling Food Security through Use of Local Rocks and Minerals. Extr. Ind. Soc. 2020, 7, 480–487. [Google Scholar] [CrossRef]
- Swoboda, P.; Döring, T.F.; Hamer, M. Remineralizing Soils? The Agricultural Usage of Silicate Rock Powders: A Review. Sci. Total Environ. 2022, 807, 150976. [Google Scholar] [CrossRef]
- Tamfuh, P.A.; Wotchoko, P.; Nono, D.G.K.; Ndofor, C.N.Y.; Nkouathio, D.G.; Bitom, D. Comparative Effects of Basalt Dust, NPK 20-10-10 and Poultry Manure on Soil Fertility and Cucumber (Cucumis sativus) Productivity in Bafut (Cameroon Volcanic Line). Earth Sci. 2019, 8, 323–334. [Google Scholar] [CrossRef]
- Greger, M.; Landberg, T.; Vaculík, M. Silicon Influences Soil Availability and Accumulation of Mineral Nutrients in Various Plant Species. Plants 2018, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Nikolic, M.; Ye, M.; Xiao, Z.; Liang, Y. Silicon Acquisition and Accumulation in Plant and Its Significance for Agriculture. J. Integr. Agric. 2018, 17, 2138–2150. [Google Scholar] [CrossRef]
- dos Santos, L.F.; Sodré, F.F.; Martins, É.d.S.; de Figueiredo, C.C.; Busato, J.G. Effects of Biotite Syenite on the Nutrient Levels and Electrical Charges in a Brazilian Savanna Ferralsol. Pesqui. Agropecu. Trop. 2021, 51, e66691. [Google Scholar] [CrossRef]
- Nogueira, T.A.R.; Miranda, B.G.; Jalal, A.; Lessa, L.G.F.; Filho, M.C.M.T.; Marcante, N.C.; Abreu-Junior, C.H.; Jani, A.D.; Capra, G.F.; Moreira, A.; et al. Nepheline Syenite and Phonolite as Alternative Potassium Sources for Maize. Agronomy 2021, 11, 1385. [Google Scholar] [CrossRef]
- Esclarecimentos Sobre Uso de Agrominerais Silicáticos (Remineralizadores) Na Agricultura—Esclarecimentos Oficiais—Portal Embrapa. Available online: https://www.embrapa.br/esclarecimentos-oficiais/-/asset_publisher/TMQZKu1jxu5K/content/esclarecimentos-sobre-uso-de-agrominerais-silicaticos-remineralizadores-na-agricultura?inheritRedirect=false (accessed on 25 October 2023).
- van Raij, B.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química Para Avaliar Fertilidade Em Solos Tropicais, 1st ed.; Instituto Agronômico de Campinas: Campinas, Brazil, 2001; 285p. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Pereira, H.S.; Korndörfer, G.H. Análise de Silício No Solo, Planta e Fertilizante, 2nd ed.; Boletim Técnico, 02; GPSi-ICIAG-UFU: Uberlândia, Brazil, 2016. [Google Scholar]
- MAPA Instrução Normativa No 5, de 10 de Março de 2016. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-5-de-10-3-16-remineralizadores-e-substratos-para-plantas.pdf (accessed on 10 May 2024).
- Cantarella, H.; Zambrosi, F.C.B.; Quaggio, J.A.; Duarte, A.P. Cereais. In Recomendações de Adubação e Calagem para o Estado de São Paulo; Instituto Agronômico de Campinas: Campinas, Brazil, 2022; pp. 213–236. [Google Scholar]
- Malavolta, E. Elementos de Nutrição Mineral Das Plantas; Agronômica Ceres: São Paulo, Brazil, 1980. [Google Scholar]
- Fehr, W.; Caviness, C. Stages of Soybean Development; Iowa Agricultural Experiment Station, Iowa Cooperative External Series; Iowa State University: Ames, IA, USA, 1977. [Google Scholar]
- Malavolta, E.; Vitti, G.C.; de Oliveira, S.A. Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações, 2nd ed.; Potafos: Piracicaba, Brazil, 1997. [Google Scholar]
- Johansen, D.A. Plant Microtechnique; McGraw-Hill: New York, NY, USA, 1940. [Google Scholar]
- Sakai, W.S. Simple Method for Differential Staining of Paraffin Embedded Plant Material Using Toluidine Blue o. Stain Technol. 1973, 48, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Dedavid, B.A.; Gomes, C.I.; Machado, G. Microscopia Eletrônica de Varredura: Aplicações e Preparação de Amostras: Materiais Poliméricos, Metálicos e Semicondutores; EDIPUCRS: Porto Alegre, Brazil, 2007; ISBN 978-85-7430-702-2. [Google Scholar]
- R Core Team, R. The R Project for Statistical Computing. Available online: https://www.r-project.org/index.html (accessed on 4 April 2024).
