Sunflower Origin Identification Based on Multi-Source Information Fusion Technique of Kernel Extreme Learning Machine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Instruments and Sampling
2.2.1. Near-Infrared Spectroscopy Collection and Spectral Analysis
2.2.2. Nuclear Magnetic Resonance Collection and Spectral Analysis
2.3. Establishment of the Sunflower Origin Identification Model
2.3.1. Principles and Evaluation of Extreme Learning Machine
2.3.2. Multi-Source Information Fusion Techniques
3. Results and Discussion
3.1. Establishment and Verification of the Single-Spectrum Identification Model
3.2. Feature Extraction
3.3. Establishment and Verification of the Data Fusion Identification Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marchioni, I.; Gabriele, M.; Carmassi, G.; Ruffoni, B.; Pistelli, L.; Pistelli, L.; Najar, B. Phytochemical, Nutritional and Mineral Content of Four Edible Flowers. Foods 2024, 13, 939. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, T.; Tabrizi, L.; Nazeri, V.; Etemadi, M. Nutrient distribution in various tissues of Licorice (Glycyrrhiza glabra L.) and the influence of soil fertility on the levels of its bioactive compounds. Ind. Crops Prod. 2024, 209, 118073. [Google Scholar] [CrossRef]
- Domaratskiy, E.O.; Bazaliy, V.V.; Domaratskiy, O.O.; Dobrovol, A.V.; Kyrychenko, N.V.; Kozlova, O.P. Influence of mineral nutrition and combined growth regulating chemical on nutrient status of sunflower. Indian J. Ecol. 2018, 45, 126–129. [Google Scholar]
- Yildiz, S.; Erdoğan, S. Quality Traits of the Nutrient Matter Compositions and Yield parameters of planted Silage Corn Zea mays L. and Sunflower Helianthus annuus L. at Conditions of Van. Türkiye Tarımsal Araștırmalar Derg. 2018, 5, 280–285. [Google Scholar] [CrossRef]
- Mrdja, J.; Crnobarac, J.; Radić, V.; Miklič, V. Sunflower seed quality and yield in relation to environmental conditions of production region. Helia 2012, 35, 123–134. [Google Scholar]
- Lagiso, T.M.; Singh, B.C.S.; Weyessa, B. Evaluation of sunflower (Helianthus annuus L.) genotypes for quantitative traits and character association of seed yield and yield components at Oromia region, Ethiopia. Euphytica 2021, 217, 27. [Google Scholar] [CrossRef]
- Varalakshmi, K.; Neelima, S.; Reddy, R.N.; Sreenivasulu, K. Genetic variability studies for yield and its component traits in newly developed sunflower (Helianthus annuus L.) hybrids. Electron. J. Plant Breed. 2020, 11, 301–305. [Google Scholar]
- Khan, F.A.; Iqbal, A.; Saeed, A.; Naeem, A.; Mehmood, M.A. Combining ability studies for yield and others quality traits of sunflower (Helianthus annuus L.) by using line× tester analysis. J. Agric. Res. 2021, 59, 7. [Google Scholar]
- Chen, X.; Zhang, H.; Teng, A.; Zhang, C.; Lei, L.; Ba, Y.; Wang, Z. Photosynthetic characteristics, yield and quality of sunflower response to deficit irrigation in a cold and arid environment. Front. Plant Sci. 2023, 14, 1280347. [Google Scholar] [CrossRef]
- Castillo-Lorenzo, E.; Pritchard, H.W.; Finch-Savage, W.E.; Seal, C.E. Comparison of seed and seedling functional traits in native Helianthus species and the crop H. annuus (sunflower). Plant Biol. 2019, 21, 533–543. [Google Scholar] [CrossRef]
- Heubl, G. New aspects of DNA-based authentication of Chinese medicinal plants by molecular biological techniques. Planta Med. 2010, 76, 1963–1974. [Google Scholar] [CrossRef] [PubMed]
