Growth, Development and Reproduction of Meadow Moth Loxostege sticticalis Fed on Pea Seedlings Grown Under Elevated CO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pea Plants
2.2. Meadow Moths
2.3. Determination of Nutrients and Defensive Substances in Pea Seedlings Grown Under aCO2 and eCO2
2.4. Determination of Growth, Development and Reproduction of L. sticticalis Fed on Pea Seedlings Grown Under aCO2 and eCO2
2.5. Bioassay for Nutritional Components and Enzyme Activity in L. sticticalis Fed on Pea Seedlings Grown Under aCO2 and eCO2
2.6. Data Analysis
3. Results
3.1. Impact of eCO2 on the Nutritional Components and Defensive Substances of Pea Seedlings
3.2. Impact of eCO2 on the Growth, Development and Reproduction of L. Sticticalis
3.3. Impact of eCO2 on the Nutritional Composition and Enzyme Activity in L. sticticalis Larvae
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montzka, S. The NOAA Annual Greenhouse Gas Index (AGGI). NOAA Global Monitoring Laboratory Website. 2022. Available online: https://gml.noaa.gov/aggi/aggi.html (accessed on 30 April 2023).
- Dafellowese, S. Influence of elevated CO2 on interspecific interactions at higher trophic levels. Glob. Chang. Biol. 2002, 8, 668–678. [Google Scholar]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef] [PubMed]
- Niziolek, O.K.; Berenbaum, M.R.; Delucia, E.H. Impact of elevated CO2 and increased temperature on Japanese beetle herbivory. Insect Sci. 2013, 20, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; He, S.Q.; Liu, Y.J.; Ke, R.; Hao, R.Q.; Gui, F.R. Comparative development and reproduction of Frankliniella occidentalis and F. intonsa (Thysanoptera: Thripidae) under elevated CO2 concentration. J. Environ. Entomol. 2015, 37, 701–709. [Google Scholar]
- Qian, L.; Chen, F.J.; Liu, J.N.; He, S.Q.; Liu, J.Y.; Li, Z.Y.; Gui, F.R. Effects of elevated CO2 on life-history traits of three successive generations of Frankliniella occidentalis and F. intonsa on kidney bean, Phaseolus vulgaris. Entomol. Exp. Et Appl. 2017, 165, 50–61. [Google Scholar] [CrossRef]
- Li, L.K.; Wang, M.F.; Pokharel, S.S.; Li, C.X.; Parajulee, M.N.; Chen, F.J.; Fang, W.P. Effects of elevated CO2 on foliar soluble nutrients and functional componenfigts of tea, and population dynamics of tea aphid, Toxoptera aurantii. Plant Physiol. Biochem. 2019, 145, 84–94. [Google Scholar] [CrossRef]
- Goufo, P.; Pereira, J.; Moutinho-Pereira, J.; Correia, C.M.; Figueiredo, N.; Carranca, C.; Rosa, E.A.S.; Trindade, H. Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environ. Exp. Bot. 2014, 99, 28–37. [Google Scholar] [CrossRef]
- Sun, Y.C.; Cao, H.F.; Yin, J.; Kang, L.; Ge, F. Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway. Plant Cell Environ. 2010, 33, 729–739. [Google Scholar] [CrossRef]
- Robinson, E.A.; Ryan, G.D.; Newman, J.A. A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlight the importance of interacting environmental and biological variables. New Phytol. 2012, 194, 321–336. [Google Scholar] [CrossRef]
- Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of phenolic compounds in plant-defensive mechanisms. In Plant Phenolics in Sustainable Agriculture; Springer Nature Singapore Pte., Ltd.: Singapore, 2020; pp. 517–532. [Google Scholar] [CrossRef]
- Hussain, M.; Debnath, B.; Qasim, M.; Bamisile, B.S.; Islam, W.; Hameed, M.S.; Wang, L.D.; Qiu, D.L. Role of saponins in plant defense against specialist herbivores. Molecules 2019, 24, 2067. [Google Scholar] [CrossRef]