- Silva, A.D.; Almeida, J.A.D.; Schmitt, C.; Coelho, C.M.M. Avaliação Dos Efeitos Da Aplicação de Basalto Moído Na Fertilidade Do Solo e Nutrição de Eucalyptus Benthamii. FLORESTA 2012, 42, 69. [Google Scholar] [CrossRef]
- Cornelis, J.-T.; Delvaux, B.; Georg, R.B.; Lucas, Y.; Ranger, J.; Opfergelt, S. Tracing the Origin of Dissolved Silicon Transferred from Various Soil-Plant Systems towards Rivers: A Review. Biogeosciences 2011, 8, 89–112. [Google Scholar] [CrossRef]
- Sade, H.; Meriga, B.; Surapu, V.; Gadi, J.; Sunita, M.S.L.; Suravajhala, P.; Kishor, P.B.K. Toxicity and Tolerance of Aluminum in Plants: Tailoring Plants to Suit to Acid Soils. Biometals 2016, 29, 187–210. [Google Scholar] [CrossRef]
- Blum, W.E.H.; Herbinger, B.; Mentler, A.; Ottner, F.; Pollak, M.; Unger, E.; Wenzel, W.W. Zur Verwendung von Gesteinsmehlen in der Landwirtschaft. I. Chemisch-mineralogische Zusammensetzung und Eignung von Gesteinsmehlen als Düngemittel. Z. Pflanzenernährung Bodenkd. 1989, 152, 421–425. [Google Scholar] [CrossRef]
- Medeiros, D.S.; Sanchotene, D.M.; Ramos, C.G.; Oliveira, L.F.S.; Sampaio, C.H.; Kautzmann, R.M. Soybean Crops Cultivated with Dacite Rock By-Product: A Proof of a Cleaner Technology to Soil Remineralization. J. Environ. Chem. Eng. 2021, 9, 106742. [Google Scholar] [CrossRef]
- Dalmora, A.C.; Ramos, C.G.; Plata, L.G.; da Costa, M.L.; Kautzmann, R.M.; Oliveira, L.F.S. Understanding the Mobility of Potential Nutrients in Rock Mining By-Products: An Opportunity for More Sustainable Agriculture and Mining. Sci. Total Environ. 2020, 710, 136240. [Google Scholar] [CrossRef] [PubMed]
- Meharg, C.; Meharg, A.A. Silicon, the Silver Bullet for Mitigating Biotic and Abiotic Stress, and Improving Grain Quality, in Rice? Environ. Exp. Bot. 2015, 120, 8–17. [Google Scholar] [CrossRef]
- Luchese, A.V.; Pivetta, L.A.; Batista, M.A.; Steiner, F.; Giaretta, A.P.d.S.; Curtis, J.C.D. Agronomic Feasibility of Using Basalt Powder as Soil Nutrient Remineralizer. Afr. J. Agric. Res. 2021, 17, 487–497. [Google Scholar] [CrossRef]
- Sato, S.; Comerford, N.B. Influence of Soil pH on Inorganic Phosphorus Sorption and Desorption in a Humid Brazilian Ultisol. Rev. Bras. Ciênc. Solo 2005, 29, 685–694. [Google Scholar] [CrossRef]
- Rodrigues, M.; Bortolini, P.C.; Neto, C.K.; Andrade, E.A.; Passos, A.I.; Pacheco, F.P.; Nanni, M.R.; de Melo Teixeira, L. Unlocking Higher Yields in Urochloa Brizantha: The Role of Basalt Powder in Enhancing Soil Nutrient Availability. Discov. Soil 2024, 1, 4. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Rodrigues, M.; Soltangheisi, A.; de Carvalho, T.S.; Guilherme, L.R.G.; Benites, V.d.M.; Gatiboni, L.C.; de Sousa, D.M.G.; Nunes, R.d.S.; Rosolem, C.A.; et al. Transitions to Sustainable Management of Phosphorus in Brazilian Agriculture. Sci. Rep. 2018, 8, 2537. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.F.; Pongrac, P.; Reis, A.R.; White, P.J.; Lavres, J. Phosphorus–Zinc Interactions in Cotton: Consequences for Biomass Production and Nutrient-Use Efficiency in Photosynthesis. Physiol. Plant. 2019, 166, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- van Raij, B.; Cantarella, H.; Quaggio, J.A.; Furlani, Â.M.C. Recomendações de Adubação e Calagem Para o Estado de São Paulo, 2nd ed. rev. atual.; Instituto Agronômico de Campinas: Campinas, Brazil, 1997. [Google Scholar]
- Korndörfer, G.H.; Souza, S.R. de Elementos Benéficos. In Nutrição Mineral de Plantas; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2018; pp. 563–599. [Google Scholar]
- Castro, G.S.A.; Crusciol, C.A.C. Effects of Superficial Liming and Silicate Application on Soil Fertility and Crop Yield under Rotation. Geoderma 2013, 195–196, 234–242. [Google Scholar] [CrossRef]
- Mitani, N.; Chiba, Y.; Yamaji, N.; Ma, J.F. Identification and Characterization of Maize and Barley Lsi2-like Silicon Efflux Transporters Reveals a Distinct Silicon Uptake System from That in Rice. Plant Cell 2009, 21, 2133–2142. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Yamaji, N. Functions and Transport of Silicon in Plants. Cell. Mol. Life Sci. 2008, 65, 3049–3057. [Google Scholar] [CrossRef] [PubMed]
- Gunes, A.; Inal, A.; Bagci, E.G.; Coban, S. Silicon-Mediated Changes on Some Physiological and Enzymatic Parameters Symptomatic of Oxidative Stress in Barley Grown in Sodic-B Toxic Soil. J. Plant Physiol. 2007, 164, 807–811. [Google Scholar] [CrossRef]
- Zhu, Y.; Gong, H. Beneficial Effects of Silicon on Salt and Drought Tolerance in Plants. Agron. Sustain. Dev. 2014, 34, 455–472. [Google Scholar] [CrossRef]
- Leal-Costa, M.V.; Aragão, F.J.L.; Tavares, E.S. Anatomia foliar de plantas transgênicas e não transgênicas de Glycine max (L.) Merrill (Fabaceae). Rev. Biociências 2008, 14, 23–31. [Google Scholar]
- Lackey, J.A. Leaflet Anatomy of Phaseoleae (Leguminosae: Papilionoideae) and Its Relation to Taxonomy. Bot. Gaz. 1978, 139, 436–446. [Google Scholar] [CrossRef]
- Silva, L.M.; Alquini, Y.; Cavallet, V.J. Inter-relações entre a anatomia vegetal e a produção vegetal. Acta Bot. Bras. 2005, 19, 183–194. [Google Scholar] [CrossRef]
- Kunwar, I.K.; Singh, T.; Sinclair, J.B. Histopathology of Mixed Infections by Colletotrichum truncatum and Phomopsis spp. or Cercospora sojina in Soybean Seeds. Phytopathology 1985, 75, 489–492. [Google Scholar] [CrossRef]
