A Monthly Water Balance Model for Vineyard Planning and Inter-Row Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.1.1. Water Surplus: Direct Runoff and Deep Percolation
2.1.2. Potential Evapotranspiration (PE)
2.1.3. Actual Evapotranspiration
Vine Crop Coefficient (Kc)
Vineyard Management
2.1.4. Soil Water Storage Computation and Dynamics
Maximum Soil Water Storage (AWC)
Soil Water Dynamics
2.1.5. Vine Water Stress Assessment
2.2. Model Application at Vineyard and Farm Scale
2.2.1. Model Application at Vineyard Scale: Set Up of the Experimental Site
2.2.2. Application of the Model at Farm Scale: Simulations for Planning New Vineyards Under Future Climatic Scenario
2.2.3. Statistics
3. Results and Discussion
3.1. Model Application at Vineyard Scale
3.1.1. Site and Soil Characteristics
3.1.2. Model Performance for the Experimental Site: Validation Results
3.1.3. Vine Production
3.2. Model Application at Farm Scale
3.2.1. Results of Geographical and Pedological Data Processing
3.2.2. Model Results in View of Planning New Vineyards Under Future Climate Scenario
4. Conclusions
- It contributes to fill the gap between wine growers or agronomist consultants and the research sector.
- It provides ready-to-use decision support models for designing new vineyards.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Potential Evapotranspiration (PE)
Appendix A.2. Exposed Leaf Area (ELA)
Appendix A.3. Vine Crop (Kc) and Cover Crop (Kcc) Coefficient Monthly Correction in Relation to Soil Water Avalability
Appendix A.4. Soil Water Dynamics
References
- Darouich, H.; Ramos, T.B.; Pereira, L.S.; Rabino, D.; Bagagiolo, G.; Capello, G.; Simionesei, L.; Cavallo, E.; Biddoccu, M. Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation. Water 2022, 14, 554. [Google Scholar] [CrossRef]
- Palliotti, A.; Panara, F.; Silvestroni, O.; Lanari, V.; Sabbatini, P.; Howell, G.; Gatti, M.; Poni, S. Influence of mechanical postveraison leaf removal apical to the cluster zone on delay of fruit ripening in Sangiovese (Vitis vinifera L.) grapevines. Aust. J. Grape Wine Res. 2013, 19, 369–377. [Google Scholar] [CrossRef]
- Buesa, I.; Caccavello, G.; Basile, B.; Merli, M.C.; Poni, S.; Chirivella, C.; Intrigliolo, D.S. Delaying berry ripening of Bobal and Tempranillo grapevines by late leaf removal in a semi-arid and temperate-warm climate under different water regimes. Aust. J. Grape Wine Res. 2019, 25, 70–82. [Google Scholar] [CrossRef]
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómez, H.; Metay, A. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. 2018, 251, 158–170. [Google Scholar] [CrossRef]
- (EU) 2018/1981; Commission Implementing Regulation (EU) 2018/1981 of 13 December 2018 Renewing the Approval of the Active Substances Copper Compounds, as Candidates for Substitution, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011 (Text with EEA Relevance). European Commission: Brussels, Belgium, 2018.
- (EU) 2021/2115; Regulation (EU) 2021/2115 of the European Parliament and of the Council of 2 December 2021 Establishing Rules on Support for Strategic Plans to Be Drawn Up by Member States Under the Common Agricultural Policy (CAP Strategic Plans) and Financed by the European Agricultural Guarantee Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD) and Repealing Regulations (EU) No 1305/2013 and (EU) No 1307/2013. European Parliament and of the Council: Brussels, Belgium, 2021.
