Enhancing Alfalfa (Medicago sativa L.) Productivity: Exploring the Significance of Potassium Nutrition
Abstract
:1. Introduction
2. Effects of Potassium on Growth, Yield, and Yield Quality of the Alfalfa Plant
3. Potassium’s Significance in Alfalfa Production under Abiotic Stress Condition
3.1. Salinity
3.2. Drought
3.3. Temperature Stress
4. Deficiency of Potassium in Alfalfa Production
5. Mitigating Potassium Deficiency for Optimized Alfalfa Production
6. Sources of Potassium in Soil
- Mineral or structural form: A major portion of soil K, accounts for 90–98% of the total K in the soil in the mineral structure
- Non-exchangeable (fixed) form or relatively unavailable form: The difference from the mineral form is that it is not bonded within the crystal structure of soil mineral particles. It is present within clay minerals in a 2:1 ratio
- Exchangeable form or slowly available form: Contributes 1–10% of the K in soil. Exchangeable potassium is approximately 90% of the available K. Usually the ratio of exchangeable K to total K is under 2%
- Water soluble form: Only accounts for 0.1–2% of the total potassium in soil and is made up of potassium dissolved in the soil and held in the exchange position of the clay and organic matter.
7. Availability, Uptake, and Transport of Potassium in the Alfalfa Plant
8. Factors Affecting Potassium Availability and Absorption in the Alfalfa Plant
8.1. Soil Moisture
8.2. Soil Temperature
8.3. Soil Aeration
8.4. Soil pH, Clay Minerals and Cation Exchange Capacity
8.5. Genetic Variation
8.6. Management Practices
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mantino, A.; Tozzini, C.; Bonari, E.; Mele, M.; Ragaglini, G. Competition for light affects alfalfa biomass production more than its nutritive value in an olive-based alley-cropping system. Forests 2021, 12, 233. [Google Scholar] [CrossRef]
- Bo, P.T.; Dong, Y.; Zhang, R.; Soe Htet, M.N.; Hai, J. Optimization of Alfalfa-Based Mixed Cropping with Winter Wheat and Ryegrass in Terms of Forage Yield and Quality Traits. Plants 2022, 11, 1752. [Google Scholar] [CrossRef] [PubMed]
- Mouttet, R.; Escobar-Gutiérrez, A.; Esquibet, M.; Gentzbittel, L.; Mugniéry, D.; Reignault, P.; Castagnone-Sereno, P. Banning of methyl bromide for seed treatment: Could Ditylenchus dipsaci again become a major threat to alfalfa production in Europe? Pest Manag. Sci. 2014, 70, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Hojilla-Evangelista, M.P.; Selling, G.W.; Hatfield, R.; Digman, M. Extraction, composition, and functional properties of dried alfalfa (Medicago sativa L.) leaf protein. J. Sci. Food Agric. 2017, 97, 882–888. [Google Scholar] [CrossRef] [PubMed]
- McDonald, I.; Min, D.; Baral, R. Effect of a fall cut on dry matter yield, nutritive value, and stand persistence of alfalfa. J. Anim. Sci. Technol. 2021, 63, 799. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.L.; Sheaffer, C.C.; Tautges, N.E.; Putnam, D.H.; Hunter, M.C. Alfalfa, Wildlife, and the Environment, 2nd ed.; National Alfalfa and Forage Alliance: St. Paul, MN, USA, 2019; p. 34. [Google Scholar]
- Wang, Q.; Li, F.; Zhao, X.; Zhao, W.; Zhang, D.; Zhou, X.; Chen, J. Runoff and nutrient losses in alfalfa (Medicago sativa L.) production with tied-ridge-furrow rainwater harvesting on sloping land. Int. Soil Water Conserv. Res. 2022, 10, 308–323. [Google Scholar] [CrossRef]
- Baidoo, M. Alfalfa Response to Phosphorus and Potassium Fertility in Relation to Calcium and Magnesium. Int. J. Agric. Res. Environ. Sci. 2024, 5, 1–7. [Google Scholar]
- Kong, M.; Kang, J.; Han, C.L.; Gu, Y.J.; Siddique, K.H.; Li, F.M. Nitrogen, phosphorus, and potassium resorption responses of alfalfa to increasing soil water and P availability in a semi-arid environment. Agronomy 2020, 10, 310. [Google Scholar] [CrossRef]
- Chamachar, M.M.; Fazeli, M.R.; Salimi, M.; Samadi, N. Growth promoting activity, anti-biofilm effect, and down regulation of papC and rcsA genes expression by Medicago sativa (alfalfa) extract. Food Biosci. 2022, 50, 102182. [Google Scholar] [CrossRef]
- Kushnir, R.; Andersons, Z. Productivity of Alfalfa of Various Slopes for Seeds, Depending on Bio-and Biotic Factors. In Proceedings of the International Competition of Student Scientific Works Black See Science 2022, Odesa, Ukraine, 28 February 2022. [Google Scholar]
- Johnson, R.; Vishwakarma, K.; Hossen, M.S.; Kumar, V.; Shackira, A.M.; Puthur, J.T.; Hasanuzzaman, M. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol. Biochem. 2022, 172, 56–69. [Google Scholar] [CrossRef]
- Rawat, J.; Pandey, N.; Saxena, J. Role of potassium in plant photosynthesis, transport, growth and yield. In Role of Potassium in Abiotic Stress, 1st ed.; Iqbal, N., Umar, S., Eds.; Springer: Singapore, 2022; pp. 1–14. [Google Scholar]
- Hageman, A.; Van Volkenburgh, E. Sink strength maintenance underlies drought tolerance in common bean. Plants 2021, 10, 489. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Fujita, M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef]
