Exploring Proso Millet Resilience to Abiotic Stresses: High-Yield Potential in Desert Environments of the Middle East
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Analysis
2.2. Plant Materials
2.3. Treatments and Experimentation
2.4. Crop Water Requirements
2.5. Application of Saline Water for Irrigation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Combined Analysis of Variance
3.2. Genotype-by-Environment Interactions
3.3. Mean vs. Stability Analysis and Assessment of Ideal Genotype
3.4. Which-Won-Where Pattern of GGE Biplot
3.5. Discriminativeness vs. Representativeness Pattern of GGE Biplot
3.6. Key Relationships Among Environments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foster, S.; Loucks, D.P. Non-Renewable Groundwater Resources: A Guidebook on Socially-Sustainable Management for Water-Policy Makers; IHP-VI Series on Groundwater; United Nations Educational; Scientific and Cultural Organization: Paris, France, 2006; Volume 10. [Google Scholar]
- Murad, A.A. An Overview of Conventional and Non-Conventional Water Resources in Arid Region: Assessment and Constrains of the United Arab Emirates (UAE). J. Water Resour. Prot. 2010, 2, 181–190. [Google Scholar] [CrossRef]
- Evans, J.P. 21st Century Climate Change in the Middle East. Clim. Change 2009, 92, 417–432. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization Statistical Database. Available online: https://www.fao.org/faostat/en/#home (accessed on 13 November 2024).
- Kalinova, J.; Moudry, J. Content and Quality of Protein in Proso Millet (Panicum miliaceum L.) Varieties. Plant Foods Hum. Nutr. 2006, 61, 43–47. [Google Scholar] [CrossRef]
- Das, S.; Khound, R.; Santra, M.; Santra, D.K. Beyond Bird Feed: Proso Millet for Human Health and Environment. Agriculture 2019, 9, 64. [Google Scholar] [CrossRef]
- Habiyaremye, C.; Matanguihan, J.B.; D’Alpoim Guedes, J.; Ganjyal, G.M.; Whiteman, M.R.; Kidwell, K.K.; Murphy, K.M. Proso Millet (Panicum miliaceum L.) and Its Potential for Cultivation in the Pacific Northwest, U.S.: A Review. Front. Plant Sci. 2017, 7, 1961. [Google Scholar] [CrossRef]
- Cavers, P.B.; Kane, M. The Biology of Canadian Weeds: 155. Panicum miliaceum L. Can. J. Plant Sci. 2016, 96, 939–988. [Google Scholar] [CrossRef]
- Agdag, M.; Nelson, L.; Baltensperger, D.; Lyon, D.; Kachman, S. Row Spacing Affects Grain Yield and Other Agronomic Characters of Proso Millet *. Commun. Soil. Sci. Plant Anal. 2001, 32, 2021–2032. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, J.; Liu, K.; Wu, N.; Li, Y.; Zhou, K.; Ye, M.; Zhang, T.; Zhang, H.; Yang, X.; et al. Earliest Domestication of Common Millet (Panicum miliaceum) in East Asia Extended to 10,000 Years Ago. Proc. Natl. Acad. Sci. USA 2009, 106, 7367–7372. [Google Scholar] [CrossRef]
- Joshi, R.P.; Jain, A.K.; Malhotra, N.; Kumari, M. Chapter 4—Origin, Domestication, and Spread. In Millets and Pseudo Cereals; Singh, M., Sood, S., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 33–38. ISBN 978-0-12-820089-6. [Google Scholar]
- Nielsen, D.C.; Vigil, M.F. Water Use and Environmental Parameters Influence Proso Millet Yield. Field Crops Res. 2017, 212, 34–44. [Google Scholar] [CrossRef]
- Lyon, D.J.; Burgener, P.A.; DeBoer, K. Producing and Marketing PROSO MILLET PROSO MILLET in the Great Plains; University of Nebraska-Lincoln Extension: Lincoln, NE, USA, 2008; Available online: https://digitalcommons.unl.edu/extensionhist/4794 (accessed on 13 November 2024).
- U.S. Department of Agriculture (USDA). Food Data Central. Available online: https://fdc.nal.usda.gov/ (accessed on 13 November 2024).