- Shackelford, G.E.; Kelsey, R.; Dicks, L.V. Effects of cover crops on multiple ecosystem services: Ten meta-analyses of data from arable farmland in California and the Mediterranean. Land Use Policy 2019, 88, 104204. [Google Scholar] [CrossRef]
- Yousefi, M.; Marja, R.; Barmettler, E.; Six, J.; Dray, A.; Ghazoul, J. The effectiveness of intercropping and agri-environmental schemes on ecosystem service of biological pest control: A meta-analysis. Agron. Sustain. Dev. 2024, 44, 15. [Google Scholar] [CrossRef]
- Knowling, M.J.; Bennett, B.; Ostendorf, B.; Westra, S.; Pellegrino, A.; Edwards, E.J.; Collins, V.; Pagay, D. Grigg. Bridging the gap between data and decisions: A review of process-based models for viticulture. Agric. Syst 2021, 193, 103209. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model stics. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Walker, R.R. VineLOGIC Virtual Vineyard. In User’s Manual Version 2; CRC for Viticulture Technologies Pty Ltd.: Adelaide, SA, Australia, 2006; ISBN 0-9581057-3-1. [Google Scholar]
- Pelak, N.; Revelli, R.; Porporato, A. A dynamical systems framework for crop models: Toward optimal fertilization and irrigation strategies under climatic variability. Ecol. Model. 2017, 365, 80–92. [Google Scholar] [CrossRef]
- Terraclim. Available online: https://www.terraclim.co.za/ (accessed on 21 December 2024).
- Prevostini, M.; Taddeo, A.V.; Jermini, M.; Linder, C.; Petit, A. Monitoring Scaphoideus titanus and related in-field activities: The experience in Switzerland and France using PreDiVine DSS. In Proceedings of the IOBC-WPRS Conference of the Working Group on Integrated Protection and Production in Viticulture, Vienna, Austria, 20–23 October 2015; pp. 20–23. [Google Scholar]
- Rossi, V.; Salinari, F.; Poni, S.; Caffi, T.; Bettati, T. Addressing the implementation problem in agricultural decision support systems: The example of vite.net®. Comput. Electron. Agric. 2014, 100, 88–99. [Google Scholar] [CrossRef]
- Serrano, A.S.; Martínez-Gascueña, J.; Alonso, G.L.; Cebrián-Tarancón, C.; Carmona, M.D.; Mena, A.; Chacón-Vozmediano, J.L. Agronomic Response of 13 Spanish Red Grapevine (Vitis vinifera L.) Cultivars under Drought Conditions in a Semi-Arid Mediterranean Climate. Agronomy 2022, 12, 2399. [Google Scholar] [CrossRef]
- Williams, L.E.; Ayars, J.E. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. Forest Meteorol. 2005, 132, 201–211. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Araujo, E.S. Optimization of Vineyard Water Management: Challenges, Strategies, and Perspectives. Water 2021, 13, 746. [Google Scholar] [CrossRef]
- Zufferey, V.; Maigre, D. Vine plant age. I. Influence on physiological behaviour. Rev. Suis. Vitic. Arbor. Hort. 2007, 39, 257–261. [Google Scholar]
- Nader, K.B.; Stoll, M.; Rauhut, D.; Patz, C.; Jung, R.; Loehnertz, O.; Schultz, H.R.; Hilbert, G.; Renaud, C.; Roby, J.P.; et al. Impact of grapevine age on water status and productivity of Vitis vinifera L. cv. Riesling. Eur. J. Agron. 2019, 104, 10–12. [Google Scholar] [CrossRef]
- Deloire, A.; Carbonneau, A.; Wang, Z.; Ojeda, H. Vine and water: A short review. J. Int. Sci. Vigne Vin 2004, 38, 1–13. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Carbonneau, A. Aspects qualitatifs. In Proc. XXVIIth World Congress of Vine and Wine, Bratislava. Traité d’Irrigation; Tiercelin, J.R., Ed.; Tec et Doc Lavoisier: Paris, France, 1998; 1011p, pp. 258–276. [Google Scholar]