- Pandey, G.K.; Mahiwal, S. Role of Potassium in Plants, 1st ed.; Springer Briefs in Plant Science; Springer: Cham, Switzerland, 2020; p. 81. [Google Scholar]
- Berg, W.K.; Cunningham, S.M.; Brouder, S.M.; Joern, B.C.; Johnson, K.D.; Santini, J.; Volenec, J.J. Influence of phosphorus and potassium on alfalfa yield and yield components. Crop Sci. 2005, 45, 297–304. [Google Scholar] [CrossRef]
- Elgharably, A.; Benes, S. Alfalfa biomass yield and nitrogen fixation in response to applied mineral nitrogen under saline soil conditions. J. Soil Sci. Plant Nutr. 2021, 21, 744–755. [Google Scholar] [CrossRef]
- Warncke, D.; Dahl, J.; Jacobs, L. Nutrient Recommendations for Field Crops in Michigan; Extension Bulletin E2904; Michigan State University: East Lansing, MI, USA, 2009; p. 36. [Google Scholar]
- Berg, W.K.; Brouder, S.M.; Cunningham, S.M.; Volenec, J.J. Potassium and Phosphorus Fertilizer Impacts on Alfalfa Taproot Carbon and Nitrogen Reserve Accumulation and Use During Fall Acclimation and Initial Growth in Spring. Front. Plant Sci. 2021, 12, 715936. [Google Scholar] [CrossRef]
- Islam, M.A.; Baidoo, M.M. Effect of Potassium on Growth and Physiology of Alfalfa. In Handbook of Plant and Crop Physiology, 4th ed.; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 2021; Chapter 3; pp. 29–39. [Google Scholar]
- Meyer, R.D.; Mathews, M.C. Potassium fertilization and how it effects yield and quality of alfalfa. In Proceedings of the California Alfalfa Symposium Proceedings, Modesto, CA, USA, 7–8 December 1995. [Google Scholar]
- Lloveras, J.; Ferran, J.; Boixadera, J.; Bonet, J. Potassium fertilization effects on alfalfa in a Mediterranean climate. Agron. J. 2001, 93, 139–143. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Buchholz, D.D.; Nelson, C.J. Potassium fertilizer and potato leafhopper effects on alfalfa growth. Agron. J. 1990, 82, 1069–1074. [Google Scholar] [CrossRef]
- Elouear, Z.; Bouhamed, F.; Boujelben, N.; Bouzid, J. Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants. Sustain. Environ. Res. 2016, 26, 131–135. [Google Scholar] [CrossRef]
- Ayars, J.E.; Shouse, P.; Lesch, S.M. In situ use of groundwater by alfalfa. Agric. Water Manag. 2009, 96, 1579–1586. [Google Scholar] [CrossRef]
- Yost, M.A.; Russelle, M.P.; Coulter, J.A.; Bolstad, P.V. Alfalfa Stand Length and Subsequent Crop Patterns in the Upper Midwestern United States. Agron. J. 2014, 106, 1697–1708. [Google Scholar] [CrossRef]
- Madeira, F.; Clemente-Orta, G.; Alomar, O.; Batuecas, I.; Sossai, S.; Albajes, R. Land use alters the abundance of herbivore and predatory insects on crops: The case of alfalfa. J. Pest Sci. 2022, 95, 473–491. [Google Scholar] [CrossRef]
- Eckberg, J.O.; Wells, S.S.; Jungers, J.M.; Lamb, J.F.; Sheaffer, C.C. Alfalfa forage yield, milk yield, and nutritive value under intensive cutting. Agrosyst. Geosci. Environ. 2022, 5, e20246. [Google Scholar] [CrossRef]
- Heuschele, D.J.; Gamble, J.; Vetsch, J.A.; Shaeffer, C.C.; Coulter, J.A.; Kaiser, D.E.; Samac, D.A. Influence of potassium fertilization on alfalfa leaf and stem yield, forage quality, nutrient removal, and plant health. Agrosyst. Geosci. Environ. 2023, 6, e20346. [Google Scholar] [CrossRef]
- Kavadia, A.; Omirou, M.; Fasoula, D.; Ioannides, I.M. The importance of microbial inoculants in a climate-changing agriculture in eastern Mediterranean region. Atmosphere 2020, 11, 1136. [Google Scholar] [CrossRef]
- Islam, M.A.; Baidoo, M.M. Productivity and Profitability of Alfalfa in Response to Phosphorus and Potassium in Association with Calcium and Magnesium and Harvest Time. In Proceedings of the 2022 World Alfalfa Congress, San Diego, CA, USA, 14–17 November 2022. [Google Scholar]
- Milić, D.; Katanski, S.; Milošević, B.; Živanov, D. Variety selection in intensive alfalfa cutting management. Ratar. I Povrt. Field Veg. Crops Res. 2019, 56, 20–25. [Google Scholar] [CrossRef]
- Reddy, P.P. Sustainable Intensification—An Overview. In Sustainable Intensification of Crop Production, 1st ed.; Reddy, P.P., Ed.; Springer: Singapore, 2016; p. 405. [Google Scholar]
- Lissbrant, S.; Berg, W.K.; Volenec, J.; Brouder, S.; Joern, B.; Cunningham, S.; Johnson, K. Phosphorus and potassium fertilization of alfalfa. Purdue Univ. Ext. Bull. 2009, AY-331-W, 1–6. [Google Scholar]
- Putnam, D.; Orloff, S.; Ackerly, T. Agronomic practices and forage quality. In Proceedings of the 2000 National Alfalfa Symposium, Las Vegas, NV, USA, 10–12 December 2000. [Google Scholar]
- Ramos-Ulate, C.M.; Pérez-Álvarez, S.; Guerrero-Morales, S.; Palacios-Monarrez, A. Biofertilization and nanotechnology in alfalfa (Medicago sativa L.) as alternatives for a sustainable crop. Charact. Appl. Nanomater. 2022, 5, 111–118. [Google Scholar] [CrossRef]
- Lanyon, L.E.; Griffith, W.K. Nutrition and fertilizer use. Alfalfa Alfalfa Improv. 1988, 29, 333–372. [Google Scholar]
- Jungers, J.M.; Kaiser, D.E.; Lamb, J.F.; Lamb, J.A.; Noland, R.L.; Samac, D.A.; Sheaffer, C.C. Potassium fertilization affects alfalfa forage yield, nutritive value, root traits, and persistence. Agron. J. 2019, 111, 2843–2852. [Google Scholar] [CrossRef]