- UAE National Food Security Strategy 2051. Available online: https://u.ae/en/about-the-uae/strategies-initiatives-and-awards/strategies-plans-and-visions/environment-and-energy/national-food-security-strategy-2051 (accessed on 13 November 2024).
- Gabriel, K.R. The Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika 1971, 58, 453–467. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar Evaluation and Mega-Environment Investigation Based on the GGE Biplot. Crop. Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S. GGE Biplot Analysis, 1st ed.; Yan, W., Kang, M.S., Eds.; CRC Press: Boca Raton, FL, USA, 2002; ISBN 9780429122729. [Google Scholar]
- AL-Shammary, A.A.G.; Kouzani, A.Z.; Kaynak, A.; Khoo, S.Y.; Norton, M.; Gates, W. Soil Bulk Density Estimation Methods: A Review. Pedosphere 2018, 28, 581–596. [Google Scholar] [CrossRef]
- RICHARDS, L.A. Diagnosis and Improvement of Saline and Alkali Soils. Soil. Sci. 1954, 78, 154. [Google Scholar] [CrossRef]
- Walkley, A. A Critical Examination of a Rapid Method for Determining Organic Carbon in Soils Effect of Variations in Digestion Conditions and of Inorganic Soil Constituents. Soil. Sci. 1947, 63, 251–264. [Google Scholar] [CrossRef]
- FAO. Soil Testing Methods Manual; FAO: Rome, Italy, 2020. [Google Scholar]
- Soil Science Division Staff. Soil Survey Manual; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; Government Printing Office: Washington, DC, USA, 2017. [Google Scholar]
- Allen, R.G.; Pereira, L.S. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); FAO: Rome, Italy, 1998. [Google Scholar]
- R Core Team A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 13 November 2024).
- Van Rossum, G. Python Programming Language. In Proceedings of the USENIX Annual Technical Conference, Santa Clara, CA, USA, 17–22 June 2007; pp. 1–36. [Google Scholar]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 57–61. [Google Scholar]
- Fisher, R.A. Statistical Methods for Research Workers; Springer: New York, NY, USA, 1992; pp. 66–70. [Google Scholar]
- R Studio Integrated Development Environment for R (Computer Software v0.98.1074). Available online: https://www.rstudio.org/ (accessed on 13 November 2024).
- Kuhn, M.; Johnson, K. Data Pre-Processing. In Applied Predictive Modeling; Kuhn, M., Johnson, K., Eds.; Springer: New York, NY, USA, 2013; pp. 27–59. ISBN 978-1-4614-6849-3. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Yazdizadeh, M.; Fahmideh, L.; Mohammadi-Nejad, G.; Solouki, M.; Nakhoda, B. Association Analysis between Agronomic Traits and AFLP Markers in a Wide Germplasm of Proso Millet (Panicum miliaceum L.) under Normal and Salinity Stress Conditions. BMC Plant Biol. 2020, 20, 427. [Google Scholar] [CrossRef] [PubMed]
- Anuradha, N.; Patro, T.S.S.K.; Singamsetti, A.; Sandhya Rani, Y.; Triveni, U.; Nirmala Kumari, A.; Govanakoppa, N.; Lakshmi Pathy, T.; Tonapi, V.A. Comparative Study of AMMI- and BLUP-Based Simultaneous Selection for Grain Yield and Stability of Finger Millet [Eleusine coracana (L.) Gaertn.] Genotypes. Front. Plant Sci. 2022, 12, 786839. [Google Scholar] [CrossRef]