- Fisher, D.B. An Unusual Layer of Cells in the Mesophyll of the Soybean Leaf. Bot. Gaz. 1967, 128, 215–218. [Google Scholar] [CrossRef]
- Metcalfe, C.R.; Chalk, L.; Metcalfe, C.R.; Chalk, L. Anatomy of the Dicotyledons: Volume I: Systematic Anatomy of Leaf and Stem, with a Brief History of the Subject, 2nd ed.; Oxford University Press: Oxford, NY, USA, 1980; ISBN 978-0-19-854383-1. [Google Scholar]
- Buttery, B.R.; Tan, C.S.; Buzzell, R.I.; Gaynor, J.D.; MacTAVISH, D.C. Stomatal Numbers of Soybean and Response to Water Stress. Plant Soil 1993, 149, 283–288. [Google Scholar] [CrossRef]
- de Santana, J.R.F.; Paiva, R.; Resende, R.K.S.; de Castro, E.M.; Pereira, F.D.; Oliveira, L.M. Estímulo do comportamento fotoautotrófico durante o enraizamento in vitro de Annona glabra L., II. Aspectos da anatomia da folha antes da aclimatização. Ciênc. Agrotec. 2008, 32, 640–644. [Google Scholar] [CrossRef]
- Justo, C.F.; Soares, Â.M.; Gavilanes, M.L.; de Castro, E.M. Plasticidade anatômica das folhas de Xylopia brasiliensis Sprengel (Annonaceae). Acta Bot. Bras. 2005, 19, 112–123. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, Q.; Xu, C.; Li, J.; Qin, G. Rapid Estimation of Stomatal Density and Stomatal Area of Plant Leaves Based on Object-Oriented Classification and Its Ecological Trade-Off Strategy Analysis. Forests 2018, 9, 616. [Google Scholar] [CrossRef]
- Kardiman, R.; Ræbild, A. Relationship between Stomatal Density, Size and Speed of Opening in Sumatran Rainforest Species. Tree Physiol. 2018, 38, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J. Drought-Inhibition of Photosynthesis in C3 Plants: Stomatal and Non-Stomatal Limitations Revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Lawson, T.; Blatt, M.R. Stomatal Size, Speed, and Responsiveness Impact on Photosynthesis and Water Use Efficiency. Plant Physiol. 2014, 164, 1556–1570. [Google Scholar] [CrossRef]
- Tonello, M.S.; Korchagin, J.; Bortoluzzi, E.C. Environmental Agate Mining Impacts and Potential Use of Agate Residue in Rangeland. J. Clean. Prod. 2021, 280, 124263. [Google Scholar] [CrossRef]
Features | Units | Soils 3 | |
---|---|---|---|
TQ | RH | ||
pH (CaCl2) | - | 4.4 ± 0.0 | 3.9 ± 0.0 |
Soil organic matter (SOM) | g kg−1 | 12 ± 0.0 | 13 ± 0.0 |
P | mg kg−1 | 2 ± 0.0 | 3 ± 0.0 |
K | mmolc kg−1 | 0.4 ± 0.1 | 0.3 ± 0.1 |
Ca | mmolc kg−1 | 3 ± 0.0 | 1 ± 0.5 |
Mg | mmolc kg−1 | 3 ± 0.6 | 1 ± 0.0 |
Al | mmolc kg−1 | 4 ± 0.6 | 11 ± 1.0 |
H + Al | mmolc kg−1 | 25 ± 0.0 | 36 ± 2.3 |
SB | mmolc kg−1 | 6.4 ± 0.6 | 2.3 ± 0.5 |
S-SO4 | mg kg−1 | 5 ± 0.6 | 4 ± 0.6 |
CEC | mmolc kg−1 | 31.4 ± 0.6 | 38.3 ± 1.8 |
BS | % | 20 ± 1.7 | 6 ± 1.7 |
B | mg kg−1 | 0.10 ± 0.0 | 0.18 ± 0.1 |
Cu (DTPA) | mg kg−1 | 1.4 ± 0.1 | 0.9 ± 0.1 |
