A Multi-Year Study of Forchlorfenuron’s Effects on Physical Fruit Quality Parameters in A. chinensis var. chinensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Fruit Analysis and Storage Conditions
2.3. Fruit Weight Analysis
2.4. Sugar Content Analysis and Firmness
2.5. Statistical Analysis
3. Results
3.1. Application Strategy A1
3.2. Application Strategy A2
3.3. Application Strategy A3
3.4. Post-Harvest Performances
4. Discussion
4.1. CPPU Effect on Fruit Fresh Weigh
4.2. CPPU Effect on Fruit Firmness
4.3. CPPU Effect on Fruit Sugar Content
4.4. CPPU Effect on Fruit Dry Weight
4.5. CPPU Effect on Storability
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bons, H.K.; Kaur, M. Role of Plant Growth Regulators in Improving Fruit Set, Quality and Yield of Fruit Crops: A Review. J. Hortic. Sci. Biotechnol. 2020, 95, 137–146. [Google Scholar] [CrossRef]
- Kumar, A.; Rajan, R.; Pandey, K.; Ramprasad, R.R.; Kaur, G.; Vamshi, T.; Singh, T. Impact of New Generation Plant Growth Regulators on Fruit Crops—A Review. Hortic. Sci. 2024, 51, 1–22. [Google Scholar] [CrossRef]
- Rademacher, W. Plant Growth Regulators: Backgrounds and Uses in Plant Production. J. Plant Growth Regul. 2015, 34, 845–872. [Google Scholar] [CrossRef]
- Costa, G.; Spinelli, F.; Soto, A.; Nardozza, S.; Asteggiano, L.; Vittone, G. Use of Plant Bioregulators in Kiwifruit Production. Acta Hortic. 2011, 913, 337–344. [Google Scholar] [CrossRef]
- Fischer, T.C.; Halbwirth, H.; Roemmelt, S.; Sabatini, E.; Schlangen, K.; Andreotti, C.; Spinelli, F.; Costa, G.; Forkmann, G.; Treutter, D.; et al. Induction of Polyphenol Gene Expression in Apple (Malus × Domestica) after the Application of a Dioxygenase Inhibitor. Physiol. Plant. 2006, 128, 604–617. [Google Scholar] [CrossRef]
- Zahid, G.; Iftikhar, S.; Shimira, F.; Ahmad, H.M.; Kaçar, Y.A. An overview and recent progress of plant growth regulators (PGRs) in the mitigation of abiotic stresses in fruits: A review. Sci. Hortic. 2020, 309, 111621. [Google Scholar] [CrossRef]
- Costa, G.; Rocchi, L.; Farneti, B.; Busatto, N.; Spinelli, F.; Vidoni, S. Use of Nondestructive Devices to Support Pre- and Postharvest Fruit Management. Horticulturae 2016, 3, 12. [Google Scholar] [CrossRef]
- Greene, D.W. CPPU Influences Fruit Quality and Fruit Abscission of ‘McIntosh’ apples. HortScience 2001, 36, 1292–1295. [Google Scholar] [CrossRef]
- Tartarini, S.; Sansavini, S.; Ventura, M. CPPU Control of Fruit Morphogenesis in Apple. Sci. Hortic. 1993, 53, 273–279. [Google Scholar] [CrossRef]
- Zhang, C.; Whiting, M.D. Improving ‘Bing’ Sweet Cherry Fruit Quality with Plant Growth Regulators. Sci. Hortic. 2011, 127, 341–346. [Google Scholar] [CrossRef]
- Azuara, M.; González, M.-R.; Mangas, R.; Martín, P. Effects of the Application of Forchlorfenuron (CPPU) on the Composition of Verdejo Grapes. BIO Web Conf. 2023, 56, 01022. [Google Scholar] [CrossRef]
- Costa, G.; Biasi, R.; Brigati, S.; Morigi, M.; Antognozzi, E. Effect of a Cytokinin-like Compound (CPPU) on Kiwifruit (Actinidia deliciosa) Ripening and Storage Life. Acta Hortic. 1995, 379, 421–428. [Google Scholar] [CrossRef]
- Antognozzi, E.; Famiani, F.; Palliotti, A.; Tombesi, A. Effects of CPPU (Cytokinin) on Kiwifruit Productivity. In Proceedings of the VII International Symposium on Plant Growth Regulators in Fruit Production 329, Jerusalem, Israel, 14–19 June 1992; pp. 150–152. [Google Scholar] [CrossRef]