- NRC (National Research Council). Mineral Tolerance of Animals; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Weiss, W.P. Mineral tolerances of animals. In Proceedings of the Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 22–23 April 2008. [Google Scholar]
- Khiaosa-Ard, R.; Ottoboni, M.; Verstringe, S.; Gruber, T.; Hartinger, T.; Humer, E.; Zebeli, Q. Magnesium in dairy cattle nutrition: A meta-analysis on magnesium absorption in dairy cattle and assessment of simple solubility tests to predict magnesium availability from supplemental sources. J. Dairy Sci. 2023, 106, 8758–8773. [Google Scholar] [CrossRef]
- Dabbir, B.K.R.; Rajavolu, R.S. New Trends in the Treatment of Hypokalemia in Cows. In Latest Scientific Findings in Ruminant Nutrition—Research for Practical Implementation [Working Title], 1st ed.; Babinszky, L., Ed.; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Kronqvist, C.; Emanuelson, U.; Tråvén, M.; Spörndly, R.; Holtenius, K. Relationship between incidence of milk fever and feeding of minerals during the last 3 weeks of gestation. Animal 2012, 6, 1316–1321. [Google Scholar] [CrossRef] [PubMed]
- Ritter, R.J.; Boling, J.A.; Gay, N. Labile magnesium reserves in beef cows subjected to different prepasture supplementation regimens. J. Anim. Sci. 1984, 59, 197–203. [Google Scholar] [CrossRef]
- Rérat, M.; Philipp, A.; Hess, H.D.; Liesegang, A. Effect of different potassium levels in hay on acid–base status and mineral balance in periparturient dairy cows. J. Dairy Sci. 2009, 92, 6123–6133. [Google Scholar] [CrossRef]
- James, D.W.; Tindall, T.A.; Hurst, C.J.; Hussein, A.N. Alfalfa cultivar responses to phosphorus and potassium deficiency: Biomass. J. Plant Nutr. 1995, 18, 2431–2445. [Google Scholar] [CrossRef]
- Berg, W.K.; Cunningham, S.M.; Brouder, S.M.; Joern, B.C.; Johnson, K.D.; Santini, J.B.; Volenec, J.J. The long-term impact of phosphorus and potassium fertilization on alfalfa yield and yield components. Crop Sci. 2007, 47, 2198–2209. [Google Scholar] [CrossRef]
- Daliparthy, J.; Barker, A.V.; Mondal, S.S. Potassium fractions with other nutrients in crops: A review focusing on the tropics. J. Plant Nutr. 1994, 17, 1859–1886. [Google Scholar] [CrossRef]
- Malhi, S.S. Relative response of forage and seed yield of alfalfa to sulfur, phosphorus, and potassium fertilization. J. Plant Nutr. 2011, 34, 888–908. [Google Scholar] [CrossRef]
- Pourebrahimi, F.M.; Savoy, H.; Atotey, N.; Yin, X. Effect of potassium application rate and timing on alfalfa yield and potassium concentration and removal in Tennessee. Agron. Res. 2023, 21, 183–192. [Google Scholar]
- Thinguldstad, B.; Tucker, J.J.; Baxter, L.L.; Segers, J.R.; Hancock, D.W.; Stewart, R.L. Alfalfa response to low potassium under different harvest regimes in Coastal Plains. Agrosyst. Geosci. Environ. 2020, 3, e20029. [Google Scholar] [CrossRef]
- Marani, S.; Madani, H.; Sharifabad, H.H.; Manesh, G.A.; Shirzadi, M.H. Investigation of phosphorus and potassium biological fertilizers on alfalfa (Medicago sativa L.) physiological traits at different ages of the field. Legume Res. Int. J. 2023, 46, 741–745. [Google Scholar] [CrossRef]
- Razmjoo, K.; Henderlong, P.R. Effect of potassium, sulfur, boron, and molybdenum fertilization on alfalfa production and herbage macronutrient contents. J. Plant Nutr. 1997, 20, 1681–1696. [Google Scholar] [CrossRef]
- Wakeel, A.; Ishfaq, M. Potassium in Plants. In Potash Use and Dynamics in Agriculture, 1st ed.; Wakeel, A., Ishfaq, M., Eds.; Springer Nature: Singapore, 2022; pp. 19–27. [Google Scholar]
- Kumari, S.; Chhillar, H.; Chopra, P.; Khanna, R.R.; Khan, M.I.R. Potassium: A track to develop salinity tolerant plants. Plant Physiol. Biochem. 2021, 167, 1011–1023. [Google Scholar] [CrossRef]
- Wakeel, A. Potassium–sodium interactions in soil and plant under saline-sodic conditions. J. Plant Nutr. Soil Sci. 2013, 176, 344–354. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Ashraf, M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Biochem. 2021, 160, 257–268. [Google Scholar] [CrossRef]
- El-Sharkawy, M.S.; El-Beshsbeshy, T.R.; Mahmoud, E.K.; Abdelkader, N.I.; Al-Shal, R.M.; Missaoui, A.M. Response of alfalfa under salt stress to the application of potassium sulfate nanoparticles. Am. J. Plant Sci. 2017, 8, 1751–1773. [Google Scholar] [CrossRef]
- Sheoran, P.; Goel, S.; Boora, R.; Kumari, S.; Yashveer, S.; Grewal, S. Biogenic synthesis of potassium nanoparticles and their evaluation as a growth promoter in wheat. Plant Gene 2021, 27, 100310. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.S.M.A.; Fujita, D.B.S.M.A.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. In Sustainable Agriculture, 1st ed.; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 153–188. [Google Scholar]
- Mostofa, M.G.; Rahman, M.M.; Ghosh, T.K.; Kabir, A.H.; Abdelrahman, M.; Khan, M.A.R.; Tran, L.S.P. Potassium in plant physiological adaptation to abiotic stresses. Plant Physiol. Biochem. 2022, 186, 279–289. [Google Scholar] [CrossRef]
