The Effect of Fertilizers on Soil Total and Available Cadmium in China: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis Method
2.2.1. Meta-Analysis
2.2.2. Analysis of the Contribution of Explanatory Variables
2.2.3. Statistical Analysis
3. Results
3.1. The Effects of Fertilization on Total and Available Cd% Change
3.2. The Effects of the Fertilization Duration and Fertilizers on the Soil Total and Available Cd% Change
3.3. The Effects of Climate on Soil Total and Available Cd% Change under Fertilizers
3.4. The Effects of the Soil Texture, pH, and Cultivation Duration on Soil Cd% Change under Fertilizers
4. Discussion
4.1. The Effects of Organic and Inorganic Fertilizers in Soil Total and Available Cd during Different Crop Cultivations
4.2. The Effects of Climate and Soil Properties (Texture, pH) on Soil Total and Available Cd under Different Fertilizer Regimes
4.3. The Suggestions and Reasonable Management for Cultivated Soil Cd Mitigation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Albert, H.A.; Li, X.; Jeyakumar, P.; Wei, L.; Huang, L.; Huang, Q.; Kamran, M.; Shaheen, S.M.; Hou, D.; Rinklebe, J.; et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. Sci. Total Environ. 2021, 755, 142582. [Google Scholar] [CrossRef]
- Nie, X.; Duan, X.; Zhang, M.; Zhang, Z.; Liu, D.; Zhang, F.; Wu, M.; Fan, X.; Yang, L.; Xia, X. Cadmium accumulation, availability, and rice uptake in soils receiving long-term applications of chemical fertilizers and crop straw return. Environ. Sci. Pollut. Res. Int. 2019, 26, 31243–31253. [Google Scholar] [CrossRef] [PubMed]
- Karimi Nezhad, M.T.; Ghahroudi Tali, M.; Hashemi Mahmoudi, M.; Pazira, E. Assessment of As and Cd contamination in topsoils of Northern Ghorveh (Western Iran): Role of parent material, land use and soil properties. Environ. Earth Sci. 2011, 64, 1203–1213. [Google Scholar] [CrossRef]
- Zhao, F.-J.; Ma, Y.; Zhu, Y.-G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafez, A.A.; Abbas, H.H.; Abd-El-Aal, R.S.; Kandil, N.F.; Li, J.; Mahmoud, W. Environmental and Health Impacts of Successive Mineral Fertilization in Egypt. Clean Soil Air Water 2012, 40, 356–363. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, Z.; Qin, J.; Xiao, Z. Effects of long-term cattle manure application on soil properties and soil heavy metals in corn seed production in Northwest China. Environ. Sci. Pollut. Res. 2014, 21, 7586–7595. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Ma, Y.; Zhang, S.; Wei, D.; Zhu, Y.G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef]
- Li, B.; Wei, M.; Shen, A.; Xu, J.; Hao, F. Changes of yields, soil properties and micronutrients as affected by 17-yr fertilization treatments. J. Food Agric. Environ. 2009, 7, 408–413. [Google Scholar]
- Gao, P.; Huang, J.; Wang, Y.; Li, L.; Sun, Y.; Zhang, T.; Peng, F. Effects of nearly four decades of long-term fertilization on the availability, fraction and environmental risk of cadmium and arsenic in red soils. J. Environ. Manag. 2021, 295, 113097. [Google Scholar] [CrossRef] [PubMed]
- Hussain, B.; Li, J.; Ma, Y.; Chen, Y.; Wu, C.; Ullah, A.; Tahir, N. A Field Evidence of Cd, Zn and Cu Accumulation in Soil and Rice Grains after Long-Term (27 Years) Application of Swine and Green Manures in a Paddy Soil. Sustainability 2021, 13, 2404. [Google Scholar] [CrossRef]
- Zhao, S.; Qiu, S.; He, P. Changes of heavy metals in soil and wheat grain under long-term environmental impact and fertilization practices in North China. J. Plant Nutr. 2018, 41, 1970–1979. [Google Scholar] [CrossRef]
- Jia, S.; Yuan, D.; Li, W.; He, W.; Raza, S.; Kuzyakov, Y.; Zamanian, K.; Zhao, X. Soil Chemical Properties Depending on Fertilization and Management in China: A Meta-Analysis. Agronomy 2022, 12, 2501. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gu, C.; Bai, Y.; Zuo, W. Impact of organic amendments on the bioavailability of heavy metals in mudflat soil and their uptake by maize. Environ. Sci. Pollut. 2022, 29, 63799–63814. [Google Scholar] [CrossRef]