Fe (DTPA) | mg kg−1 | 24 ± 1.0 | 24 ± 1.0 |
Mn (DTPA) | mg kg−1 | 3.5 ± 0.2 | 7.2 ± 3.1 |
Zn (DTPA) | mg kg−1 | 0.1 ± 0.0 | 0.2 ± 0.1 |
Si 4 | mg kg−1 | 2.91 ± 0.1 | 2.11 ± 0.5 |
Sand (>0.05 mm) | g kg−1 | 774 ± 5.1 | 675 ± 3.2 |
Silt (>0.002 e < 0.05 mm) | g kg−1 | 35 ± 6.6 | 63 ± 4.0 |
Clay (<0.002 mm) | g kg−1 | 191 ± 2.6 | 262 ± 4.3 |
Block 1 | Block 2 | Block 3 | Block 4 |
---|---|---|---|
TQ (30) | RH (15) | TQ (7.5) | RH (30) |
RH (15) | TQ (60) | RH (0) | TQ (15) |
TQ (0) | RH (0) | RH (60) | TQ (60) |
RH (7.5) | TQ (30) | TQ (L + CMF) | RH (7.5) |
RH (60) | TQ (15) | TQ (15) | TQ (L + CMF) |
TQ (7.5) | RH (30) | RH (30) | RH (0) |
RH (L + CMF) | TQ (L + CMF) | RH (15) | TQ (7.5) |
TQ (L + CMF) | RH (L + CMF) | TQ (60) | RH (L + CMF) |
TQ (15) | RH (7.5) | RH (L + CMF) | RH (15) |
RH (30) | TQ (7.5) | TQ (30) | TQ (0) |
TQ (60) | TQ (0) | TQ (0) | TQ (30) |
RH (0) | RH (60) | RH (7.5) | RH (60) |
Treatment | pH | H + Al | Al | SB | CEC | BS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TQ | RH | TQ | RH | TQ | RH | TQ | RH | TQ | RH | TQ | RH | |
CaCl2 | mmolc kg−1 | % | ||||||||||
L + CMF | 5.40 ● | 4.38 ● | 17.00 ● | 31.00 ● | 0.00 ● | 3.50 ● | 27.95 ● | 19.15 ● | 44.95 ● | 50.15 ● | 62.25 ● | 38.25 ● |
SA rates (R) 2 | ||||||||||||
0 3 Mg ha−1 | 4.60 | 4.18 ● | 21.75 | 30.00 ● | 2.25 | 6.50 | 11.40 | 8.60 | 33.15 | 38.60 | 34.50 | 22.25 |
7.5 Mg ha−1 | 4.50 | 3.98 | 21.00 | 34.50 ● | 2.00 | 5.50 | 17.48 | 12.60 | 38.48 | 47.10 ● | 45.75 | 26.25 |
15 Mg ha−1 | 4.82 ● | 4.05 | 19.25 ● | 31.75 ● | 1.50 | 5.25 | 18.42 | 14.10 | 40.18 ● | 45.85 ● | 51.75 | 30.75 |
30 Mg ha−1 | 4.88 ● | 4.35 ● | 18.50 ● | 27.25 ● | 1.00 ● | 3.35 ● | 23.15 | 18.35 ● | 41.65 ● | 45.60 ● | 55.75 ● | 40.50 ● |
60 Mg ha−1 | 5.28 ● | 4.88 | 14.25 ● | 20.50 | 0.50 ● | 1.50 | 29.50 ● | 26.12 | 43.75 ● | 46.62 ● | 67.25 ● | 56.00 |
Soil (S) | 4.82 A | 4.29 B | 18.95 B | 28.80 A | 1.45 B | 4.40 A | 19.99 A | 15.96 B | 39.44 B | 44.76 A | 62.25 A | 38.25 B |
F test | ||||||||||||
Rate (R) | 13.78 ** | 21.20 ** | 24.58 ** | 115.68 ** | 9.74 ** | 87.11 ** | ||||||
Soil (S) | 46.50 ** | 158.49 ** | 145.87 ** | 52.42 ** | 26.51 ** | 171.22 ** | ||||||
R × S | 0.73 NS | 3.03 * | 5.80 ** | 0.54 NS | 0.89 NS | 2.53 NS | ||||||
CV (%) | 5.34 | 10.35 | 28.30 | 9.32 | 7.59 | 8.65 |
Treatment | P | Ca | Mg | Si | ||||
---|---|---|---|---|---|---|---|---|
TQ | RH | TQ | RH | TQ | RH | TQ | RH | |
mg kg−1 | mmolc kg−1 | mg kg−1 | ||||||
L + CMF | 21.75 ● | 25.75 ● | 18.25 ● | 13.25 ● | 9.00 ● | 5.25 ● | 5.12 ● | 6.65 ● |
SA rates (R) 2 | ||||||||
0 and (3) Mgha−1 | 15.00 ● | 16.75 | 8.00 | 5.75 | 2.75 | 2.25 | 5.80 ● | 5.62 |