- Fayez, K.A.; Bazaid, S.A. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J. Saudi Soc. Agric. Sci. 2014, 13, 45–55. [Google Scholar] [CrossRef]
- Gupta, S.; Schillaci, M.; Walker, R.; Smith, P.M.; Watt, M.; Roessner, U. Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant Soil 2021, 461, 219–244. [Google Scholar] [CrossRef]
- Kerchev, P.I.; Van Breusegem, F. Improving oxidative stress resilience in plants. Plant J. 2022, 109, 359–372. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Tomar, N.S.; Tittal, M.; Argal, S.; Agarwal, R. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol. Mol. Biol. Plants 2017, 23, 731–744. [Google Scholar] [CrossRef]
- Živčák, M.; Repkova, J.; Olšovská, K.; Brestič, M. Osmotic adjustment in winter wheat varieties and its importance as a mechanism of drought tolerance. Cereal Res. Commun. 2009, 37, 569–572. [Google Scholar]
- Sanders, G.J.; Arndt, S.K. Osmotic adjustment under drought conditions. In Plant Responses to Drought Stress, 1st ed.; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 199–229. [Google Scholar]
- Khalil, R.; Elsayed, N.; Khan, T.A.; Yusuf, M. Potassium: A Potent Modulator of Plant Responses under Changing Environment. In Role of Potassium in Abiotic Stress, 1st ed.; Iqbal, N., Umar, S., Eds.; Springer: Singapore, 2022; pp. 221–247. [Google Scholar]
- Amede, T.; Schubert, S.; Stahr, K. Mechanisms of drought resistance in grain legumes I: Osmotic adjustment. SINET Ethiop. J. Sci. 2003, 26, 37–46. [Google Scholar] [CrossRef]
- Carvalho, M.D. Drought stress and reactive oxygen species. Plant Signal Behav. 2008, 3, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.F.; Mateus, N.S.; Rosario, M.O.; Garcez, T.B.; Mazzafera, P.; Lavres, J. Enhancing potassium content in leaves and stems improves drought tolerance of eucalyptus clones. Physiol. Plant. 2021, 172, 552–563. [Google Scholar] [CrossRef]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef] [PubMed]
- Fageria, N.K.; Moreira, A. The role of mineral nutrition on root growth of crop plants. Adv. Agron. 2011, 110, 251–331. [Google Scholar]
- Egilla, J.N.; Davies, F.T.; Boutton, T.W. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 2005, 43, 135–140. [Google Scholar] [CrossRef]
- Nishiyama, R.; Watanabe, Y.; Leyva-Gonzalez, M.A.; Van Ha, C.; Fujita, Y.; Tanaka, M.; Tran, L.S.P. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc. Natl. Acad. Sci. USA 2013, 110, 4840–4845. [Google Scholar] [CrossRef]
- Gupta, S.; Agarwal, V.P.; Gupta, N.K. Efficacy of putrescine and benzyladenine on photosynthesis and productivity in relation to drought tolerance in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2012, 18, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Waraich, E.A.; Ahmad, R.; Ashraf, M.Y. Role of mineral nutrition in alleviation of drought stress in plants. Aust. J. Crop Sci. 2011, 5, 764–777. [Google Scholar]
- Ul Hassan, M.; Rasool, T.; Iqbal, C.; Arshad, A.; Abrar, M.; Abrar, M.M.; Fahad, S. Linking plants functioning to adaptive responses under heat stress conditions: A mechanistic review. J. Plant Growth Regul. 2021, 41, 2596–2613. [Google Scholar] [CrossRef]
- Trono, D.; Pecchioni, N. Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview. Plants 2022, 11, 3358. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Freund, D.M.; Hegeman, A.D.; Cohen, J.D. Metabolic signatures of Arabidopsis thaliana abiotic stress responses elucidate patterns in stress priming, acclimation, and recovery. Stress Biol. 2022, 2, 11. [Google Scholar] [CrossRef]
- Santini, J.; Giannettini, J.; Pailly, O.; Herbette, S.; Ollitrault, P.; Berti, L.; Luro, F. Comparison of photosynthesis and antioxidant performance of several Citrus and Fortunella species (Rutaceae) under natural chilling stress. Trees 2013, 27, 71–83. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Y.; Xia, Q.; Wang, X.; Zhang, Q.; Liu, T.; Zhang, Y. Effects of potash fertilizer types and rates on alfalfa root crown saccharides content and cold resistance under low temperature stress. Agric. Res. Arid Areas 2022, 40, 62–70. [Google Scholar]
- Zhang, Q.; Zhang, Y.; Sun, M.; Xia, Q.; Wang, X.; Liu, T.; Du, X. Effects of Potassium Fertilizer on Alfalfa Antioxidant Enzyme Activity Under Low Temperature Stress. J. Agric. Sci. Technol. 2023, 25, 186–195. [Google Scholar]
- Kumar, P.; Kumar, T.; Singh, S.; Tuteja, N.; Prasad, R.; Singh, J. Potassium: A key modulator for cell homeostasis. J. Biotechnol. 2020, 324, 198–210. [Google Scholar] [CrossRef]
- Kant, S.; Kafkafi, U.; Pasricha, N.; Bansal, S. Potassium and abiotic stresses in plants. Potassium for sustainable crop production. Potash Res. Inst. India Gurgaon 2002, 233, 251. [Google Scholar]
- Russelle, M.P. “Production plus” with potassium. Minnesota Pesticide Recommendations and Applied Research Reports. 1987, pp. 13–26. Available online: https://hdl.handle.net/11299/177465 (accessed on 12 August 2024).