- Eriksson, J.E. Effects of nitrogen-containing fertilizers on solubility and plant uptake of cadmium. Water Air Soil Pollut. 1990, 49, 355–368. [Google Scholar] [CrossRef]
- Yuan, D.; Hu, Y.; Jia, S.; Li, W.; Zamanian, K.; Han, J.; Huang, F.; Zhao, X. Microbial Properties Depending on Fertilization Regime in Agricultural Soils with Different Texture and Climate Conditions: A Meta-Analysis. Agronomy 2023, 13, 764. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, Y.; Zhang, S.; Raza, S.; Wei, X.; Zhao, X. The thresholds and management of irrigation and fertilization earning yields and water use efficiency in maize, wheat, and rice in China: A meta-analysis (1990–2020). Agronomy 2022, 12, 709. [Google Scholar] [CrossRef]
- Zhu, M.; Tu, C.; Hu, X.; Zhang, H.; Zhang, L.; Wei, J.; Li, Y.; Luo, Y.; Christie, P. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction. Sci. Total Environ. 2016, 569–570, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- White, C.; Dennis, J.S.; Gadd, G.M. A Mathematical Process Model for Cadmium Precipitation by Sulfate-Reducing Bacterial Biofilms. Biodegradation 2003, 14, 139–151. [Google Scholar] [CrossRef]
- Krishnamurti, G.S.R.; Huang, P.M.; Van Rees, K.C.J.; Kozak, L.M.; Rostad, H.P.W. Microwave digestion technique for the determination of total cadmium in soils. Commun. Soil Sci. Plan. 1994, 25, 615–625. [Google Scholar] [CrossRef]
- Shirdam, R.; Modarres-Tehrani, Z.; Dastgoshadeh, F. Microwave assisted digestion of soil, sludge and sediment for determination of heavy metals with ICP-OES and FAAS. Rasayan J. Chem. 2008, 1, 757–765. [Google Scholar]
- Sandroni, V.; Smith, C.M.M. Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma–atomic emission spectrometry. Anal. Chim. Acta 2002, 468, 335–344. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, Y.; Wan, Y.; Wang, Q.; Luo, Z.; Qiao, Y.; Su, D.; Li, H. Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.). J. Environ. Manag. 2018, 215, 13–21. [Google Scholar] [CrossRef]
- Rao, Z.X.; Huang, D.Y.; Wu, J.S.; Zhu, Q.H.; Zhu, H.H.; Xu, C.; Xiong, J.; Wang, H.; Duan, M.M. Distribution and availability of cadmium in profile and aggregates of a paddy soil with 30-year fertilization and its impact on Cd accumulation in rice plant. Environ. Pollut. 2018, 239, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Mulla, D.J.; Page, A.L.; Ganje, T.J. Cadmium Accumulations and Bioavailability in Soils From Long-Term Phosphorus Fertilization. J. Environ. Qual. 1980, 9, 408–412. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The Meta-Analysis of Response Ratios in Experimental Ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Li, J.; Zou, B.; Yeo, Y.H.; Feng, Y.; Xie, X.; Lee, D.H.; Fujii, H.; Wu, Y.; Kam, L.Y.; Ji, F.; et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: A systematic review and meta-analysis. Lancet Gastroenterol. 2019, 4, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tan, C.; Cao, X.; Ouyang, D.; Nie, J.; Wang, B.; He, Q.; Liang, Y. Effects of long-term fertilization on the accumulation and availability of heavy metals in soil. Nong Ye Huan Jing Ke Xue Xue Bao 2017, 36, 257–263. [Google Scholar]
- Wen-guang, T.; Xiao-ping, X.; Hai-ming, T.; Hai-lin, Z.; Fu, C.; Zhong-du, C.; Jian-fu, X.; Guang-li, Y. Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration. Yingyong Shengtai Xuebao 2015, 26, 168–176. [Google Scholar]
- Jin, Z.; Shah, T.; Zhang, L.; Liu, H.; Peng, S.; Nie, L. Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food Energy Secur. 2020, 9, e200. [Google Scholar] [CrossRef]
- Xu, W.; Liu, C.; Zhu, J.-M.; Bu, H.; Tong, H.; Chen, M.; Tan, D.; Gao, T.; Liu, Y. Adsorption of cadmium on clay-organic associations in different pH solutions: The effect of amphoteric organic matter. Ecotoxicol. Environ. Saf. 2022, 236, 113509. [Google Scholar] [CrossRef] [PubMed]
- Asada, K.; Yabushita, Y.; Saito, H.; Nishimura, T. Effect of long-term swine-manure application on soil hydraulic properties and heavy metal behaviour. Eur. J. Soil Sci. 2012, 63, 368–376. [Google Scholar] [CrossRef]