7.5 Mg ha−1 | 18.75 ● | 15.00 | 13.00 | 9.50 | 3.75 | 2.50 | 5.50 ● | 5.75 |
15 Mg ha−1 | 19.75 ● | 18.00 | 14.00 | 11.00 ● | 3.75 | 2.50 | 5.76 ● | 5.88 ● |
30 Mg ha−1 | 19.75 ● | 23.50 ● | 18.50 ● | 14.50 ● | 4.00 | 3.25 | 6.06 ● | 6.82 ● |
60 Mg ha−1 | 26.25 ● | 28.00 ● | 25.00 | 21.75 | 3.75 | 3.75 | 7.55 | 7.20 ● |
Soil (S) | 19.90 A | 20.25 A | 15.79 A | 12.50 B | 3.60 A | 2.85 B | 6.13 A | 6.26 A |
F test | ||||||||
Rate (R) | 16.16 ** | 173.26 ** | 4.77 ** | 18.04 ** | ||||
Soil (S) | 0.12 NS | 57.36 ** | 13.67 ** | 0.64 NS | ||||
R × S | 1.82 NS | 0.47 NS | 1.37 NS | 1.55 NS | ||||
CV (%) | 15.34 | 9.30 | 16.56 | 7.94 |
Treatment | P | Ca | Mg | Si | ||||
---|---|---|---|---|---|---|---|---|
TQ | RH | TQ | RH | TQ | RH | TQ | RH | |
mg per plant | ||||||||
L + CMF | 56.30 ● | 50.14 ● | 112.44 ● | 127.86 ● | 61.16 ● | 68.00 ● | 19.38 ● | 13.38 ● |
SA rates (R) (1) | ||||||||
0 (2) Mg ha−1 | 45.02 | 47.02 ● | 126.89 ● | 113.01 ● | 56.80 ● | 56.84 ● | 9.05 | 17.09 |
7.5 Mg ha−1 | 46.61 ● | 45.74 ● | 161.36 | 115.67 ● | 66.96 ● | 53.35 ● | 10.47 | 14.67 ● |
15 Mg ha−1 | 46.88 ● | 44.39 ● | 133.08 ● | 115.74 ● | 58.66 ● | 50.76 ● | 11.02 | 16.39 |
30 Mg ha−1 | 48.42 ● | 44.91 ● | 131.98 ● | 120.81 ● | 58.36 ● | 54.16 ● | 15.26 | 14.71 ● |
60 Mg ha−1 | 47.83 ● | 44.55 ● | 146.76 ● | 158.97 ● | 64.90 ● | 55.85 ● | 13.28 | 15.22 ● |
Soil (S) | 46.95 A | 45.32 A | 140.02 A | 124.84 B | 61.14 A | 54.19 B | 11.81 B | 15.61 A |
F test | ||||||||
Rate (R) | 0.06 NS | 4.13 ** | 0.77 NS | 2.57 NS | ||||
Soil (S) | 1.38 NS | 6.68 * | 7.43 * | 51.04 ** | ||||
R × S | 0.54 NS | 2.47 NS | 0.82 NS | 7.62 ** | ||||
CV (%) | 9.28 | 14.24 | 13.69 | 11.87 |
Treatment | PH | ADM | |||
---|---|---|---|---|---|
TQ | RH | TQ | RH | ||
cm | g | ||||
L + CMF | 97.25 ● | 100.25 ● | 20.76 ● | 21.64 ● | |
SA rates (R) (1) | |||||
0 (2) Mg ha−1 | 96.75 ● | 116.25 ● | 18.49 ● | 21.14 ● | |
7.5 Mg ha−1 | 110.25 ● | 108.25 ● | 19.96 ● | 21.58 ● | |
15 Mg ha−1 | 105.00 ● | 109.50 ● | 18.99 ● | 21.26 ● | |
30 Mg ha−1 | 107.25 ● | 108.00 ● | 19.61 ● | 21.64 ● | |
60 Mg ha−1 | 113.00 ● | 108.50 ● | 19.38 ● | 19.79 ● | |
Soil (S) | 106.45 A | 110.10 A | 19.29 B | 21.08 A | |
F test | |||||
Rate (R) | 0.43 NS | 0.90 NS | |||
Soil (S) | 2.42 NS | 14.13 ** | |||
R × S | 3.27 * | 0.65 NS | |||
CV (%) | 6.94 | 7.42 |
Treatment | Adaxial Epidermis | Abaxial Epidermis | Palisade Parenchyma | Spongy Parenchyma | Total Thickness | |||||
---|---|---|---|---|---|---|---|---|---|---|
TQ | RH | TQ | RH | TQ | RH | TQ | RH | TQ | RH | |
µm | ||||||||||
SA rates (R)(1) | ||||||||||
0 (2) Mg ha−1 | 5.37 a | 5.10 a | 5.06 a | 5.44 a | 17.04 a | 16.85 a | 38.11 a | 38.76 a | 65.45 a | 66.45 a |