- Timme, R.E.; Kuehl, J.V.; Boore, J.L.; Jansen, R.K. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am. J. Bot. 2007, 94, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, C. Boys and girls come out to play: The molecular biology of dioecious plants. Ann. Bot. 2000, 86, 211–221. [Google Scholar] [CrossRef]
- Sneh, B.; Jabaji-Hare, S.; Neate, S.; Dijst, G. Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Wang, H.; Li, J.; Tao, W.; Zhang, X.; Gao, X.; Yong, J.; Zhao, J.; Zhang, L.; Li, Y.; Duan, J. Lycium ruthenicum studies: Molecular biology, phytochemistry and pharmacology. Food Chem. 2018, 240, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.; Dai, X.; Guo, Z.; Wang, C. Identification of Rice from Different Origins by Two-dimensional Correlation Near Infrared Spectroscopy. J. Chin. Inst. Food Sci. Technol. 2023, 23, 331–338. [Google Scholar]
- Tong, P.; Lim, L.J.; Wei, T.; Elejalde, U.; Zhang, H.; Jiang, Y.; Cao, W. Rapid identification of the variety and geographical origin of Wuyou No. 4 rice by fourier transform near-infrared spectroscopy coupled with chemometrics. J. Cereal Sci. 2021, 102, 103322. [Google Scholar]
- Liu, X.; Bai, B.; Rogers, K.M.; Wu, D.; Qian, Q.; Qi, F.; Zhou, J.; Yao, C.; Song, W. Determining the geographical origin and cultivation methods of Shanghai special rice using NIR and IRMS. Food Chem. 2022, 394, 133425. [Google Scholar] [CrossRef]
- Hu, Y.-R.; Li, J.-Q.; Liu, H.-G.; Fan, M.-P.; Wang, Y.-Z. The Origin Identification Study of Boletus Edulis Based on the Infrared Spctrum Data Fusion Strategy. Spectrosc. Spectr. Anal. 2020, 40, 1276–1282. [Google Scholar]
- Hu, Y.-R.; Li, J.-Q.; Liu, H.-G.; Fan, M.-P.; Wang, Y.-Z. Infrared spectral study on the origin identification of Boletus Tomentipes based on the random forest algorithm and data fusion strategy. Spectrosc. Spectr. Anal. 2020, 40, 1495–1502. [Google Scholar]
- Xu, Z.-W.; Feng, C.-P.; Fan, S.; Zhang, B.-L.; Zhao, H.-F.; Liu, Y.-N.; Yue, H.-W.; Ji, X.; Zhang, S.-X.; Lu, W. Rapid determination of alcohol content in alcoholic beverages by low-field NMR. Food Ferment. Ind. 2022, 48, 254–261. [Google Scholar]
- Ackermann, S.M.; Dolsophon, K.; Monakhova, Y.B.; Kuballa, T.; Reusch, H.; Thongpanchang, T.; Bunzel, M.; Lachenmeier, D.W. Automated multicomponent analysis of soft drinks using 1D 1 H and 2D 1 H-1 H J-resolved NMR spectroscopy. Food Anal. Methods 2017, 10, 827–836. [Google Scholar] [CrossRef]
- Godinho, M.S.; Blanco, M.R.; Neto, F.F.G.; Lião, L.M.; Sena, M.M.; Tauler, R.; de Oliveira, A.E. Evaluation of transformer insulating oil quality using NIR, fluorescence, and NMR spectroscopic data fusion. Talanta 2014, 129, 143–149. [Google Scholar] [CrossRef]
- Li, Q.; Huang, Y.; Zhang, J.; Min, S. A fast determination of insecticide deltamethrin by spectral data fusion of UV–vis and NIR based on extreme learning machine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119119. [Google Scholar] [CrossRef] [PubMed]
- Luan, X.; Qu, C.; An, T.; Qian, J.; Shi, M.; Wang, X.; Hu, M. Applications of Molecular Spectral information Fusion to Distinguish the Rice From Different Growing Regions. Spectrosc. Spectr. Anal. 2023, 43, 2818–2824. [Google Scholar]