- Sanku, G.; Rajasekaran, R.; Boopathi, N.M.; Krishnamoorthy, I.; Santhanakrishnan, V.P.; Mani, V. Transcriptomic Response of Minor Millets to Abiotic Stresses. Front. Sustain. Food Syst. 2024, 8, 1435437. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N.A. Biplot Analysis of Multi-Environment Trial Data: Principles and Applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
- Gauch, R.H.; Zobel, W. AMMI Analysis of Yield Trials. In Genotype-by-Environment Interaction; Kang, M.S., Gauch, H.G., Eds.; CRC Press: Boca Raton, FL, USA, 1996; pp. 85–122. [Google Scholar]
- Smith, A.; Gentile, B.R.; Xin, Z.; Zhao, D. The Effects of Heat Stress on Male Reproduction and Tillering in Sorghum bicolor. Food Energy Secur. 2023, 12, e510. [Google Scholar] [CrossRef]
- Chiluwal, A.; Bheemanahalli, R.; Kanaganahalli, V.; Boyle, D.; Perumal, R.; Pokharel, M.; Oumarou, H.; Jagadish, S.V.K. Deterioration of Ovary Plays a Key Role in Heat Stress-induced Spikelet Sterility in Sorghum. Plant Cell Environ. 2020, 43, 448–462. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Devi, P.; Chaudhary, S.; Rani, A.; Jha, U.C.; Kumar, S.; Bindumadhava, H.; Prasad, P.V.V.; Sharma, K.D.; Siddique, K.H.M.; et al. ‘Omics’ Approaches in Developing Combined Drought and Heat Tolerance in Food Crops. Plant Cell Rep. 2022, 41, 699–739. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ordoñez, L.H.; Valenzuela-Cobos, J.D.; Guevara-Viejó, F.; Galindo-Villardón, P.; Vicente-Galindo, P. Effect of Genotype × Environment Interactions on the Yield and Stability of Sugarcane Varieties in Ecuador: GGE Biplot Analysis by Location and Year. Appl. Sci. 2024, 14, 6665. [Google Scholar] [CrossRef]
- Sun, M.; Huang, D.; Zhang, A.; Khan, I.; Yan, H.; Wang, X.; Zhang, X.; Zhang, J.; Huang, L. Transcriptome Analysis of Heat Stress and Drought Stress in Pearl Millet Based on Pacbio Full-Length Transcriptome Sequencing. BMC Plant Biol. 2020, 20, 323. [Google Scholar] [CrossRef]
- Chellapilla, T.S.; Ambawat, S.; Gurjar, N.R. Millets: Role and Responses Under Abiotic Stresses. In Sustainable Remedies for Abiotic Stress in Cereals; Springer: Berlin/Heidelberg, Germany, 2022; pp. 171–207. [Google Scholar]
- Srividhya, S.; Swarna, R.; Jinu, J.; Dheeraj, C.; Talwar, H.S. Salinity Stress in Pearl Millet: From Physiological to Molecular Responses. In Pearl Millet in the 21st Century; Springer Nature Singapore: Singapore, 2024; pp. 361–394. [Google Scholar]
- Wolie, A.; Tadesse, D. Correlation and Path Coefficient Analyses of Some Yield Related Traits in FInger Millet (Eleusine coracana (L.) Gaertn.) Germplasms in Northwest Ethiopia. Afr. J. Agric. Res. 2011, 6, 5099–5105. [Google Scholar]
- Guo, Y.; Hao, D.; Wang, X.; Wang, H.; Wu, Z.; Yang, P.; Zhang, B. Comparative Transcriptomics Reveals Key Genes Contributing to the Differences in Drought Tolerance among Three Cultivars of Foxtail Millet (Setaria Italica). Plant Growth Regul. 2023, 99, 45–64. [Google Scholar] [CrossRef]
- Sanjana Reddy, P.; Satyavathi, C.T.; Khandelwal, V.; Patil, H.T.; Gupta, P.C.; Sharma, L.D.; Mungra, K.D.; Singh, S.P.; Narasimhulu, R.; Bhadarge, H.H.; et al. Performance and Stability of Pearl Millet Varieties for Grain Yield and Micronutrients in Arid and Semi-Arid Regions of India. Front. Plant Sci. 2021, 12, 670201. [Google Scholar] [CrossRef] [PubMed]