- Xie, X.; Rahman, M.M.; Qiao, C.; Guo, L.; Xie, H.; Pang, R.; Tian, F. Effect of forchlorfenuron (CPPU) on fruits quality and residue analysis in kiwifruits. J. Food Compos. Anal. 2024, 133, 106383. [Google Scholar] [CrossRef]
- Luo, J.; Guo, L.; Huang, Y.; Wang, C.; Qiao, C.; Pang, R.; Li, J.; Pang, T.; Wang, R.; Xie, H.; et al. Transcriptome Analysis Reveals the Effect of Pre-Harvest CPPU Treatment on the Volatile Compounds Emitted by Kiwifruit Stored at Room Temperature. Food Res. Int. 2017, 102, 666–673. [Google Scholar] [CrossRef]
- Rana, V.S.; Bhardwaj, V.; Rana, N. Influence of CPPU Alone and in Combination with Other Plant Bio-Regulators on Fruit Yield, Quality, and Harvest Maturity of ‘Allison’ Kiwifruit. Acta Hortic. 2011, 913, 401–410. [Google Scholar] [CrossRef]
- Famiani, F.; Antognozzi, E.; Tombesi, A.; Moscatello, S.; Battistelli, A. CPPU Induced Alterations in Source-Sink Relationships in Actinidia deliciosa. In Proceedings of the VIII International Symposium on Plant Bioregulation in Fruit Production 463, Valencia, Spain, 1–4 April 1997; pp. 306–310. [Google Scholar]
- Kim, J.G.; Takami, Y.; Mizugami, T.; Beppu, K.; Fukuda, T.; Kataoka, I. CPPU application on size and quality of hardy kiwifruit. Sci. Hortic. 2006, 110, 219–222. [Google Scholar] [CrossRef]
- Ainalidou, A.; Karamanoli, K.; Menkissoglu-Spiroudi, U.; Diamantidis, G.; Matsi, T. CPPU Treatment and Pollination: Their Combined Effect on Kiwifruit Growth and Quality. Sci. Hortic. 2015, 193, 147–154. [Google Scholar] [CrossRef]
- Pramanick, K.K.; Kashyap, P.; Kishore, D.K.; Sharma, Y.P. Effect of Summer Pruning and CPPU on Yield and Quality of Kiwi Fruit (Actinidia deliciosa). J. Environ. Biol. 2015, 36, 351–356. [Google Scholar] [PubMed]
- Cruz-Castillo, J.G.; Woolley, D.J.; Famiani, F. Effects of Defoliation on Fruit Growth, Carbohydrate Reserves and Subsequent Flowering of ‘Hayward’ Kiwifruit Vines. Sci. Hortic. 2010, 125, 579–583. [Google Scholar] [CrossRef]
- Woodcock, S. A Review of Research and Development Undertaken on Psa. Kiwi Vine Health 2016, 5, 871–874. [Google Scholar]
- Zhang, Z.; Guo, K.; Bai, Y.; Dong, J.; Gao, Z.; Yuan, Y.; Wang, Y.; Liu, L.; Yue, T. Identification, Synthesis, and Safety Assessment of Forchlorfenuron (1-(2-Chloro-4-pyridyl)-3-phenylurea) and Its Metabolites in Kiwifruits. J. Agric. Food Chem. 2015, 63, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Du, C.L.; Cai, C.L.; Lu, Y.; Li, Y.M.; Xie, Z.S. Identification and expression analysis of invertase family genes during grape (Vitis vinifera L.) berry development under CPPU and GA treatment. Mol. Genet. Genom. 2023, 298, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Acheampong, A.K.; Zheng, C.; Halaly, T.; Giacomelli, L.; Takebayashi, Y.; Jikumaru, Y.; Or, E. Abnormal endogenous repression of GA signaling in a seedless table grape cultivar with high berry growth response to GA application. Front. Plant Sci. 2017, 8, 850. [Google Scholar] [CrossRef] [PubMed]
- Curry, E.C.; Greene, D.W. CPPU influences fruit quality, fruit set, return bloom, and preharvest drop of apples. HortScience 1993, 28, 115–119. [Google Scholar] [CrossRef]