- Wakeel, A.; Magen, H. Potash Use for Sustainable Crop Production in Pakistan: A Review. Int. J. Agric. Biol. 2017, 19, 381. [Google Scholar]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef]
- Karimi, R. Potassium-induced freezing tolerance is associated with endogenous abscisic acid, polyamines and soluble sugars changes in grapevine. Sci. Hortic. 2017, 215, 184–194. [Google Scholar] [CrossRef]
- Rogowska, A.; Szakiel, A. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 2020, 19, 1525–1538. [Google Scholar] [CrossRef]
- Chen, G.; Peng, L.; Li, C.; Tu, Y.; Lan, Y.; Wu, C.Q.; Zhang, Q.; Yang, H.; Li, T. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars. J. Integr. Agric. 2023, 22, 2025–2040. [Google Scholar] [CrossRef]
- Rawat, N.; Singla-Pareek, S.L.; Pareek, A. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol. Plant. 2021, 171, 653–676. [Google Scholar] [CrossRef] [PubMed]
- Golizadeh, F.; Kumleh, H.H. Physiological Responses and Expression Changes of Fatty Acid Metabolism–Related Genes in Wheat (Triticum aestivum) Under Cold Stress. Plant Mol. Biol. Rep. 2019, 37, 224–236. [Google Scholar] [CrossRef]
- Sakamoto, T.; Murata, N. Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr. Opin. Microbiol. 2002, 5, 206–210. [Google Scholar] [CrossRef]
- Adhikari, L.; Baral, R.; Paudel, D.; Min, D.; Makaju, S.O.; Poudel, H.P.; Acharya, J.P.; Missaoui, A.M. Cold stress in plants: Strategies to improve cold tolerance in forage species. Plant Stress 2022, 4, 100081. [Google Scholar] [CrossRef]
- Nadeem, F.; Hanif, M.A.; Majeed, M.I.; Mushtaq, Z. Role of macronutrients and micronutrients in the growth and development of plants and prevention of deleterious plant diseases-a comprehensive review. Int. J. Chem. Biochem. 2018, 13, 31–52. [Google Scholar]
- Kumar, P.; Sharma, M.K. Nutrient Deficiencies of Field Crops: Guide to Diagnosis and Management; Illustrated, Ed.; CABI: Wallingford, UK, 2013; p. 378. [Google Scholar]
- Buchelt, A.C.; Teixeira, G.C.M.; Oliveira, K.S.; Rocha, A.M.S.; de Mello Prado, R.; Caione, G. Silicon contribution via nutrient solution in forage plants to mitigate nitrogen, potassium, calcium, magnesium, and sulfur deficiency. J. Soil Sci. Plant Nutr. 2020, 20, 1532–1548. [Google Scholar] [CrossRef]
- Hosseinifard, M.; Stefaniak, S.; Ghorbani Javid, M.; Soltani, E.; Wojtyla, Ł.; Garnczarska, M. Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. Int. J. Mol. Sci. 2022, 23, 5186. [Google Scholar] [CrossRef]
- Tariq, A.; Zeng, F.; Graciano, C.; Ullah, A.; Sadia, S.; Ahmed, Z.; Murtaza, G.; Ismoilov, K.; Zhang, Z. Regulation of Metabolites by Nutrients in Plants. In Plant Ionomics: Sensing, Signaling, and Regulation, 1st ed.; Singh, V.P., Siddiqui, M.H., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2023; pp. 1–18. [Google Scholar]
- Raj, M.; Lal, K.; Kumar, R.; Ranjan, A. Scenario of Potassium Mining and Management in Indian Agriculture: A Review. Balance 2019, 10, 5–976. [Google Scholar]
- Sun, J.; Zhao, J.; Zhang, T.; Yu, L.; Jin, K. Effects of a Furrow-Bed Seeding System on Stand Establishment, Soil Bacterial Diversity, and the Yield and Quality of Alfalfa Under Saline Condition. Front. Plant Sci. 2022, 13, 919912. [Google Scholar] [CrossRef]
- Sayed, M.R.; Alshallash, K.S.; Safhi, F.A.; Alatawi, A.; ALshamrani, S.M.; Dessoky, E.S.; Sultan, F.M. Genetic diversity, analysis of some agro-morphological and quality traits and utilization of plant resources of alfalfa. Genes 2022, 13, 1521. [Google Scholar] [CrossRef]
- Kumar, G.; Kumari, R.; Shambhavi, S.; Kumar, S.; Kumari, P.; Padbhushan, R. Eight-year Continuous Tillage Practice Impacts Soil Properties and Forms of Potassium under Maize-based Cropping Systems in Inceptisols of Eastern India. Commun. Soil Sci. Plant Anal. 2022, 53, 602–621. [Google Scholar] [CrossRef]
- Andrews, E.M.; Kassama, S.; Smith, E.E.; Brown, P.H.; Khalsa, S.D.S. A review of potassium-rich crop residues used as organic matter amendments in tree crop agroecosystems. Agriculture 2021, 11, 580. [Google Scholar] [CrossRef]
- Jackson, M.L. Chemical composition of soils. In Chemistry of the Soil, 2nd ed.; Bear, F.E., Ed.; Reinhold Pub. Corp: New York, NY, USA, 1964. [Google Scholar]
- Bertsch, P.M.; Thomas, G.W. Potassium status of temperate region soils. In Potassium in Agriculture, 1st ed.; Munson, R.D., Ed.; American Society of Agronomy: Madison, WI, USA, 1985; pp. 129–162. [Google Scholar]
- Rasmussen, P.E.; Collins, H.P. Long-term impacts of tillage, fertilizer, and crop residue on soil organic matter in temperate semiarid regions. Adv. Agron. 1991, 45, 93–134. [Google Scholar]
- Qambrani, N.A.; Rahman, M.M.; Won, S.; Shim, S.; Ra, C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar] [CrossRef]
- Simonsson, M.; Hillier, S.; Öborn, I. Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma 2009, 151, 109–120. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Rajwar, D.; Nagaraja, M.S. Soil fertility problems and management. In Managing Salt-Affected Soils for Sustainable Agriculture, 1st ed.; Minhas, P.S., Yadav, R.K., Sharma, P.C., Eds.; Directorate of Knowledge Management in Agriculture, ICAR: New Delhi, India, 2021; pp. 386–407. [Google Scholar]