- Ojeda, H. Irrigation qualitative de précision de la vigne. Le Progrès Agric. Vitic. 2007, 7, 133–141. [Google Scholar]
- Herceg, A.; Kalicz, P.; Kisfaludi, B.; Gribovszki, Z. A monthly-step water balance model to evaluate the hydrological effects of climate change on a regional scale for irrigation design. Slovak J. Civ. Eng. 2016, 24, 27–35. [Google Scholar] [CrossRef]
- Hong, X.; Guo, S.; Chen, G.; Guo, N.; Jiang, C. A Modified Two-Parameter Monthly Water Balance Model for Runoff Simulation to Assess Hydrological Drought. Water 2022, 14, 3715. [Google Scholar] [CrossRef]
- Mammoliti, E.; Fronzi, D.; Mancini, A.; Valigi, D.; Tazioli, A. WaterbalANce, a WebApp for Thornthwaite–Mather Water Balance Computation: Comparison of Applications in Two European Watersheds. Hydrology 2021, 8, 34. [Google Scholar] [CrossRef]
- Thornthwaite, C.W.; Mather, J.R. Instructions and tables for computing potential evapotranspiration and the water balance: Centerton, N.J., Laboratory of Climatology. Publ. Climatol. 1957, 10, 185–311. [Google Scholar]
- Steenhuis, T.S.; Van der Molen, W.H. The Thornthwaite-Mather procedure as a simple engineering method to predict recharge. J. Hydrol. 1986, 84, 221–229. [Google Scholar] [CrossRef]
- Barros, F.d.C.; Martins, S.d.C.F.; Lyra, G.B.; Silva, L.D.B.d.; Francisco, J.P.; Abreu, M.C.d.; Lyra, G.B. Thornthwaite and Mather soil water balance model adapted for estimation of real evapotranspiration of the pasture. Eng. Na Agric. 2021, 29, 146–156. [Google Scholar] [CrossRef]
- Dourado-Neto, D.; van Lier, J.; Metselaar, K.; Reichardt, K.; Nielsen, D.R. General procedure to initialize the cyclic soil water balance by the Thornthwaite and Mather method. Sci. Agric. 2010, 67, 87–95. [Google Scholar] [CrossRef]
- Zhu, G.; Qin, D.; Tong, H.; Liu, Y.; Li, J.; Chen, D.; Wang, K.; Hu, P. Variation of Thornthwaite moisture index in Hengduan Mountains, China. Chin. Geogr. Sci. 2016, 26, 687–702. [Google Scholar] [CrossRef]
- Armiraglio, S.; Cerabolini, B.; Gandellini, F.; Gandini, P.; Andreis, C. Calcolo informatizzato del bilancio idrico del suolo. Nat. Brescia. Ann. Mus. Civ. Sc. Nat. Brescia 2003, 33, 209–216. [Google Scholar]
- Thornthwaite, C.W.; Mather, J.R. The water balance. Climatology 1955, 8, 1–104. [Google Scholar]
- Wu, W.Y.; Yang, Z.L.; Barlage, M. The Impact of Noah-MP Physical Parameterizations on Modeling Water Availability during Droughts in the Texas–Gulf Region. J. Hydrometeorol. 2021, 22, 1221–1233. [Google Scholar] [CrossRef]
- McCabe, G.J.; Markstrom, S.L. A Monthly Water-Balance Model Driven by a Graphical User Interface; U.S. Geological Survey Open-File Report 2007-1088; US Geological Survey: Reston, VA, USA, 2007; 6p. [CrossRef]
- Ferguson, B.K. Estimation of Direct Runoff in the Thornthwaite Water Balance. Prof. Geogr. 1996, 48, 263–271. [Google Scholar] [CrossRef]
- USDA-SCS (U.S. Department of Agriculture-Soil Conservation Service). SCS National Engineering Handbook, Section 4, Hydrology. Chapter 10, Estimation of Direct Runoff from Storm; USDA-SCS: Mountain View, WY, USA, 1972.