- Wang, W.; Khalil-Ur-Rehman, M.; Feng, J.; Tao, J. RNA-Seq Based Transcriptomic Analysis of CPPU Treated Grape Berries and Emission of Volatile Compounds. J. Plant Physiol. 2017, 218, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Jiang, Y. Effect of Plant Growth Regulators on Banana Fruit and Broccoli During Storage. Sci. Hortic. 2012, 145, 62–67. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, X.; Feng, J.; Khalil-Ur-Rehman, M.; Tao, J. Transcriptome Sequencing Analyses Reveals Mechanisms of Eliminated Russet by Applying GA3 and CPPU on ‘Shine Muscat’ Grape. Sci. Hortic. 2019, 250, 94–103. [Google Scholar] [CrossRef]
- Huang, H.; Jing, G.; Wang, H.; Duan, X.; Qu, H.; Jiang, Y. The Combined Effects of Phenylurea and Gibberellins on Quality Maintenance and Shelf-Life Extension of Banana Fruit during Storage. Sci. Hortic. 2014, 167, 36–42. [Google Scholar] [CrossRef]
- Dussi, M.C. Sustainable use of plant bioregulators in pear production. Acta Hortic. 2011, 909, 353–367. [Google Scholar] [CrossRef]
- Costa, G.; Botton, A. Plant bioregulators: Do we still need them? Acta Hortic. 2022, 1344, 193–202. [Google Scholar] [CrossRef]
- Michelotti, V.; Lamontanara, A.; Buriani, G.; Orrù, L.; Cellini, A.; Donati, I.; Vanneste, J.L.; Cattivelli, L.; Tacconi, G.; Spinelli, F. Comparative Transcriptome Analysis of the Interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in Absence and Presence of Acibenzolar-S-Methyl. BMC Genom. 2018, 19, 585. [Google Scholar] [CrossRef]
- Donati, I.; Cellini, A.; Sangiorgio, D.; Caldera, E.; Sorrenti, G.; Spinelli, F. Pathogens Associated to Kiwifruit Vine Decline in Italy. Agriculture 2020, 10, 119. [Google Scholar] [CrossRef]
- Mian, G.; Zuiderduin, K.; Barnes, L.S.; Loketsatian, S.; Bell, L.; Ermacora, P.; Cipriani, G. In Vitro Application of Eruca vesicaria subsp. sativa Leaf Extracts and Associated Metabolites Reduces the Growth of Oomycota Species Involved in Kiwifruit Vine Decline Syndrome. Front. Plant Sci. 2023, 14, 1292290. [Google Scholar] [CrossRef]
- Tamburini, G.; Laterza, I.; Nardi, D.; Mele, A.; Mori, N.; Pasini, M.; Scaccini, D.; Pozzebion, A.; Marini, L. Effect of landscape composition on the invasive pest Halyomorpha halys in fruit orchards. Agric. Ecosyst. Environ. 2023, 353, 108530. [Google Scholar] [CrossRef]
- Donati, I.; Cellini, A.; Sangiorgio, D.; Vanneste, J.L.; Scortichini, M.; Balestra, G.M.; Spinelli, F. Pseudomonas syringae pv. actinidiae: Ecology, Infection Dynamics and Disease Epidemiology. Microb. Ecol. 2020, 80, 81–102. [Google Scholar] [CrossRef]
- Cellini, A.; Fiorentini, L.; Buriani, G.; Yu, J.; Donati, I.; Cornish, D.A.; Novak, B.; Costa, G.; Vanneste, J.L.; Spinelli, F. Elicitors of the Salicylic Acid Pathway Reduce Incidence of Bacterial Canker of Kiwifruit Caused by Pseudomonas syringae pv. actinidae. Ann. Appl. Biol. 2014, 165, 441–453. [Google Scholar] [CrossRef]
- El-Showk, S.; Ruonala, R.; Helariutta, Y. Crossing Paths: Cytokinin Signalling and Crosstalk. Dev. Camb. Engl. 2013, 140, 1373–1383. [Google Scholar] [CrossRef] [PubMed]
- Cary, A.J.; Liu, W.; Howell, S.H. Cytokinin Action Is Coupled to Ethylene in Its Effects on the Inhibition of Root and Hypocotyl Elongation in Arabidopsis thaliana Seedlings. Plant Physiol. 1995, 107, 1075–1082. [Google Scholar] [CrossRef]