- Padbhushan, R.; Kumar, A.; Kumar, U.; Kumar, A.; Kumari, R.; Kohli, A. Novel Potassium Management Strategies for Improvement of Soil Health. In Soil Management for Sustainable Agriculture, 1st ed.; Mandal, N., Dey, A., Rakshit, R., Eds.; Apple Academic Press: New York, NY, USA, 2022; pp. 355–377. [Google Scholar]
- Marschner, P. (Ed.) Marschner's Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012; p. 649. [Google Scholar]
- Bernardi, A.C.C.; Rassini, J.B.; Mendonça, F.C.; Ferreira, R.P. Alfalfa dry matter yield, nutritional status and economic analysis of potassium fertilizer doses and frequency. Int. J. Agron. Plant Prod. 2013, 4, 389–398. [Google Scholar]
- Anindita, S.; Sleutel, S.; Vandenberghe, D.; De Grave, J.; Vandenhende, V.; Finke, P. Land use impacts on weathering, soil properties, and carbon storage in wet Andosols, Indonesia. Geoderma 2022, 423, 115963. [Google Scholar] [CrossRef]
- Lalitha, M.; Dhakshinamoorthy, M. Forms of soil potassium-A review. Agric. Rev. 2014, 35, 64–68. [Google Scholar] [CrossRef]
- Kraur, H. Forms of potassium in soil and their relationship with soil properties-A review. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 1580–1586. [Google Scholar] [CrossRef]
- Almeida, T.F.; Carvalho, J.K.; Reid, E.; Martins, A.P.; Bissani, C.A.; Bortoluzzi, E.C.; Brunetto, G.; Anghinoni, I.; Carvalho, P.C.F.; Tiecher, T. Forms and balance of soil potassium from a long-term integrated crop-livestock system in a subtropical Oxisol. Soil Tillage Res. 2021, 207, 104864. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Ai, S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022, 825, 153862. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.J.; Tiller, K.G.; Naidu, R.; Stevens, D.P. The behaviour and environmental impact of contaminants in fertilizers. Soil Res. 1996, 34, 1–54. [Google Scholar] [CrossRef]
- Sparks, D.L. Potassium Dynamics in Soils. In Advances in Soil Science, 1st ed.; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1987; Volume 6, pp. 1–63. [Google Scholar]
- Tarun Kumar, B.; Jayananda, M.; Nasipuri, P.; Guitreau, M.; Aadhiseshan, K.R.; Rao, S.B.M.; Thomas, T.T.; Satyanarayanan, M. Tectono-Thermal History of the Neoarchean Balehonnur Shear Zone, Western Dharwar Craton (Southern India). Lithosphere 2022, 4167477. [Google Scholar] [CrossRef]
- Oeser, R.A.; von Blanckenburg, F. Do degree and rate of silicate weathering depend on plant productivity? Biogeosciences 2020, 17, 4883–4917. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Meena, V.D.; Basak, B.B.; Meena, R.S. Potassium uptake by crops as well as microorganisms. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; 1st ed., Meena, V.S., Maurya, B.M., Verma, J.P., Meena, R.S., Eds.; Springer: New Delhi, India, 2016; pp. 267–280. [Google Scholar]
- Rasel, M.; Tahjib-Ul-Arif, M.; Hossain, M.A.; Hassan, L.; Farzana, S.; Brestic, M. Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. J. Plant Growth Regul. 2021, 40, 1853–1868. [Google Scholar] [CrossRef]
- White, P.J. Long-distance transport in the xylem and phloem. In Marschner's Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 49–70. [Google Scholar]
- Kathpalia, R.; Bhatla, S.C. Plant mineral nutrition. In Plant Physiology, Development and Metabolism, 1st ed.; Bhatla, S.C., Lal, M.A., Eds.; Springer: Singapore, 2018; pp. 37–81. [Google Scholar]
- Heldt, H.W.; Piechulla, B. Plant Biochemistry, 5th ed.; Academic Press: Cambridge, MA, USA, 2021; p. 609. [Google Scholar]
- Griffiths, M.; York, L.M. Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency. Plant Physiol. 2020, 182, 1854–1868. [Google Scholar] [CrossRef]
- Hogan, J.A.; Valverde-Barrantes, O.J.; Tang, W.; Ding, Q.; Xu, H.; Baraloto, C. Evidence of elemental homeostasis in fine root and leaf tissues of saplings across a fertility gradient in tropical montane forest in Hainan, China. Plant Soil 2021, 460, 625–646. [Google Scholar] [CrossRef]
- Etesami, H.; Alikhani, H.A. Silicon improves the effect of phosphate-solubilizing bacterium and arbuscular mycorrhizal fungus on phosphorus concentration of salinity-stressed alfalfa (Medicago sativa L.). Rhizosphere 2022, 24, 100619. [Google Scholar]
- Hosseini-Nasr, F.; Etesami, H.; Alikhani, H.A. Silicon Improves Plant Growth-Promoting Effect of Nodule Non-Rhizobial Bacterium on Nitrogen Concentration of Alfalfa Under Salinity Stress. J. Soil Sci. Plant Nutr. 2023, 23, 496–513. [Google Scholar] [CrossRef]
- Clover, M.W.; Mallarino, A.P. Corn and soybean tissue potassium content responses to potassium fertilization and relationships with grain yield. Soil Sci. Soc. Am. J. 2013, 77, 630–642. [Google Scholar] [CrossRef]