- Roux, S.; Delpuech, X.; Daudin, G.; Brun, F.; Wery, J.; Wallach, D. Providing user-oriented uncertainty information with a vineyard model used for irrigation decisions. In Practical Applications of Agricultural System Models to Optimize the Use of Limited Water; Ahuja, L.R., Ma, L., Lascano, R.J., Eds.; Advances in Agricultural Systems Modeling; ASA, SSSA, CSSA: Madison, WI, USA, 2014; pp. 183–208. [Google Scholar] [CrossRef]
- Abou Ali, A.; Bouchaou, L.; Er-Raki, S.; Hssaissoune, M.; Brouziyne, Y.; Ezzahar, J.; Khabba, S.; Chakir, A.; Labbaci, A.; Abdelghani, C. Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach. Agric. Water Manag. 2023, 275, 107997. [Google Scholar] [CrossRef]
- Pierce, L.; Nemani, R.; Johnson, L. VSIM—Vineyard Soil Irrigation Model—User’s Guide. 2006. Available online: https://www.scribd.com/document/70248217/Vsim-030106-Guide (accessed on 21 December 2024).
- Reynolds, A.G.; Vanden Heuvel, J.E. Influence of Grapevine Training Systems on Vine Growth and Fruit Composition: A Review. Am. J. Enol. Vitic. 2009, 60, 251–268. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Priori, S.; Costantini, E.A.C. Soil Mapping. In Beyond Zoning. A Three Year Study at Castello di Brolio; Costantini, E.A.C., Ed.; Polistampa: Firenze, Italy, 2013; pp. 23–41. ISBN 978-88-596-1224-7. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources; World Soil Resources Reports 103; FAO: Rome, Italy, 2006. [Google Scholar]
- Andrenelli, M.C.; Fiori, V.; Pellegrini, S. Soil particle-size analysis up to 250 micron by X-ray granulometer: Device set-up and regressions for data conversion into pipette-equivalent values. Geoderma 2013, 192, 380–393. [Google Scholar] [CrossRef]
- Sanesi, G. Guida Alla Descrizione Del Suolo. Progetto Finalizzato “Conservazione del Suolo”; CNR: Firenze, Italy, 1977; p. 157. [Google Scholar]
- Ravaz, L. Sur la brunissure de la vigne. Les Comptes Rendus L’académie Des Sci. 1903, 136, 1276–1278. [Google Scholar]
- Marchi, M.; Bucci, G.; Iovieno, P.; Ray, D. ClimateDT: A Global Scale-Free Dynamic Downscaling Portal for Historic and Future Climate Data. Environments 2024, 11, 82. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Glendon, S.; Duff, P.B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- SPSS Statistics Software; V20; IBM SPSS Statistics: Chicago, IL, USA, 2009.
- Bagnouls, F.; Gaussen, H. Dry Season and Xerothermic Index. Bull. Société d’Histoire Nat. Toulouse 1953, 88, 193–239. [Google Scholar]
- Lozano-Parra, J.; Pulido, M.; Lozano-Fondón, C.; Schnabel, S. How do Soil Moisture and Vegetation Covers Influence Soil Temperature in Drylands of Mediterranean Regions? Water 2018, 10, 1747. [Google Scholar] [CrossRef]