- Ventura, F.; Poggi, G.M.; Vignudelli, M.; Bosi, S.; Negri, L.; Fakaros, A.; Dinelli, G. An Assessment of Proso Millet as an Alternative Summer Cereal Crop in the Mediterranean Basin. Agronomy 2022, 12, 609. [Google Scholar] [CrossRef]
- Habiyaremye, C.; Barth, V.; Highet, K.; Coffey, T.; Murphy, K. Phenotypic Responses of Twenty Diverse Proso Millet (Panicum miliaceum L.) Accessions to Irrigation. Sustainability 2017, 9, 389. [Google Scholar] [CrossRef]
- Vetriventhan, M.; Azevedo, V.C.R.; Upadhyaya, H.D.; Nirmalakumari, A.; Kane-Potaka, J.; Anitha, S.; Ceasar, S.A.; Muthamilarasan, M.; Bhat, B.V.; Hariprasanna, K.; et al. Genetic and Genomic Resources, and Breeding for Accelerating Improvement of Small Millets: Current Status and Future Interventions. The Nucleus 2020, 63, 217–239. [Google Scholar] [CrossRef]
- Opole, R.A.; Prasad, P.V.V.; Djanaguiraman, M.; Vimala, K.; Kirkham, M.B.; Upadhyaya, H.D. Thresholds, Sensitive Stages and Genetic Variability of Finger Millet to High Temperature Stress. J. Agron. Crop. Sci. 2018, 204, 477–492. [Google Scholar] [CrossRef]
- Sehgal, A.; Sita, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.M.; Nayyar, H. Effects of Drought, Heat and Their Interaction on the Growth, Yield and Photosynthetic Function of Lentil (Lens Culinaris Medikus) Genotypes Varying in Heat and Drought Sensitivity. Front. Plant Sci. 2017, 8, 1776. [Google Scholar] [CrossRef] [PubMed]
- Rai, K.N.; Govindaraj, M.; Rao, A.S. Genetic Enhancement of Grain Iron and Zinc Content in Pearl Millet. Qual. Assur. Saf. Crops Foods 2012, 4, 119–125. [Google Scholar] [CrossRef]
- Gupta, S.K.; Rai, K.N.; Singh, P.; Ameta, V.L.; Gupta, S.K.; Jayalekha, A.K.; Mahala, R.S.; Pareek, S.; Swami, M.L.; Verma, Y.S. Seed Set Variability under High Temperatures during Flowering Period in Pearl Millet (Pennisetum glaucum L. (R.) Br.). Field Crops Res. 2015, 171, 41–53. [Google Scholar] [CrossRef]
- Yadav, O.P.; Bhatnagar, S.K. Evaluation of Indices for Identification of Pearl Millet Cultivars Adapted to Stress and Non-Stress Conditions. Field Crops Res. 2001, 70, 201–208. [Google Scholar] [CrossRef]
- Mahalakshmi, V.; Bldlnger, F.R. Flowering Response of Pearl Millet to Water Stress during Panicle Development*. Ann. Appl. Biol. 1985, 106, 571–578. [Google Scholar] [CrossRef]
- Bidinger, F.R.; Hash, C.T. Pearl Millet. In Physiology and Biotechnology Integration for Plant Breeding; Nguyen, H.T., Blum, A., Eds.; Marcel Dekker: New York, NY, USA, 2004; pp. 225–270. [Google Scholar]
- Calamai, A.; Masoni, A.; Marini, L.; Dell’acqua, M.; Ganugi, P.; Boukail, S.; Benedettelli, S.; Palchetti, E. Evaluation of the Agronomic Traits of 80 Accessions of Proso Millet (Panicum miliaceum L.) under Mediterranean Pedoclimatic Conditions. Agriculture 2020, 10, 578. [Google Scholar] [CrossRef]
- Mythri, B.; Sivasankarreddy, K.; Behera, P. Recent Advancements in Proso Millet (Panicum miliaceum L.) Breeding for Quality and Yield Improvement. In Genetic Improvement of Small Millets; Mishra, S., Kumar, S., Srivastava, R.C., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 423–442. [Google Scholar]