- Dai, Y.; Dai, Z.; Guo, G.; Wang, B. Nondestructive identification of rice varieties by the data fusion of Raman and near-infrared (NIR) spectroscopies. Anal. Lett. 2023, 56, 730–743. [Google Scholar] [CrossRef]
- Zhou, Y.; Zuo, Z.; Xu, F.; Wang, Y. Origin identification of Panax notoginseng by multi-sensor information fusion strategy of infrared spectra combined with random forest. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 226, 117619. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.-Y.; Wang, Y.-Z. FT-MIR and NIR spectral data fusion: A synergetic strategy for the geographical traceability of Panax notoginseng. Anal. Bioanal. Chem. 2018, 410, 91–103. [Google Scholar] [CrossRef]
- Mutyala, V.; Anaparthi, V.; Mundru, Y.; Yogi, M.K. Frontiers of AI beyond 2030: Novel Perspectives. J. Artif. Intell. 2022, 4, 246–262. [Google Scholar]
- Maragathavalli, P.; Thanushri, A.; Gayathri, S.N.L.; Asok, H. A Survey on Cyberbullying Predictive Model using Deep Learning Techniques. J. Trends Comput. Sci. Smart Technol. 2024, 6, 99–111. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), Budapest, Hungary, 25–29 July 2004; pp. 985–990. [Google Scholar]
- Huang, G.-B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2011, 42, 513–529. [Google Scholar] [CrossRef]
- Li, H.; Chou, C.; Chen, Y.; Wang, S.; Wu, A. Robust and lightweight ensemble extreme learning machine engine based on eigenspace domain for compressed learning. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 4699–4712. [Google Scholar] [CrossRef]
- Huang, G.-B.; Ding, X.; Zhou, H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74, 155–163. [Google Scholar] [CrossRef]
- Leung, H.C.; Leung, C.S.; Wong, E.W.M. Fault and noise tolerance in the incremental extreme learning machine. IEEE Access 2019, 7, 155171–155183. [Google Scholar] [CrossRef]
- Dai, H.; Cao, J.; Wang, T.; Deng, M.; Yang, Z. Multilayer one-class extreme learning machine. Neural Netw. 2019, 115, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xie, X.; Zhang, T.; Bai, J.; Hou, M. A deep residual compensation extreme learning machine and applications. J. Forecast. 2020, 39, 986–999. [Google Scholar] [CrossRef]
- Jin, Z.; Zhou, G.; Gao, D.; Zhang, Y. EEG classification using sparse Bayesian extreme learning machine for brain–computer interface. Neural Comput. Appl. 2020, 32, 6601–6609. [Google Scholar] [CrossRef]
- Diker, A.; Avci, D.; Avci, E.; Gedikpinar, M. A new technique for ECG signal classification genetic algorithm Wavelet Kernel extreme learning machine. Optik 2019, 180, 46–55. [Google Scholar] [CrossRef]
- Ayaz, S.; Ahmad, M.; Zafar, M.; Ali, M.I.; Sultana, S.; Mustafa, M.R.U.; Kilic, O.; Çobanoğlu, D.N.; Demirpolat, A.; Ghani, A. Taxonomic significance of cypsela morphology in tribe Cichoreae (Asteraceae) using light microscopy and scanning electron microscopy. Microsc. Res. Tech. 2020, 83, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Carrijo, T.T.; Garbin, M.L.; Picanço Leite, W.; Mendonça, C.B.F.; Esteves, R.L.; Gonçalves-Esteves, V. Pollen morphology of some related genera of Vernonieae (Asteraceae) and its taxonomic significance. Plant Syst. Evol. 2013, 299, 1275–1283. [Google Scholar] [CrossRef]
- Ayaz, A.; Gu, Y. Macromorphological and foliar epidermal anatomical characteristics of Lilium rosthornii (Liliaceae): Implications for morphological adaptations and taxonomic significance. Microsc. Res. Tech. 2024, 1–7. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, C. Leaf morphological characteristics and taxonomic significance of eight Allium species. J. Northwest A F Univ.-Nat. Sci. Ed. 2018, 46, 107–116. [Google Scholar]