- Tan, C.; Cao, X.; Yuan, S.; Wang, W.; Feng, Y.; Qiao, B. Effects of long-term conservation tillage on soil nutrients in sloping fields in regions characterized by water and wind erosion. Sci. Rep. 2015, 5, 17592. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mohamed, I.; Ali, M.; Abbas, M.H.; Shah, G.M.; Chen, F. Potassium distribution in root and non-root zones of two cotton genotypes and its accumulation in their organs as affected by drought and potassium stress conditions. J. Plant Nutr. Soil Sci. 2019, 182, 72–81. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, Z.; Bakker, M.R.; Kim, J.H.; Brancheriau, L.; Buatois, B.; Stokes, A. Linking conifer root growth and production to soil temperature and carbon supply in temperate forests. Plant Soil 2018, 426, 33–50. [Google Scholar] [CrossRef]
- Calleja-Cabrera, J.; Boter, M.; Oñate-Sánchez, L.; Pernas, M. Root growth adaptation to climate change in crops. Front. Plant Sci. 2020, 11, 544. [Google Scholar] [CrossRef]
- Clarke, S.J.; Lamont, K.J.; Pan, H.Y.; Barry, L.A.; Hall, A.; Rogiers, S.Y. Spring root-zone temperature regulates root growth, nutrient uptake and shoot growth dynamics in grapevines. Aust. J. Grape Wine Res. 2015, 21, 479–489. [Google Scholar] [CrossRef]
- Abuarab, M.E.; El-Mogy, M.M.; Hassan, A.M.; Abdeldaym, E.A.; Abdelkader, N.H.; BI El-Sawy, M. The effects of root aeration and different soil conditioners on the nutritional values, yield, and water productivity of potato in clay loam soil. Agronomy 2019, 9, 418. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Shabala, S.; Meinke, H.; Ahmed, I.; Zhang, Y.; Zhou, M. The state of the art in modeling waterlogging impacts on plants: What do we know and what do we need to know. Earth's Future 2020, 8, e2020EF001801. [Google Scholar] [CrossRef]
- Freschet, G.T.; Roumet, C.; Comas, L.H.; Weemstra, M.; Bengough, A.G.; Rewald, B.; Stokes, A. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytol. 2021, 232, 1123–1158. [Google Scholar] [CrossRef]
- Li, Y.; Niu, W.; Cao, X.; Wang, J.; Zhang, M.; Duan, X.; Zhang, Z. Effect of soil aeration on root morphology and photosynthetic characteristics of potted tomato plants (Solanum lycopersicum) at different NaCl salinity levels. BMC Plant Biol. 2019, 19, 331. [Google Scholar] [CrossRef] [PubMed]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Souliyanonh, B. Soil compaction effects on soil health and cropproductivity: An overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [Google Scholar] [CrossRef]
- Wolkowski, R.P. Soil management and K availability. New Horiz. Soil Sci. 2000, 1, 1–6. [Google Scholar]
- Jahan, I.; Shopan, J.; Rahman, M.M.; Sarkar, A.; Baset, M.A.; Zhang, Z.; Hasan, M.K. Long-Term Traditional Fertilization Alters Tea Garden Soil Properties and Tea Leaf Quality in Bangladesh. Agronomy 2022, 12, 2128. [Google Scholar] [CrossRef]
- Ng, J.F.; Ahmed, O.H.; Jalloh, M.B.; Omar, L.; Kwan, Y.M.; Musah, A.A.; Poong, K.H. Soil nutrient retention and pH buffering capacity are enhanced by calciprill and sodium silicate. Agronomy 2022, 12, 219. [Google Scholar] [CrossRef]
- Khan, H.R.; Elahi, S.F.; Hussain, M.S.; Adachi, T. Soil characteristics and behavior of potassium under various moisture regimes. Soil Sci. Plant Nutr. 1994, 40, 243–254. [Google Scholar] [CrossRef]
- Nehela, Y.; Mazrou, Y.S.; Alshaal, T.; Rady, A.M.; El-Sherif, A.M.; Omara, A.E.D.; Hafez, E.M. The integrated amendment of sodic-saline soils using biochar and plant growth-promoting rhizobacteria enhances maize (Zea mays L.) resilience to water salinity. Plants 2021, 10, 1960. [Google Scholar] [CrossRef] [PubMed]
- Mouhamad, R.; Alsaede, A.; Iqbal, M. Behavior of potassium in soil: A mini review. Chem. Int. 2016, 2, 58–69. [Google Scholar]
- Kumari, N.; Mohan, C. Basics of clay minerals and their characteristic properties. In Clay and Clay Minerals, 1st ed.; Morari Do Nascimento, G., Ed.; Intechopen: London, UK, 2021; Volume 24, pp. 15–88. [Google Scholar]
- Bilias, F.; Kotsangeli, E.; Ipsilantis, I.; Barbayiannis, N. Cation Exchange Resins for Predicting Available K on K-Deficient Soils: Extraction Capacity among Different Soil K Pools and First Insights on the Contribution of K Solubilized by Rhizosphere Microbes. Land 2022, 11, 2146. [Google Scholar] [CrossRef]
- Florence, A.; Ransom, M.; Mengel, D. Potassium fixation by oxidized and reduced forms of phyllosilicates. Soil Sci. Soc. Am. J. 2017, 81, 1247–1255. [Google Scholar] [CrossRef]
- Agegnehu, G.; Amede, T.; Erkossa, T.; Yirga, C.; Henry, C.; Tyler, R.; Sileshi, G.W. Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: A review. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2021, 71, 852–869. [Google Scholar] [CrossRef]
- Trinchant, J.C.; Boscari, A.; Spennato, G.; Van de Sype, G.; Le Rudulier, D. Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Exploring its compartmentalization in nodules. Plant Physiol. 2004, 135, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wei, Y.; Yin, Y.; Zhu, W.; Bai, X.; Zhou, Y. Characteristics of Soil Physicochemical Properties and Microbial Community of Mulberry (Morus alba L.) and Alfalfa (Medicago sativa L.) Intercropping System in Northwest Liaoning. Microorganisms 2023, 11, 114. [Google Scholar] [CrossRef]
- Bhattarai, S.; Biswas, D.; Fu, Y.B.; Biligetu, B. Morphological, physiological, and genetic responses to salt stress in alfalfa: A Review. Agronomy 2020, 10, 577. [Google Scholar] [CrossRef]