- Li, N.; Han, X.; Feng, D.; Yuan, D.; Huang, L.J. Signaling Crosstalk between Salicylic Acid and Ethylene/Jasmonate in Plant Defense: Do We Understand What They Are Whispering? Int. J. Mol. Sci. 2019, 20, 671. [Google Scholar] [CrossRef] [PubMed]
- Zavala, J.A.; Gog, L.; Giacometti, R. Anthropogenic increase in carbon dioxide modifies plant–insect interactions. Ann. Appl. Biol. 2017, 170, 68–77. [Google Scholar] [CrossRef]
- Sun, Y.C.; Guo, H.J.; Zhu-Salzman, K.; Ge, F. Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. Plant Sci. 2013, 210, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Shinya, T.; Hojo, Y.; Desaki, Y.; Christeller, J.T.; Okada, K.; Shibuya, N.; Galis, I. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice. Sci. Rep. 2016, 6, 32537. [Google Scholar] [CrossRef]
- Senthil-Nathan, S. Effects of elevated CO2 on resistant and susceptible rice cultivar and its primary host, brown planthopper (BPH), Nilaparvata lugens (Stål). Sci. Rep. 2021, 11, 8905. [Google Scholar] [CrossRef]
- Xie, C.H.; Zhao, L.; Yang, Q.F.; Wang, Z.Y.; He, K.L. Direct Effects of Elevated CO2 Levels on the Fitness Performance of Asian Corn Borer (Lepidoptera:Crambidae) for Multigenerations. Environ. Entomol. 2015, 44, 1250–1257. [Google Scholar] [CrossRef]
- Li, B.P.; Guo, Q.; Meng, L. Effects of elevated CO2 concentration on development, reproduction, and food utilization of the Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). Sci. Agric. Sin. 2013, 46, 4464–4470. (In Chinese) [Google Scholar]
- Zhang, Y.F.; Dai, Y.; Wan, G.J.; Liu, B.; Xing, G.N.; Chen, F.J. Effects of Elevated CO2 on Plant Chemistry, Growth, Yield of Resistant Soybean, and Feeding of a Target Lepidoptera Pest, Spodoptera litura (Lepidoptera: Noctuidae). Environ. Entomol. 2018, 47, 848–856. [Google Scholar]
- Satishchandra, N.K.; Vaddi, S.; Naik, S.O.; Chakravarthy, A.K.; Atlihan, R. Effect of Temperature and CO2 on Population Growth of South American Tomato Moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on Tomato. J. Econ. Entomol. 2018, 111, 1614–1624. [Google Scholar] [CrossRef]
- Luo, L.Z.; Cheng, Y.X.; Tang, J.H.; Zhang, L.; Jiang, X.F. Temperature and humidity as key factors influencing the occurrence and damage of Mythimna separata. Plant Prot. 2016, 42, 1–8. (In Chinese) [Google Scholar]
- Chen, Z.Y.; Zhang, Z.; Zhang, Y.H. Research progress on the occurrence, damage, monitoring, and early warning technologies of the meadow moth. Chin. J. Appl. Entomol. 2021, 58, 552–564. (In Chinese) [Google Scholar]
- Zhang, L.; Jiang, X.F. Occurrence tendency and management strategies of the beet webworm, Loxostege sticticalis in China. Plant Prot. 2022, 48, 68–72. (In Chinese) [Google Scholar]
- Tang, J.H.; Luo, L.Z.; Jiang, J.X.; Cheng, Y.X.; Zhang, L. Effect of flight temperature on flight capacity, energy substances and fecundity of the beet webworm (Loxostege sticticalis L.). Chin. J. Appl. Entomol. 2023, 60, 1669–1678. (In Chinese) [Google Scholar]
- IPCC. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Gunderson, C.A.; Norby, R.J.; Wullschleger, S.D. Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO2: No loss of photosynthetic enhancement. Plant Cell Environ. 2010, 16, 797–807. [Google Scholar] [CrossRef]
- Hamilton, J.G.; Orla, D.; Mihai, A.; Zangerl, A.R.; Alistair, R.; Berenbaum, M.R.; Delucia, E.H. Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ. Entomol. 2005, 34, 479–485. [Google Scholar] [CrossRef]