- Grace, O.M.; Simmonds, M.S.; Smith, G.F.; Van Wyk, A.E. Taxonomic significance of leaf surface morphology in Aloe section Pictae (Xanthorrhoeaceae). Bot. J. Linn. Soc. 2009, 160, 418–428. [Google Scholar] [CrossRef]
- Freitas, F.S.; De-Paula, O.C.; Nakajima, J.N.; Marzinek, J. Fruits of Heterocoma (Vernonieae-Lychnophorinae): Taxonomic significance and a new pattern of phytomelanin deposition in Asteraceae. Bot. J. Linn. Soc. 2015, 179, 255–265. [Google Scholar] [CrossRef]
- Ranjbar, M.; Karami, S. Pollen morphology of some selected species of the tribes Brassiceae, Conringieae, Isatideae, and Plagiolobeae (Brassicaceae) in Iran, and its taxonomic significance. Palynology 2023, 47, 2138606. [Google Scholar] [CrossRef]
- Emlee, A.M.; Amri, C.N.A.C.; Midin, M.R. Taxonomic Significance of Leaf Micromorphology in Selected Garcinia from Peninsular Malaysia. Revel. Sci. 2023, 1. [Google Scholar] [CrossRef]
- Liu, Y.-D.; Ye, L.-Y.; Sun, X.-D.; Han, R.-B.; Xiao, H.-C.; Ma, K.-R.; Zhu, D.-N.; Wu, M.-M. Maturity evaluation model of tangerine based on spectral index. Chin. Opt. 2018, 11, 83–91. [Google Scholar]
- Pan, S.; Zhang, X.; Xu, W.; Yin, J.; Gu, H.; Yu, X. Rapid On-site identification of geographical origin and storage age of tangerine peel by Near-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 271, 120936. [Google Scholar] [CrossRef]
- Jin, W.-L.; Cao, N.-L. Nondestructive grading test of rice seed activity using near infrared super-continuum laser spectrum. Chin. Opt. 2020, 13, 1032–1043. [Google Scholar]
- Westad, F.; Schmidt, A.; Kermit, M. Incorporating chemical band-assignment in near infrared spectroscopy regression models. J. Near Infrared Spectrosc. 2008, 16, 265–273. [Google Scholar] [CrossRef]
- Choi, H.; Vinograd, I.; Chaffey, C.; Curro, N. Inverse Laplace transformation analysis of stretched exponential relaxation. J. Magn. Reson. 2021, 331, 107050. [Google Scholar] [CrossRef]
- Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Committee on Applied Mathematics, Harvard University, Cambridge, MA, USA, 1974. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Huang, G.-B.; Zhang, J.; Yin, J. Multiple kernel extreme learning machine. Neurocomputing 2015, 149, 253–264. [Google Scholar] [CrossRef]
- Zhao, Y.-P. Parsimonious kernel extreme learning machine in primal via Cholesky factorization. Neural Netw. 2016, 80, 95–109. [Google Scholar] [CrossRef] [PubMed]
- You, C.-X.; Huang, J.-Q.; Lu, F. Recursive reduced kernel based extreme learning machine for aero-engine fault pattern recognition. Neurocomputing 2016, 214, 1038–1045. [Google Scholar] [CrossRef]
- Iosifidis, A.; Tefas, A.; Pitas, I. On the kernel extreme learning machine classifier. Pattern Recognit. Lett. 2015, 54, 11–17. [Google Scholar] [CrossRef]
- Luo, F.; Guo, W.; Yu, Y.; Chen, G. A multi-label classification algorithm based on kernel extreme learning machine. Neurocomputing 2017, 260, 313–320. [Google Scholar] [CrossRef]
- Iosifidis, A.; Gabbouj, M. On the kernel extreme learning machine speedup. Pattern Recognit. Lett. 2015, 68, 205–210. [Google Scholar] [CrossRef]