- Das, D.; Dwivedi, B.S.; Datta, S.P.; Datta, S.C.; Meena, M.C.; Datta, S.C. Intensive cropping with varying nutrient management options alters potassium dynamics in soil. Indian J. Fertil. 2020, 16, 690–704. [Google Scholar]
- Swoboda, P.; Döring, T.F.; Hamer, M. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Sci. Total Environ. 2022, 807, 150976. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Su, R.; Chang, C.; Cheng, X.; Peng, Q.; Lambers, H.; He, H. Effects of oxytetracycline on plant growth, phosphorus uptake, and carboxylates in the rhizosheath of alfalfa. Plant Soil 2021, 461, 501–515. [Google Scholar] [CrossRef]
- Naorem, A.; Jayaraman, S.; Dang, Y.P.; Dalal, R.C.; Sinha, N.K.; Rao, C.S.; Patra, A.K. Soil Constraints in an Arid Environment—Challenges, Prospects, and Implications. Agronomy 2023, 13, 220. [Google Scholar] [CrossRef]
- Setu, H. Effect of phosphorus and potassium fertilizers application on soil chemical characteristics and their accumulation in potato plant tissues. Appl. Environ. Soil Sci. 2022, 1, 5342170. [Google Scholar] [CrossRef]
- Landaverde, A. Floating Treatment Wetlands for Brackish Waters: Plant Selection and Nutrient Uptake Potential. Master’s Thesis, Clemson University, Clemson, SC, USA, May 2022; p. 3736. [Google Scholar]
- Kelling, K.A. Alfalfa Fertilization; University of Wisconsin Extension: Sparta, WI, USA, 2000; UWEX A2448. [Google Scholar]
- Undersander, D.; Cosgrove, D.; Cullen, E.; Grau, C.; Rice, M.E.; Renz, M.; Sheaffer, C.; Shewmaker, G.; Sulc, M. Alfalfa Management Guide; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2015; p. 60. [Google Scholar]
- Naorem, A.; Jayaraman, S.; Dalal, R.C.; Patra, A.; Rao, C.S.; Lal, R. Soil Inorganic Carbon as a Potential Sink in Carbon Storage in Dryland Soils—A Review. Agriculture 2022, 12, 1256. [Google Scholar] [CrossRef]
- Pintarič, S.; Suhadolc, M.; Eler, K. Straw Management and Slurry Application Affect the Soil Microbial Community Composition and Its Activity. Agronomy 2022, 12, 2781. [Google Scholar] [CrossRef]
- Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Chen, Q.; Xin, Y.; Liu, Z. Long-Term Fertilization with Potassium Modifies Soil Biological Quality in K-Rich Soils. Agronomy 2020, 10, 771. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Liu, X.; Zhang, D.; Li, L.; Li, W.; Sheng, L. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 2019, 195, 104382. [Google Scholar] [CrossRef]
Parameters | Effects of K Supply | References |
---|---|---|
Growth parameters | Improved shoot height | [25,49] |
Enhanced growth persistence | [21,25] | |
Increased root weight | [25] | |
Maximized population densities | [49] | |
Unaltered plant stand population | [50] | |
Increased growth by 80% | [51] | |
Yield parameters | Increased herbage yield | [21,25,40,49] |
Decreased herbage yield | [26] | |
Not impacted leaf–stem ratio | [31] | |
Maximized nodulation and leaf–stem ratio | [40] | |
Increased dry matter yield by 7% | [52] | |
Quality parameters | Decreased starch and non-structural carbohydrates in root | [53] |
Increased protein, amino-N, and RNA | [21] | |
Improved total root non-structural carbohydrate | [21,25] | |
Increased crude protein (37.7%), nitrogen (9.79%), phosphorus (0.51%) and soluble sugar (324.75%) | [54] | |
Reduced sodium and malondialdehyde by 0.49% and 55.94% respectively | [54] | |
Reduced forage nutritive value | [26] | |
Minimized copper (Cu) content of forage yield | [55] | |
Reduced boron (B), calcium (Ca), sodium (Na), and magnesium (Mg) concentration of plant | [31] | |
Increased potassium (K) concentration of herbage | [31] | |
Enhanced K removal in total herbage by 30 to 58% | [31] |
K Sources | Chemical Formula | K2O (%) | K (%) |
---|---|---|---|
Potassium nitrate | KNO3 | 44 | 37 |
Potassium sulfate | K2SO4 | 50 | 42 |
Potassium magnesium sulfate | K2SO4·2MgSO4 | 22 | 19 |
Potassium carbonate | K2CO3KHCO3 | 56 | 46 |
Potassium sodium nitrate | KNa(NO3)2 | 46 | 38 |
Potassium hydroxide | KOH | 90 | 75 |
Potassium chloride | KCl | 60 | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Appiah, E.A.; Balla-Kovács, A.; Ocwa, A.; Csajbók, J.; Kutasy, E. Enhancing Alfalfa (Medicago sativa L.) Productivity: Exploring the Significance of Potassium Nutrition. Agronomy 2024, 14, 1806. https://doi.org/10.3390/agronomy14081806
Appiah EA, Balla-Kovács A, Ocwa A, Csajbók J, Kutasy E. Enhancing Alfalfa (Medicago sativa L.) Productivity: Exploring the Significance of Potassium Nutrition. Agronomy. 2024; 14(8):1806. https://doi.org/10.3390/agronomy14081806
Chicago/Turabian StyleAppiah, Ebenezer Ayew, Andrea Balla-Kovács, Akasairi Ocwa, József Csajbók, and Erika Kutasy. 2024. "Enhancing Alfalfa (Medicago sativa L.) Productivity: Exploring the Significance of Potassium Nutrition" Agronomy 14, no. 8: 1806. https://doi.org/10.3390/agronomy14081806
APA StyleAppiah, E. A., Balla-Kovács, A., Ocwa, A., Csajbók, J., & Kutasy, E. (2024). Enhancing Alfalfa (Medicago sativa L.) Productivity: Exploring the Significance of Potassium Nutrition. Agronomy, 14(8), 1806. https://doi.org/10.3390/agronomy14081806