- Varma Penmetsa, R.; Uribe, P.; Anderson, J.; Lichtenzveig, J.; Gish, J.C.; Nam, Y.W.; Cook, D.R. The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J. 2008, 55, 580–595. [Google Scholar] [CrossRef]
- Artner, C.; Benkova, E. Ethylene and Cytokinin: Partners in Root Growth Regulation. Mol. Plant 2019, 12, 1312–1314. [Google Scholar] [CrossRef]
- Fenn, M.A.; Giovannoni, J.J. Phytohormones in fruit development and maturation. Plant J. 2021, 105, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Lan, J.; Xiang, X.; Xiang, H.; Jin, Z.; Khan, S.; Liu, Y. Transcriptome Sequencing and Endogenous Phytohormone Analysis Reveal New Insights in CPPU Controlling Fruit Development in Kiwifruit (Actinidia chinensis). PLoS ONE 2020, 15, e0240355. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Castillo, J.G.; Baldicchi, A.; Frioni, T.; Marocchi, F.; Moscatello, S.; Proietti, S.; Battistelli, A.; Famiani, F. Pre-Anthesis CPPU Low Dosage Application Increases “Hayward” Kiwifruit Weight Without Affecting the Other Qualitative and Nutritional Characteristics. Food Chem. 2014, 158, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Serra, S.; Leisso, R.; Giordani, L.; Kalcsits, L.; Musacchi, S. Crop load influences fruit quality, nutritional balance, and return bloom in ‘Honeycrisp’ apple. HortScience 2016, 51, 236–244. [Google Scholar] [CrossRef]
- Naor, A. Crop load and irrigation interactions-a new dimension of RDI. In Proceedings of the VII International Symposium on Irrigation of Horticultural Crops 1038, Geisenheim, Germany, 16–20 June 2012; pp. 113–119. [Google Scholar] [CrossRef]
- Snowball, A.M. The Seasonal Cycle of Leaf, Shoot and Bud Development in Kiwifruit. J. Hortic. Sci. 1995, 70, 787–797. [Google Scholar] [CrossRef]
- Martín-Vertedor, A.I.; Rodríguez JM, P.; Losada, H.P.; Castiel, E.F. Interactive responses to water deficits and crop load in olive (Olea europaea L., cv. Morisca) I.—Growth and water relations. Agric. Water Manag. 2011, 98, 941–949. [Google Scholar] [CrossRef]
- Burge, G.K.; Spence, C.B.; Marshall, R.R. Kiwifruit: Effects of Thinning on Fruit Size, Vegetative Growth, and Return Bloom. N. Z. J. Exp. Agric. 1987, 15, 317–324. [Google Scholar] [CrossRef]
- Ainalidou, A.; Tanou, G.; Belghazi, M.; Samiotaki, M.; Diamantidis, G.; Molassiotis, A.; Karamanoli, K. Integrated Analysis of Metabolites and Proteins Reveal Aspects of the Tissue-Specific Function of Synthetic Cytokinin in Kiwifruit Development and Ripening. J. Proteom. 2016, 143, 318–333. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Castillo, J.G.; Woolley, D.J.; Lawes, G.S. Effects of CPPU and Other Plant Growth Regulators on Fruit Development in Kiwifruit. Acta Hortic. 1999, 498, 173–178. [Google Scholar] [CrossRef]
- Patterson, K.J.; Mason, K.A.; Gould, K.S. Effects of CPPU (N-(2-Chloro-4-pyridyl)-N′-phenylurea) on Fruit Growth, Maturity, and Storage Quality of Kiwifruit. N. Z. J. Crop Hortic. Sci. 1993, 21, 253–261. [Google Scholar] [CrossRef]
- Rojas, B.; Suárez-Vega, F.; Saez-Aguayo, S.; Olmedo, P.; Zepeda, B.; Delgado-Rioseco, J.; Defilippi, B.G.; Pedreschi, R.; Meneses, C.; Pérez-Donoso, A.G.; et al. Pre-Anthesis Cytokinin Applications Increase Table Grape Berry Firmness by Modulating Cell Wall Polysaccharides. Plants 2021, 10, 2642. [Google Scholar] [CrossRef] [PubMed]