30 Mg ha−1 | 5.21 a | 5.08 a | 5.75 a | 5.73 a | 17.36 a | 17.90 a | 38.67 a | 36.56 a | 66.86 a | 66.11 a |
60 Mg ha−1 | 5.52 a | 5.05 a | 5.56 a | 6.22 a | 17.49 a | 16.31 a | 40.90 a | 34.94 a | 70.20 a | 62.60 a |
Soil (S) | 5.37 A | 5.07 A | 5.46 A | 5.80 A | 17.30 A | 17.02 A | 39.23 A | 36.75 A | 67.50 A | 65.05 A |
F test | ||||||||||
Rate (R) | 0.17 NS | 2.56 NS | 0.30 NS | 0.02 NS | 0.01 NS | |||||
Soil (S) | 2.00 NS | 1.92 NS | 0.10 NS | 0.63 NS | 0.37 NS | |||||
R × S | 0.23 NS | 0.67 NS | 0.34 NS | 0.38 NS | 0.42 NS | |||||
CV (%) | 9.66 | 10.59 | 12.25 | 20.09 | 14.96 |
Treatment | Adaxial Stomata | Abaxial Stomata | ||
---|---|---|---|---|
TQ | RH | TQ | RH | |
tomata per mm2 | ||||
SA rates (R) (1) | ||||
0 (2) Mg ha−1 | 159.71 b | 160.97 b | 348.53 a | 385.62 a |
30 Mg ha−1 | 173.85 a | 220.81 a | 347.72 a | 375.88 a |
60 Mg ha−1 | 189.50 a | 239.54 a | 401.93 a | 387.60 a |
Soil (S) | 174.35 B | 207.11 A | 366.06 A | 383.03 A |
F test | ||||
Rate (R) | 11.31 ** | 0.69 NS | ||
Soil (S) | 11.88 ** | 0.48 NS | ||
R × S | 2.75 NS | 0.42 NS | ||
CV (%) | 12.21 | 16.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho Ribeiro, M.; Ganga, A.; Cattanio, I.S.; Martins, A.R.; Alves, R.S.; Lessa, L.G.F.; Pereira, H.S.; Galindo, F.S.; Filho, M.C.M.T.; Abreu-Junior, C.H.; et al. Residual Effect of Silicate Agromineral Application on Soil Acidity, Mineral Availability, and Soybean Anatomy. Agronomy 2025, 15, 5. https://doi.org/10.3390/agronomy15010005
de Carvalho Ribeiro M, Ganga A, Cattanio IS, Martins AR, Alves RS, Lessa LGF, Pereira HS, Galindo FS, Filho MCMT, Abreu-Junior CH, et al. Residual Effect of Silicate Agromineral Application on Soil Acidity, Mineral Availability, and Soybean Anatomy. Agronomy. 2025; 15(1):5. https://doi.org/10.3390/agronomy15010005
Chicago/Turabian Stylede Carvalho Ribeiro, Mariana, Antonio Ganga, Isabella Silva Cattanio, Aline Redondo Martins, Rodrigo Silva Alves, Luís Gustavo Frediani Lessa, Hamilton Seron Pereira, Fernando Shintate Galindo, Marcelo Carvalho Minhoto Teixeira Filho, Cassio Hamilton Abreu-Junior, and et al. 2025. "Residual Effect of Silicate Agromineral Application on Soil Acidity, Mineral Availability, and Soybean Anatomy" Agronomy 15, no. 1: 5. https://doi.org/10.3390/agronomy15010005
APA Stylede Carvalho Ribeiro, M., Ganga, A., Cattanio, I. S., Martins, A. R., Alves, R. S., Lessa, L. G. F., Pereira, H. S., Galindo, F. S., Filho, M. C. M. T., Abreu-Junior, C. H., Capra, G. F., Jani, A. D., & Nogueira, T. A. R. (2025). Residual Effect of Silicate Agromineral Application on Soil Acidity, Mineral Availability, and Soybean Anatomy. Agronomy, 15(1), 5. https://doi.org/10.3390/agronomy15010005