- Mndela, M.; Tjelele, J.T.; Madakadze, I.C.; Mangwane, M.; Samuels, I.M.; Muller, F.; Pule, H.T. A global meta-analysis of woody plant responses to elevated CO2: Implications on biomass, growth, leaf N content, photosynthesis and water relations. Ecol. Process 2022, 11, 52. [Google Scholar] [CrossRef]
- He, P.; Hou, B.; Li, Y.; Xu, C.; Ma, P.; Lam, S.M.; Gil, V.; Yang, X.; Yang, X.; Zhang, L.; et al. Lipid Profiling Reveals Browning Heterogeneity of White Adipose Tissue by Β3-Adrenergic Stimulation. Biomolecules 2019, 9, 444. [Google Scholar] [CrossRef]
- Ryan, G.D.; Rasmussen, S.; Newman, J.A. Global atmospheric change and trophic interactions: Are there any general responses? In Plant Communication from an Ecological Perspective: Signaling and Communication in Plants; Baluška, F., Ninkovic, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 179–214. [Google Scholar] [CrossRef]
- Li, R.H. The Mechanism of Elevated CO2 Concentration on the Interaction of Two-Color Morphs of Pea Aphid and Vicia faba. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2017. (In Chinese). [Google Scholar]
- Moreno-Delafuente, A.; Fereres, A.; Viñuela, E.; Medina, P. Elevated carbon dioxide reduces Aphis gossypii intrinsic increase rates without affecting Aphidius colemani parasitism rate. Biol. Control 2021, 163, 104741. [Google Scholar] [CrossRef]
- Guo, D.; Li, J.R.; Wang, Y.Z.; Cao, N.; Fang, X.L.; Wang, T.; Dong, J.L. The jasmonate pathway promotes nodule symbiosis and suppresses host plant defense in Medicago truncatula. Mol. Plant 2024, 17, 1183–1203. [Google Scholar] [CrossRef]
- Pan, L.H.; Miao, H.Y.; Wang qm Walling, L.L.; Liu, S.S. Virus-induced phytohormone dynamics and their effects on plant–insect interactions. New Phytol. 2021, 230, 1305–1320. [Google Scholar] [CrossRef]
- Grunseich, J.M.; Thompson, M.N.; Aguirre, N.M.; Helms, A.M. The Role of Plant-Associated Microbes in Mediating Host-Plant Selection by Insect Herbivores. Plants Life Sci. 2019, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Pang, P. Effects of Sustained High CO2 Concentration Stress on the Growth and Development of Helicoverpa armigera and Functional Role of Bacillus safensis AN1. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2019. (In Chinese). [Google Scholar]
- Richard, D. Human Glutathione Transferases Structure, Function, and Implications in Health and Disease. Pharm. Bioprocess. 2023, 11, 4. [Google Scholar]
- Zhang, Y.F.; Deng, F.; Fan, Y.L.; Zhao, Z.W. Effects of carboxylesterase gene silence on wheat aphid Sitobion avenae (Fabricius). J. Asia-Pac. Entomol. 2016, 19, 341–345. [Google Scholar] [CrossRef]
- Zhuge, X.L.; Xu, H.; Xiu, Z.J.; Yang, H.L. Biochemical Functions of Glutathione S-Transferase Family of Salix babylonica. Front. Plant Sci. 2020, 11, 364. [Google Scholar] [CrossRef]
- Gao, Y.P.; Luo, M.; Wang, X.Y.; He, X.Z.; Lu, W.; Zheng, X.L. Pathogenicity of Beauveria bassiana PfBb and Immune Responses of a Non-Target Host, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insect 2022, 13, 914. [Google Scholar] [CrossRef]
- Nahrstedt, A. The Significance of Secondary Metabolites for Interactions between Plants and Insects. Planta Med. 1989, 55, 333–338. [Google Scholar] [CrossRef]
- Nishida, R. Chemical ecology of insect-plant interactions: Ecological significance of plant secondary metabolites. Biosci. Biotechnol. Biochem. 2014, 78, 1–13. [Google Scholar] [CrossRef]
- Fan, Z.F.; Qian, L.; Chen, Y.P.; Fan, R.; He, S.Q.; Gao, Y.L.; Gui, F.R. Effects of elevated CO2 on activities of protective and detoxifying enzymes in Frankliniella occidentalis and F. intonsa under spinetoram stress. Pest Manag. Sci. 2022, 78, 274–286. [Google Scholar] [CrossRef]