- Mojrian, S.; Pinter, G.; Joloudari, J.H.; Felde, I.; Szabo-Gali, A.; Nadai, L.; Mosavi, A. Hybrid machine learning model of extreme learning machine radial basis function for breast cancer detection and diagnosis; a multilayer fuzzy expert system. In Proceedings of the 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), Ho Chi Minh City, Vietnam, 14–15 October 2020; pp. 1–7. [Google Scholar]
- Qin, Y.; Li, M.; De, G.; Huang, L.; Yang, S.; Tan, Q.; Tan, Z.; Zhou, F. Research on green management effect evaluation of power generation enterprises in China based on dynamic hesitation and improved extreme learning machine. Processes 2019, 7, 474. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Makhadmeh, S.N.; Al-Betar, M.A.; Doush, I.A.; Awadallah, M.A.; Kassaymeh, S.; Mirjalili, S.; Zitar, R.A. Recent advances in Grey Wolf Optimizer, its versions and applications. IEEE Access 2023, 12, 22991–23028. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H.; Li, H.; Cai, Z.; Zhao, X.; Tong, C.; Li, J.; Xu, X. Grey wolf optimization evolving kernel extreme learning machine: Application to bankruptcy prediction. Eng. Appl. Artif. Intell. 2017, 63, 54–68. [Google Scholar] [CrossRef]
- Feng, L.; Wu, B.; Zhu, S.; Wang, J.; Su, Z.; Liu, F.; He, Y.; Zhang, C. Investigation on data fusion of multisource spectral data for rice leaf diseases identification using machine learning methods. Front. Plant Sci. 2020, 11, 577063. [Google Scholar] [CrossRef] [PubMed]
- Bouhrara, M.; Maring, M.C.; Spencer, R.G. A simple and fast adaptive nonlocal multispectral filtering algorithm for efficient noise reduction in magnetic resonance imaging. Magn. Reson. Imaging 2019, 55, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Huang, Z.; Ge, P.; Gao, F.; Gao, F. Adaptive denoising of photoacoustic signal and image based on modified Kalman filter. J. Biophotonics 2023, 16, e202200362. [Google Scholar] [CrossRef]
- Mokari, A.; Guo, S.; Bocklitz, T. Exploring the steps of infrared (IR) spectral analysis: Pre-processing,(classical) data modelling, and deep learning. Molecules 2023, 28, 6886. [Google Scholar] [CrossRef]
Place of Origin (Location) | Sample No. | Longitude and Latitude |
---|---|---|
Altay Prefecture in Xinjiang | 1-(60) | N 45°00′–48°03′, E 88°10′–90°31′ |
Heilongjiang Province (cities of Qiqihar) | 2-(20) | N 46°13′–48°56′, E 122°24′–126°41′ |
Heilongjiang Province (cities of Daqing) | 3-(20) | N 45°46′–46°55′, E 124°19′–125°12′ |
Heilongjiang Province (cities of Suihua) | 4-(20) | N 45°03′–48°02′, E 124°13′–128°30′ |
Inner Mongolia (cities of Bayannur) | 5-(20) | N 40°13′–42°28′, E 105°12′–109°53′ |
Inner Mongolia (cities of Ordos) | 6-(20) | N 37°35′–40°51′, E 106°42′–111°27′ |
Inner Mongolia (cities of Chifeng) | 7-(20) | N 41°17′–45°24′, E 116°21′–120°58′ |
Region | Wavenumber/cm−1 | Molecule | Vibration |
---|---|---|---|
A | 4238–4300 4300–4358 4498–4642 4794–4893 5004–5235 | -CH2 -CH3 | combination |
-CH=CH-, N-H | combination | ||
-CH=CH-, O-H H2O, C=O | combination | ||
B | 5490–5960 | -CH=CH- -CH3 -CH2 | 1st overtone |
C | 6438–7027 | H2O | 1st overtone |
D | 7042–7352 6993–7407 | -CH3 -CH2 | combination |
E | 8131–8695 | -CH=CH-, N-H | 2nd overtone |
F | 9333–10,046 10,516–11,097 | -CH3 -CH2 | 2nd overtone |
SeqName | CPMG Symbols/Units | Settings |
---|---|---|
Larmor frequency | SF (MHz) | 19 |
Offset 1 | o1 (KHz) | 459.304 |
90-degree pulse width | P1 (μs) | 7.8 |