- Percy, A.E.; Melton, L.D.; Jameson, P.E. Expansion during Early Apple Fruit Development Induced by Auxin and N-(2-Chloro-4-pyridyl)-N′-phenylurea: Effect on Cell Wall Hemicellulose. Plant Growth Regul. 1998, 26, 1–6. [Google Scholar] [CrossRef]
- Hopkirk, G.; Harker, F.R.; Harman, J.E. Calcium and the Firmness of Kiwifruit. N. Z. J. Crop Hortic. Sci. 1990, 18, 215–219. [Google Scholar] [CrossRef]
- Antunes, M.D.C.; Neves, N.; Curado, F.; Rodrigues, S.; Franco, J.; Panagopoulos, T. The Effect of Calcium Applications on Kiwifruit Quality Preservation During Storage. Acta Hortic. 2007, 753, 727–732. [Google Scholar] [CrossRef]
- Hocking, B.; Tyerman, S.D.; Burton, R.A.; Gilliham, M. Fruit Calcium: Transport and Physiology. Front. Plant Sci. 2016, 7, 569. [Google Scholar] [CrossRef]
- Corelli-Grappadelli, L.; Lakso, A.N. Fruit development in deciduous tree crops as affected by physiological factors and environmental conditions (keynote). In Proceedings of the XXVI International Horticultural Congress: Key Processes in the Growth and Cropping of Deciduous Fruit and Nut Trees 636, Toronto, ON, Canada, 11–17 August 2002; pp. 425–441. [Google Scholar] [CrossRef]
- Prudent, M.; Dai, Z.W.; Génard, M.; Bertin, N.; Causse, M.; Vivin, P. Resource Competition Modulates the Seed Number–Fruit Size Relationship in a Genotype-Dependent Manner: A Modeling Approach in Grape and Tomato. Ecol. Model. 2014, 290, 54–64. [Google Scholar] [CrossRef]
- Famiani, F.; Baldicchi, A.; Farinelli, D.; Cruz-Castillo, J.G.; Marocchi, F.; Mastroleo, M.; Moscatello, S.; Proietti, S.; Battistelli, A. Yield Affects Qualitative Kiwifruit Characteristics and Dry Matter Content May Be an Indicator of Both Quality and Storability. Sci. Hortic. 2012, 146, 124–130. [Google Scholar] [CrossRef]
Weight | Firmness | SSC | Dry Weight | |
---|---|---|---|---|
Year | *** | *** | *** | *** |
Field | *** | *** | *** | *** |
Crop Load | ** | *** | *** | *** |
Treatment | *** | *** | ||
Year × Field | *** | *** | *** | *** |
Year × Crop Load | *** | *** | ||
Field × Crop Load | * | *** | ** | * |
Year × Treatment | * | |||
Field × Treatment | *** | *** | *** | |
Crop Load × Treatment | *** | *** | ||
Year × Field × Crop Load | *** | |||
Year × Field × Treatment | * | *** | ||
Year × Crop Load × Treatment | * | * | * | |
Field × Crop Load × Treatment | * | |||
Year × Field × Crop Load × Treatment |
Weight | Firmness | SSC | Dry Weight | |
---|---|---|---|---|
Year | *** | *** | *** | |
Field | * | *** | *** | *** |
Crop Load | ** | *** | *** | ** |
Treatment | * | * | ||
Year × Field | *** | *** | ||
Year × Crop Load | *** | * | * | |
Field × Crop Load | ** | |||
Year × Treatment | ** | ** | ||
Field × Treatment | ** | *** | ||
Crop Load × Treatment | *** | *** | * | |
Year × Field × Crop Load | ||||
Year × Field × Treatment | ** | |||
Year × Crop Load × Treatment | * | |||
Field × Crop Load × Treatment | * | |||
Year × Field × Crop Load × Treatment | ** | . |
Weight | Firmness | SSC | Dry Weight | |
---|---|---|---|---|
Field | *** | *** | *** | |
Crop Load | *** | *** | *** | |
Treatment | *** | ** | *** | |
Field × Crop Load | *** | *** | * | |
Field × Treatment | *** | * | ||
Crop Load × Treatment | *** | *** | *** | *** |
Field × Crop Load × Treatment | *** | *** | ** |