Measured Indexes | aCO2 | eCO2 | One-Way ANOVA (F/p Values) | |
---|---|---|---|---|
Nutritional components | Soluble sugar (mg/g) | 115.97 ± 9.92 a | 165.28 ± 7.53 b | F (1,8) = 3.958/ p = 0.017 * |
Soluble protein (mg/g) | 64.21 ± 13.3 a | 113.69 ± 10.02 b | F (1,8) = 2.971/ p = 0.041 * | |
Total amino acid (mg/g) | 0.08 ± 0.01 a | 0.13 ± 0.02 b | F (1,8) = 3.064/ p = 0.038 * | |
Free fatty acid (μmol/mg) | 0.55 ± 0.07 a | 0.52 ± 0.01 a | F (1,8) = 0.541/ p = 0.642 | |
Defensive substances | Total phenols (μmol/g) | 7.33 ± 0.46 a | 8.84 ± 0.24 b | F (1,8) = 2.920/ p = 0.027 * |
Saponin (μg/mg) | 7.13 ± 0.24 a | 8.09 ± 0.42 a | F (1,8) = 1.984/ p = 0.095 | |
Ethylene (ng/g) | 1.91 ± 0.22 a | 3.28 ± 0.46 b | F (1,8) = 2.688/ p = 0.036 * | |
Salicylic acid (pmol/g) | 5.67 ± 0.51 a | 6.27 ± 0.73 a | F (1,8) = 0.632/ p = 0.547 | |
Jasmonic acid (pmol/g) | 5.08 ± 0.35 a | 6.92 ± 0.63 b | F (1,8) = 2.551/ p = 0.043 * |
Measured Indexes | F Value | p Value | |
---|---|---|---|
Duration (days) | Egg | F (1, 17 8 ) = 2.420 | p = 0.020 * |
Larva | F (1,98) = 6.782 | p < 0.001 *** | |
Pupa | F (1,98) = 4.707 | p < 0.001 *** | |
Adult longevity (days) | F (1,78) = 2.723 | p = 0.008 ** | |
No. of eggs laid per female | F (1,38) = 0.671 | p = 0.512 | |
Pupal weight (mg) | F (1,98) = 0.287 | p = 0.755 |
Measured Indexes | aCO2 | eCO2 | One-Way ANOVA (F/p Values) | |
---|---|---|---|---|
Nutritional components | Soluble sugar (mg/g) | 120.19 ± 5.85 a | 192.33 ± 7.73 b | F (1,8) = 7.441 / p = 0.002 ** |
Soluble protein (mg/g) | 207.54 ± 27.44 a | 351.15 ± 7.75 b | F (1,8) = 5.036 / p = 0.007 ** | |
Total amino acid (mg/g) | 0.12 ± 0.00 a | 0.23 ± 0.01 b | F (1,8) = 11.007 / p < 0.001 *** | |
Free fatty acid (μmol/mg) | 4.34 ± 0.23 a | 3.16 ± 0.35 b | F (1,8) = 2.894 / p = 0.046 * | |
Enzyme activity (U/mg) | Superoxide dismutase (SOD) | 1.67 ± 0.02 a | 2.02 ± 0.21 a | F (1,8) = 1.657 / p = 0.238 |
Catalase (CAT) | 327.31 ± 50.98 a | 512.9 ± 16.62 b | F (1,8) = 3.461 / p = 0.026 * | |
Peroxidase (POD) | 102.48 ± 13.29 a | 167.95 ± 5.32 b | F (1,8) = 4.573 / p = 0.010 * | |
Carboxylesterase (CarE) | 85.86 ± 12.29 a | 195.83 ± 35.52 b | F (1,8) = 2.926 / p = 0.043 * | |
Glutathione-s-transferase (GST) | 15.43 ± 3.07 a | 29.85 ± 0.69 b | F (1,8) = 4.581 / p = 0.037 * | |
Acetylcholinesterase (AChE) | 4.30 ± 0.28 a | 4.40 ± 0.35 a | F (1,8) = 0.218 / p = 0.838 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Xu, Z.; Yu, Z.; Mai, H.; Huang, J.; Chang, X.; Chen, F. Growth, Development and Reproduction of Meadow Moth Loxostege sticticalis Fed on Pea Seedlings Grown Under Elevated CO2. Agronomy 2025, 15, 30. https://doi.org/10.3390/agronomy15010030
Zhou J, Xu Z, Yu Z, Mai H, Huang J, Chang X, Chen F. Growth, Development and Reproduction of Meadow Moth Loxostege sticticalis Fed on Pea Seedlings Grown Under Elevated CO2. Agronomy. 2025; 15(1):30. https://doi.org/10.3390/agronomy15010030
Chicago/Turabian StyleZhou, Jingxian, Zun Xu, Zuoheng Yu, Huirong Mai, Jiacheng Huang, Xiaoli Chang, and Fajun Chen. 2025. "Growth, Development and Reproduction of Meadow Moth Loxostege sticticalis Fed on Pea Seedlings Grown Under Elevated CO2" Agronomy 15, no. 1: 30. https://doi.org/10.3390/agronomy15010030
APA StyleZhou, J., Xu, Z., Yu, Z., Mai, H., Huang, J., Chang, X., & Chen, F. (2025). Growth, Development and Reproduction of Meadow Moth Loxostege sticticalis Fed on Pea Seedlings Grown Under Elevated CO2. Agronomy, 15(1), 30. https://doi.org/10.3390/agronomy15010030