- Zhang, H.; Tang, S.; Wang, H.; Wang, Y.; Zhi, H.; Liu, B.; Zhang, R.; Ma, Q.; Jia, G.; Feng, B.; et al. Genetic Diversity of Grain Yield Traits and Identification of a Grain Weight Gene SiTGW6 in Foxtail Millet. Theor. Appl. Genet. 2024, 137, 84. [Google Scholar] [CrossRef]
- Wang, D.; Su, M.; Hao, J.-H.; Li, Z.-D.; Dong, S.; Yuan, X.; Li, X.; Gao, L.; Chu, X.; Yang, G.; et al. Dynamic Transcriptome Landscape of Foxtail Millet Grain Development. Seed Biol. 2023, 2, 19. [Google Scholar] [CrossRef]
Treatment | Depth (cm) | Bulk Density (g·cm−3) | pH | Sand (%) | Silt (%) | Clay (%) | Organic Carbon (%) | EC (dS·m−1) |
---|---|---|---|---|---|---|---|---|
Freshwater | 15 | 0.97 | 7.68 | 1.00 | 98.25 | 0.75 | 0.74 | 0.51 |
30 | 1.25 | 7.73 | 2.16 | 98.25 | 0.27 | 0.34 | 0.21 | |
60 | 1.42 | 7.56 | 1.28 | 98.09 | 0.63 | 0.09 | 1.07 | |
100 | 1.44 | 7.48 | 1.16 | 98.13 | 0.71 | 0.05 | 3.08 | |
Salinity | 15 | 1.01 | 3.19 | 1.28 | 98.17 | 0.55 | 0.69 | 3.19 |
30 | 1.29 | 0.64 | 1.96 | 97.21 | 0.83 | 0.27 | 0.64 | |
60 | 1.41 | 5.44 | 1.44 | 97.85 | 0.71 | 0.10 | 5.44 | |
100 | 1.46 | 4.47 | 1.56 | 97.81 | 0.63 | 0.03 | 4.47 |
Source of Variation | Normal Season | Summer Season | |||||||
---|---|---|---|---|---|---|---|---|---|
GY | GY | CGY | |||||||
df | MSS | TSS% | df | MSS | TSS% | df | MSS | TSS% | |
Genotype | 23 | 3,250,365.56 | 77.69 *** | 23 | 79,309.76 | 21.52 *** | 23 | 3710.23 | 20.11 *** |
Environment | 2 | 593,904.04 | 1.23 ** | 2 | 1,165,860.91 | 27.51 *** | 2 | 29,324.85 | 13.82 *** |
Genotype × Environment | 46 | 305,387.57 | 14.59 *** | 46 | 92,201.43 | 50.03 *** | 46 | 3641.03 | 39.48 *** |
Reps | 1 | 9741.96 | 0.01 ns | 1 | 56.49 | 0.00 ns | 1 | 199.17 | 0.05 ns |
Error | 117 | 53,171.35 | 6.47 | 119 | 668.64 | 0.94 | 125 | 900.69 | 26.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samineni, S.; Gummadi, S.; Thushar, S.; Khan, D.N.; Gkanogiannis, A.; Becerra Lopez-Lavalle, L.A.; Singh, R.K. Exploring Proso Millet Resilience to Abiotic Stresses: High-Yield Potential in Desert Environments of the Middle East. Agronomy 2025, 15, 165. https://doi.org/10.3390/agronomy15010165
Samineni S, Gummadi S, Thushar S, Khan DN, Gkanogiannis A, Becerra Lopez-Lavalle LA, Singh RK. Exploring Proso Millet Resilience to Abiotic Stresses: High-Yield Potential in Desert Environments of the Middle East. Agronomy. 2025; 15(1):165. https://doi.org/10.3390/agronomy15010165
Chicago/Turabian StyleSamineni, Srinivasan, Sridhar Gummadi, Sumitha Thushar, Dil Nawaz Khan, Anestis Gkanogiannis, Luis Augusto Becerra Lopez-Lavalle, and Rakesh Kumar Singh. 2025. "Exploring Proso Millet Resilience to Abiotic Stresses: High-Yield Potential in Desert Environments of the Middle East" Agronomy 15, no. 1: 165. https://doi.org/10.3390/agronomy15010165
APA StyleSamineni, S., Gummadi, S., Thushar, S., Khan, D. N., Gkanogiannis, A., Becerra Lopez-Lavalle, L. A., & Singh, R. K. (2025). Exploring Proso Millet Resilience to Abiotic Stresses: High-Yield Potential in Desert Environments of the Middle East. Agronomy, 15(1), 165. https://doi.org/10.3390/agronomy15010165