- Martínez-Vidaurre, J.M.; Pérez-Álvarez, E.P.; García-Escudero, E.; Ramos, M.C.; Peregrina, F. Differences in soil water holding capacity and available soil water along growing cycle can explain differences in vigour, yield, and quality of must and wine in the DOCa Rioja. Horticulturae 2024, 10, 320. [Google Scholar] [CrossRef]
- Costantini, E.A.C. (Ed.) Manual of Methods for Soil and Land Evaluation; Science Publisher: Enfield, NH, USA, 2009; p. 549. ISBN 978-1-57808-571-2. [Google Scholar]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point. Main Report; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Singh, R.; Srivastava, P.; Verma, P.; Singh, P.; Bhadouria, R.; Singh, V.K.; Singh, H.; Raghubanshi, A.S. Chapter 21. Exploring soil responses to various organic amendments under dry tropical agroecosystems. In Climate Change and Soil Interactions; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; pp. 583–612. [Google Scholar] [CrossRef]
- Nazaries, L.; Singh, B.P.; Sarker, J.R.; Fang, Y.Y.; Klein, M.; Singh, B.K. The response of soil multi-functionality to agricultural management practices can be predicted by key soil abiotic and biotic properties. Agric. Ecosyst. Environ. 2021, 307, 107206. [Google Scholar] [CrossRef]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Barbetti, R.; Criscuoli, I.; Valboa, G.; Vignozzi, N.; Pellegrini, S.; Andrenelli, M.C.; L’Abate, G.; Fantappiè, M.; Orlandini, A.; Lachi, A.; et al. A Regional 100 m Soil Grid-Based Geographic Decision Support System to Support the Planning of New Sustainable Vineyards. Agronomy 2024, 14, 596. [Google Scholar] [CrossRef]
Vineyard | E (m) | D (m) | Hl (m) | c (%) | LAI (m2 m−2) | kcM | R (m) | P (%) | kccM |
---|---|---|---|---|---|---|---|---|---|
Young | 2.00 | 0.40 | 1.00 | 50 | 0.60 | 0.324 | - | 0 | 0.000 |
Mature | 2.00 | 0.40 | 1.00 | 100 | 1.20 | 0.513 | 1.50 | 75 | 0.562 |
Month | Apr | May | Jun 1 ** | Jun 2 ** | Jul | Aug | Sept | Oct | Nov |
---|---|---|---|---|---|---|---|---|---|
a Phenological phase | Bud break | Growth of vine shoot | Cane maturation | Falling of leaves and root growth | |||||
Tolerance | None | None | Moderate | None | |||||
SWP * | <0.2 | <0.2 | 0.2–0.4 | <0.2 | |||||
b Phenological phase | Bud break and growth of vine shoot | Fruit set | Veraison | Falling of leaves and root growth | |||||
Veraison | Maturation | ||||||||
Tolerance | None | Moderate | High | Moderate | |||||
SWP * | <0.2 | 0.2–0.4 | 0.4–0.6 | 0.2–0.4 |
SWP (MPa) | Soil Water Stress | Vine Water Stress Tolerance | ||
---|---|---|---|---|
High | Moderate | None | ||
>0.6 | High | VH | VH | VH |
0.6–0.4 | Medium–High | M | H | VH |
0.4–0.2 | Lightؘ–Medium | N | M | H |
<0.2 | Absent | N | N | N |
Score | Class of Annual Water Stress Risk |