Year | Field | Treatment | Crop Load | 45 Days | 90 Days | 135 Days | 180 Days | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | FIELD 1 | ctrl | SCL | 4.6 | a | 1.6 | b | 0.9 | b | 1.1 | b |
HCL | 4.0 | A | 2.6 | A | 1.2 | B | 0.9 | B | |||
CPPU A1 | SCL | 3.8 | b | 2.3 | a | 1.4 | a | 1.4 | a | ||
HCL | 2.3 | B | 2.0 | B | 1.9 | A | 1.2 | A | |||
CPPU A2 | SCL | 4.1 | a | 2.5 | a | 1.3 | a | 1.5 | a | ||
HCL | 4.5 | A | 2.9 | A | 1.7 | A | 0.8 | B | |||
2020 | FIELD 2 | ctrl | SCL | 3.3 | a | 1.0 | a | 0.8 | a | 0.6 | a |
HCL | 1.3 | A | 0.6 | A | 0.5 | B | 0.6 | A | |||
CPPU A1 | SCL | 2.1 | b | 0.8 | b | 0.6 | b | 0.6 | a | ||
HCL | 1.9 | A | 0.6 | A | 0.7 | A | 0.5 | A | |||
CPPU A2 | SCL | 2.0 | b | 0.8 | b | 0.7 | b | 0.6 | a | ||
HCL | 1.6 | A | 0.7 | A | 0.5 | B | 0.5 | A | |||
2021 | FIELD 1 | ctrl | SCL | 3.1 | a | 0.7 | a | 0.5 | a | 0.6 | a |
HCL | 2.4 | A | 0.6 | A | 0.5 | A | 0.5 | A | |||
CPPU A1 | SCL | 2.5 | a | 0.7 | a | 0.5 | a | 0.5 | a | ||
HCL | 2.5 | A | 0.6 | A | 0.4 | A | 0.4 | A | |||
CPPU A2 | SCL | 2.4 | a | 0.7 | a | 0.6 | a | 0.5 | a | ||
HCL | 2.5 | A | 0.8 | A | 0.5 | A | 0.5 | A | |||
2021 | FIELD 2 | ctrl | SCL | 1.9 | a | 0.8 | b | 0.6 | a | 0.6 | a |
HCL | 3.5 | A | 1.4 | A | 0.8 | A | 0.7 | A | |||
CPPU A1 | SCL | 2.1 | a | 1.0 | b | 0.6 | a | 0.6 | a | ||
HCL | 3.1 | A | 1.0 | B | 0.7 | A | 0.7 | A | |||
CPPU A2 | SCL | 2.5 | a | 1.2 | a | 0.6 | a | 0.7 | a | ||
HCL | 2.7 | A | 1.3 | B | 0.6 | A | 0.8 | A | |||
2022 | FIELD 1 | ctrl | SCL | 0.8 | a | 0.5 | a | 0.5 | a | 0.5 | a |
HCL | 0.7 | A | 0.5 | B | 0.5 | A | 0.4 | A | |||
CPPU A2 | SCL | 1.0 | a | 0.6 | a | 0.5 | a | 0.6 | a | ||
HCL | 0.8 | A | 0.5 | B | 0.4 | A | 0.5 | A | |||
CPPU A3 | SCL | 0.8 | a | 0.6 | a | 0.5 | a | 0.3 | b | ||
HCL | 1.0 | A | 0.8 | A | 0.5 | A | 0.5 | A | |||
2022 | FIELD 2 | ctrl | SCL | 0.7 | a | 0.6 | a | 0.5 | a | 0.5 | a |
HCL | 1.0 | A | 0.5 | A | 0.6 | A | 0.3 | B | |||
CPPU A2 | SCL | 0.8 | a | 0.6 | a | 0.6 | a | 0.5 | a | ||
HCL | 0.9 | A | 0.8 | A | 0.4 | A | 0.4 | A | |||
CPPU A3 | SCL | 0.8 | a | 0.6 | a | 0.6 | a | 0.5 | a | ||
HCL | 0.8 | A | 0.6 | A | 0.6 | A | 0.5 | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mian, G.; Consolini, M.; Cellini, A.; Strano, A.; Magoni, T.; Mastroleo, M.; Donati, I.; Spinelli, F. A Multi-Year Study of Forchlorfenuron’s Effects on Physical Fruit Quality Parameters in A. chinensis var. chinensis. Agronomy 2025, 15, 215. https://doi.org/10.3390/agronomy15010215
Mian G, Consolini M, Cellini A, Strano A, Magoni T, Mastroleo M, Donati I, Spinelli F. A Multi-Year Study of Forchlorfenuron’s Effects on Physical Fruit Quality Parameters in A. chinensis var. chinensis. Agronomy. 2025; 15(1):215. https://doi.org/10.3390/agronomy15010215
Chicago/Turabian StyleMian, Giovanni, Michele Consolini, Antonio Cellini, Andrea Strano, Tommaso Magoni, Marco Mastroleo, Irene Donati, and Francesco Spinelli. 2025. "A Multi-Year Study of Forchlorfenuron’s Effects on Physical Fruit Quality Parameters in A. chinensis var. chinensis" Agronomy 15, no. 1: 215. https://doi.org/10.3390/agronomy15010215
APA StyleMian, G., Consolini, M., Cellini, A., Strano, A., Magoni, T., Mastroleo, M., Donati, I., & Spinelli, F. (2025). A Multi-Year Study of Forchlorfenuron’s Effects on Physical Fruit Quality Parameters in A. chinensis var. chinensis. Agronomy, 15(1), 215. https://doi.org/10.3390/agronomy15010215