180-degree pulse width | P2 (μs) | 12 |
RF receive bandwidth | SW (KHz) | 100 |
Repetition time | RFD (ms) | 0.08 |
Time wait | TW (ms) | 0.08 |
Number of scans | NS (1) | 16 |
Echo time | TE (ms) | 0.2 |
Number of echoes | NECH (1) | 12,000 |
Source | Modeling Method | Preprocessing Methods | Parameter Settings | Training Set Accuracy % | Test Set Accuracy % | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | σ | Xinjiang | Heilongjiang | Inner Mongolia | Mean | Xinjiang | Heilongjiang | Inner Mongolia | Mean | |||
NIRS | ELM | SNV | Hidden = 59 | 95.3 | 100 | 87.8 | 93.6 | 95.0 | 100.0 | 85.0 | 92.7 | |
KELM | SNV | 940.75 | 66.26 | 99.0 | 98.8 | 97.2 | 98.7 | 100.0 | 100.0 | 89.5 | 97.2 | |
NMRS | ELM | NLMs | Hidden = 59 | 79.5 | 97.5 | 78.3 | 84.8 | 77.3 | 95.0 | 84.6 | 85.5 | |
KELM | NLMs | 179.39 | 93.65 | 98.9 | 98.0 | 97.6 | 98.4 | 100.0 | 95.0 | 94.1 | 96.4 |
Modeling Method | Parameter Settings | Accuracy % | Recall % | F1 | Test Set Accuracy % | ||||
---|---|---|---|---|---|---|---|---|---|
C | σ | Xinjiang | Heilongjiang | Inner Mongolia | Mean | ||||
NIRS optimal model | 940.75 | 66.26 | 97.11 | 97.27 | 97.18 | 100.0 | 100.0 | 89.5 | 97.2 |
NMRS optimal model | 179.39 | 93.65 | 96.37 | 96.28 | 96.33 | 100.0 | 95.0 | 94.1 | 96.4 |
Data-level fusion data optimal model | 133.70 | 97.61 | 98.18 | 98.20 | 98.18 | 100.0 | 100.0 | 94.4 | 98.2 |
Feature-level fusion data optimal model | 756.96 | 72.88 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Fusion Strategy | Modeling Method | Training Set Accuracy % | Test Set Accuracy % | ||||||
---|---|---|---|---|---|---|---|---|---|
Xinjiang | Heilongjiang | Inner Mongolia | Mean | Xinjiang | Heilongjiang | Inner Mongolia | Mean | ||
CARS–Simple Merge | ELM | 91.7 | 87.2 | 84.0 | 87.2 | 86.7 | 75.0 | 85.0 | 81.8 |
KELM | 100.0 | 100.0 | 70.2 | 82.3 | 100.0 | 100.0 | 63.0 | 81.8 | |
VIP–Simple Merge | ELM | 70.0 | 82.5 | 68.9 | 73.6 | 71.4 | 65.2 | 66.7 | 67.3 |
KELM | 100.0 | 82.5 | 68.9 | 75.8 | 100.0 | 65.2 | 66.7 | 67.3 | |
CARS–Joint Feature | ELM | 94.7 | 97.2 | 90.0 | 92.2 | 89.8 | 77.2 | 89.0 | 84.8 |
KELM | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
VIP–Joint Feature | ELM | 100.0 | 80.5 | 65.1 | 80.6 | 100.0 | 73.1 | 60.9 | 78.5 |
KELM | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 97.1 | 98.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suo, L.; Liu, H.; Ni, J.; Wang, Z.; Zhao, R. Sunflower Origin Identification Based on Multi-Source Information Fusion Technique of Kernel Extreme Learning Machine. Agronomy 2024, 14, 1320. https://doi.org/10.3390/agronomy14061320
Suo L, Liu H, Ni J, Wang Z, Zhao R. Sunflower Origin Identification Based on Multi-Source Information Fusion Technique of Kernel Extreme Learning Machine. Agronomy. 2024; 14(6):1320. https://doi.org/10.3390/agronomy14061320
Chicago/Turabian StyleSuo, Limin, Hailong Liu, Jin Ni, Zhaowei Wang, and Rui Zhao. 2024. "Sunflower Origin Identification Based on Multi-Source Information Fusion Technique of Kernel Extreme Learning Machine" Agronomy 14, no. 6: 1320. https://doi.org/10.3390/agronomy14061320
APA StyleSuo, L., Liu, H., Ni, J., Wang, Z., & Zhao, R. (2024). Sunflower Origin Identification Based on Multi-Source Information Fusion Technique of Kernel Extreme Learning Machine. Agronomy, 14(6), 1320. https://doi.org/10.3390/agronomy14061320