---|---|
>9 | Very High |
6–9 | High |
2–5 | Moderate |
<2 | Negligible |
Treatment | E | D | Hl | LAI | kcM | R | P | kccM |
---|---|---|---|---|---|---|---|---|
(m) | (m) | (m) | (m2 m−2) | (m) | (%) | |||
PG | 2.0 | 0.33 | 0.94 | 1.11 | 0.49 | 1.5 | 45 | 0.34 |
CT | 2.0 | 0.40 | 0.90 | 1.10 | 0.48 | - | 0.0 | - |
Treatment | HSG | H (m) | SK (%v) | Sand (%) | Clay (%) | Textural Class USDA | A | B | FC (mm) | WP (mm) | Max Field Moisture (mm) | Min Field Moisture (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CT | C | 0.75 | 30.7 | 31.5 | 21.4 | L | 6.6 × 10−4 | −4.98 | 148.9 | 79.6 | 197.7 | 79.5 |
1.6 × 10−4 | −7.42 | 185.7 | 74.5 | |||||||||
PG | D | 0.75 | 22.6 | 22.5 | 27.6 | CL | 7.0 × 10−4 | −5.42 | 185.9 | 93.9 | 210.5 | 130.0 |
8.6 × 10−5 | −7.85 | 202.7 | 77.9 |
Treatment | Hydrological Data | A | M | J1 | J2 | J | A | S | O | N |
---|---|---|---|---|---|---|---|---|---|---|
PG | PTF | −7.1 | −13.6 | −11.1 | −13.0 | −24.1 | −21.0 | −6.4 | −9.4 | −1.2 |
LAB | 1.3 | −4.5 | −0.9 | 0.6 | −6.9 | 1.4 | 5.9 | 3.1 | 4.4 | |
CT | PTF | −17.3 | −18.9 | −19.9 | −24.8 | −32.4 | −32.6 | −11.5 | −17.2 | −11.2 |
LAB | 3.1 | 2.1 | 2.4 | 0.7 | −2.7 | −1.0 | 7.3 | 6.9 | 8.1 |
Year | Yield (kg/Vine) | Berry Weight (g) | Cluster/Vine (n) | Ravaz Index | ||||
---|---|---|---|---|---|---|---|---|
Mean | St.Dev. | Mean | St.Dev. | Mean | St.Dev. | Mean | St.Dev. | |
PG | ||||||||
2020 | 2.23 | ±0.88 | 2.21 | ±0.21 | 8.00 | ±2.23 | 5.19 | ±0.95 |
2021 | 1.35 | ±0.64 | 1.58 | ±0.04 | 8.56 | ±1.67 | 3.31 | ±1.5 |
2022 | 0.66 | ±0.29 | 1.62 | ±0.25 | 7.40 | ±2.06 | 1.88 | ±0.2 |
CT | ||||||||
2020 | 1.31 | ±0.57 | 2.06 | ±0.17 | 4.89 | ±1.45 | 4.83 | ±4.42 |
2021 | 1.26 | ±0.67 | 1.81 | ±0.13 | 6.55 | ±2.11 | 4.68 | ±3.16 |
2022 | 0.73 | ±0.57 | 1.75 | ±0.23 | 6.80 | ±1.70 | 2.54 | ±1.19 |
TSU | Altitude (m asl) | Slope (%) | Aspect | Row Orientation | Area (ha) | Textural Class (USDA) | Soil Classification (WRB) |
---|---|---|---|---|---|---|---|
AGR1 | 429.3 (14.4) | 9.2 (1.7) | NW, S | U | 70.3 | CL | Skeleti Haplic Calcisols |
AGR2 | 417.2 (12) | 6.7 (1.3) | S, W | O | 13.9 | C | Hypocalcic Calcisols (Clayic) |
ARG | 319.1 (0.4) | 8 (3) | SW | U | 2.7 | CL | Alcali Haplic Cambisols (Siltic) |
CAS | 274.0 (2.7) | 10.8 (0.5) | W | U | 13.1 | SiCL | Skeleti Haplic Cambisols (Eutric) |
CAST | 461.8 (24.5) | 10.5 (2.7) | SW, W, E | U | 37.7 | SCL | Skeleti Haplic Regosols |
CEN1 | 306.8 (2.8) | 13.5 (1.2) | W, SW | U | 4.7 | SCL | Thapto Luvi Haplic Cambisols (Ruptic) |
CEN2 | 303.6 (10.9) | 12.7 (1.6) | SW | O | 2.4 | C | Profondi Cutanic Luvisols (Hypereutri c) |
GRO | 439.7 (15.9) | 11 (1.4) | SW, NE | U | 16.5 | CL | Skeleti Haplic Cambisols |
LEC1 | 324.1 (6.8) | 7.9 (0.6) | SE | U | 2.5 | CL | Rupti Cutanic Luvisols (Hypereutric) |
LEC2 | 320.5 (5.2) | 8.7 (1) | SE | U | 5.1 | SL | Eutri Brunic Arenosols |
MIN | 319.2 (14.8) | 12.1 (5.8) | NW, W | U | 3.8 | C | Eutri Endogleyic Stagnosols (Clayic) |
NEB | 338.5 (0) | 7.3 (0) | NW | U | 0.8 | SCL | Eutri Haplic Cambisols (Chromic) |
PIA1 | 242.9 (6.1) | 4.6 (0.7) | SW | U | 11.6 | CL | Manganiferri Luvic Stagnosols (Clayic) |
PIA2 | 252.3 (4.7) | 6.2 (2.9) | W | U | 1.3 | C | Cutani Vertic Luvisols (Hypereutric) |
SLC | 368.8 (37.1) | 5.8 (0.2) | SE | O | 1.8 | C | Cutani Vertic Luvisols (Hypereutric) |
TAR1 | 464.6 (14.9) | 6.6 (1.4) | S | U | 11.7 | SL | Colluvi Haplic Arenosols (Hypoluvic) |
TAR2 | 465.9 (14.9) | 11.3 (3.4) | SE | O | 4.6 | L | Eutri Haplic Cambisols (Skeletic) |
TAR3 | 440.2 (27.1) | 7.6 (3.7) | E | U | 2.7 | SL | Eutri Haplic Arenosols (Transportic) |
TOR | 347.5 (16.1) | 7.9 (2.8) | S, SW, W | O | 38.7 | SiC | Calcari Haplic Cambisols (Skeletic) |
TSU | HSG | H (m) | SK (%v) | Sand (%w) | Clay (%w) | A | B | FC (mm) | WP (mm) | AWC (mm) |
---|---|---|---|---|---|---|---|---|---|---|
AGR1 | D | 0.75 | 29.7 | 28.1 | 38.0 | 1.43 × 10−4 | −7.49 | 187.3 | 112.7 | 74.6 |
AGR2 | D | 0.75 | 10.0 | 19.3 | 49.5 | 1.34 × 10−4 | −9.23 | 289.3 | 191.5 | 97.8 |
ARG | D | 0.75 | 2.0 | 29.2 | 31.9 | 2.57 × 10−4 | −6.35 | 237.9 | 130.7 | 107.2 |
CAS | D | 0.75 | 19.0 | 14.0 | 37.6 | 5.44 × 10−4 | −6.57 | 228.9 | 128.2 | 100.7 |
CAST | B | 0.75 | 39.7 | 48.0 | 33.1 | 1.53 × 10−5 | −8.14 | 132.6 | 83.1 | 49.5 |
CEN1 | C | 0.75 | 10.0 | 50.7 | 21.7 | 7.12 × 10−5 | −6.14 | 170.6 | 91.8 | 78.8 |
CEN2 | D | 0.75 | 5.5 | 26.0 | 47.8 | 6.91 × 10−5 | −9.37 | 286.8 | 191.0 | 95.8 |
GRO | C | 0.75 | 52.5 | 30.3 | 39.1 | 1.03 × 10−4 | −7.78 | 126.2 | 77.4 | 48.8 |
LEC1 | C | 0.75 | 0.7 | 37.6 | 34.2 | 6.74 × 10−5 | −7.45 | 237.9 | 142.7 | 95.2 |
LEC2 | C | 0.75 | 6.0 | 70.9 | 11.1 | 4.38 × 10−5 | −5.36 | 133.0 | 65.3 | 67.7 |
MIN | D | 0.75 | 5.0 | 24.8 | 49.8 | 6.93 × 10−5 | −9.73 | 298.2 | 201.7 | 96.5 |
NEB | C | 0.75 | 25.0 | 48.0 | 30.1 | 2.39 × 10−5 | −7.56 | 159.3 | 96.3 | 63.0 |
PIA1 | D | 0.75 | 10.0 | 31.1 | 36.9 | 1.19 × 10−4 | −7.41 | 231.3 | 138.4 | 92.9 |
PIA2 | D | 0.75 | 18.0 | 34.9 | 42.5 | 3.47 × 10−5 | −8.97 | 221.2 | 144.6 | 76.6 |
SLC | D | 0.75 | 18.0 | 34.9 | 42.5 | 3.47 × 10−5 | −8.97 | 221.2 | 144.6 | 76.6 |
TAR1 | C | 0.75 | 10.0 | 63.2 | 14.8 | 4.83 × 10−5 | −5.69 | 142.6 | 73.0 | 69.6 |
TAR2 | C | 0.75 | 25.0 | 46.0 | 21.2 | 1.41 × 10−4 | −5.70 | 144.0 | 73.9 | 70.1 |
TAR3 | C | 0.75 | 10.0 | 63.8 | 17.6 | 2.27 × 10−5 | −6.32 | 148.1 | 81.1 | 67.0 |
TOR | D | 0.75 | 25.0 | 18.3 | 40.7 | 3.13 × 10−4 | −7.30 | 216.7 | 128.6 | 88.1 |
TSU | Apr | May | Jun 1 | Jun 2 | Jul | Aug | Sept | Oct | Nov | Annual Water Stress Risk | Vineyard Aspect | PEc (Jun–Aug) (mm) | AWC (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bud Break | Growth of Vine Shoot | Maturation | Falling of Leaves and Root Growth | ||||||||||
<0.2 | <0.2 | 0.2–0.4 | <0.2 | ||||||||||
None | None | Moderate | None | ||||||||||
CAS | N | N | N | N | N | M | N | N | N | Negligible | W | 442 | 50 |
GRO | N | N | N | N | N | M | N | N | N | Negligible | NE | 364 | 27 |
AGR2 | N | N | N | N | N | M | N | N | N | Negligible | W | 399 | 45 |
MIN | N | N | N | N | N | M | N | N | N | Negligible | W | 427 | 44 |
NEB | N | N | N | N | N | M | N | N | N | Negligible | NW | 373 | 30 |
AGR1 | N | N | N | N | H | H | N | N | N | Moderate | S | 484 | 34 |
TOR | N | N | N | N | N | H | N | N | N | Moderate | SW | 443 | 41 |
CAST | N | N | N | N | H | H | N | N | N | Moderate | E | 467 | 29 |
PIA1 | N | N | N | N | H | H | N | N | N | Moderate | SW | 490 | 44 |
LEC2 | N | N | N | N | H | H | N | N | N | Moderate | SE | 479 | 30 |
TAR1 | N | N | N | N | H | H | N | N | N | Moderate | S | 486 | 32 |
SLC | N | N | N | N | H | H | N | N | N | Moderate | SE | 493 | 39 |
TAR3 | N | N | N | N | N | H | N | N | N | Moderate | E | 425 | 29 |
LEC1 | N | N | N | N | H | H | N | N | N | Moderate | SE | 503 | 42 |
CEN2 | N | N | N | N | H | H | N | N | N | Moderate | SW | 480 | 45 |
PIA2 | N | N | N | N | H | H | N | N | N | Moderate | W | 478 | 39 |
ARG | N | N | N | N | H | H | N | N | N | Moderate | SW | 505 | 49 |
CEN1 | N | N | N | N | H | VH | N | N | N | High | SW | 534 | 38 |
TAR2 | N | N | N | N | H | VH | N | N | N | High | SE | 534 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrenelli, M.C.; Pellegrini, S.; Becagli, C.; Orlandini, A.; Perria, R.; Storchi, P.; Vignozzi, N. A Monthly Water Balance Model for Vineyard Planning and Inter-Row Management. Agronomy 2025, 15, 233. https://doi.org/10.3390/agronomy15010233
Andrenelli MC, Pellegrini S, Becagli C, Orlandini A, Perria R, Storchi P, Vignozzi N. A Monthly Water Balance Model for Vineyard Planning and Inter-Row Management. Agronomy. 2025; 15(1):233. https://doi.org/10.3390/agronomy15010233
Chicago/Turabian StyleAndrenelli, Maria Costanza, Sergio Pellegrini, Claudia Becagli, Alessandro Orlandini, Rita Perria, Paolo Storchi, and Nadia Vignozzi. 2025. "A Monthly Water Balance Model for Vineyard Planning and Inter-Row Management" Agronomy 15, no. 1: 233. https://doi.org/10.3390/agronomy15010233
APA StyleAndrenelli, M. C., Pellegrini, S., Becagli, C., Orlandini, A., Perria, R., Storchi, P., & Vignozzi, N. (2025). A Monthly Water Balance Model for Vineyard Planning and Inter-Row Management. Agronomy, 15(1), 233. https://doi.org/10.3390/agronomy15010233