- Ndzelu, B.S.; Dou, S.; Zhang, X. Changes in soil humus composition and humic acid structural characteristics under different corn straw returning modes. Soil Res. 2020, 58, 452–460. [Google Scholar] [CrossRef]
- Wang, J.; Lv, J.; Fu, Y. Effects of organic acids on Cd adsorption and desorption by two anthropic soils. Front. Environ. Sci. Eng. 2013, 7, 19–30. [Google Scholar] [CrossRef]
- Wu, L.; Tan, C.; Liu, L.; Zhu, P.; Peng, C.; Luo, Y.; Christie, P. Cadmium bioavailability in surface soils receiving long-term applications of inorganic fertilizers and pig manure. Geoderma 2012, 173–174, 224–230. [Google Scholar] [CrossRef]
- Niño-Savala, A.G.; Zhuang, Z.; Ma, X.; Fangmeier, A.; Li, H.; Tang, A.; Liu, X. Cadmium pollution from phosphate fertilizers in arable soils and crops: An overview. Front. Agric. Sci. Eng. 2019, 6, 419–430. [Google Scholar] [CrossRef]
- Ren, X.; Wang, X.; Liu, P.; Li, J. Bioaccumulation and physiological responses in juvenile Marsupenaeus japonicus exposed to cadmium. Aquat. Toxicol. 2019, 214, 105255. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Liu, H.; Chen, G.; Wu, X.; Zeng, F. Cadmium Accumulation in Plants: Insights from Phylogenetic Variation into the Evolution and Functions of Membrane Transporters. Sustainability 2023, 15, 12158. [Google Scholar] [CrossRef]
- Suda, A.; Makino, T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 2016, 270, 68–75. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, T.; Liang, Q.; Liu, M.; Zhao, M.; Wang, M.; Wang, G. Effectiveness of lime and peat applications on cadmium availability in a paddy soil under various moisture regimes. Environ. Sci. Pollut. Res. Int. 2016, 23, 7757–7766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ge, Y.; Yao, H.; Chen, X.; Hu, M. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: A review. Front. Environ. Sci. Eng. 2012, 6, 509–517. [Google Scholar] [CrossRef]
- Xu, X.; Wang, P.; Zhang, J.; Chen, C.; Wang, Z.; Kopittke, P.M.; Kretzschmar, R.; Zhao, F.-J. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environ. Pollut. 2019, 251, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Nalan, K.; Dengiz, O. Assessment of potential ecological risk index based on heavy metal elements for organic farming in micro catchments under humid ecological condition. Eurasian J. Soil Sci. 2020, 9, 194–201. [Google Scholar]
- Zheng, S.; Zhang, M. Effect of moisture regime on the redistribution of heavy metals in paddy soil. J. Environ. Sci. 2011, 23, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.-L.; Huang, J.; Li, D.-M.; Yu, X.-C.; Ye, H.-C.; Hu, H.-W.; Hu, Z.-H.; Huang, Q.-H.; Zhang, H.-M. Comparison of carbon sequestration efficiency in soil aggregates between upland and paddy soils in a red soil region of China. J. Integr. Agric. 2019, 18, 1348–1359. [Google Scholar] [CrossRef]
- Al Mamun, S.; Chanson, G.; Muliadi; Benyas, E.; Aktar, M.; Lehto, N.; McDowell, R.; Cavanagh, J.; Kellermann, L.; Clucas, L.; et al. Municipal composts reduce the transfer of Cd from soil to vegetables. Environ. Pollut. 2016, 213, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Hamid, Y.; Tang, L.; Hussain, B.; Usman, M.; Lin, Q.; Rashid, M.S.; He, Z.; Yang, X. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. Sci. Total Environ. 2020, 707, 136121. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Jiang, T.; Du, B. Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption–desorption on/from purple paddy soils. Chemosphere 2014, 99, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, W.; Cheng, P.; Zhang, S.; Zhang, S.; Jiao, W.; Sun, Y. Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere 2019, 235, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Zheng, J.; Guan, J.; Yu, D.; Lu, B. Evaluating and simulating resource and environmental carrying capacity in arid and semiarid regions: A case study of Xinjiang, China. J. Clean. Prod. 2022, 338, 130646. [Google Scholar] [CrossRef]
- Zhao, X.; He, W.; Xue, L.; Chen, F.; Jia, P.; Hu, Y.; Zamanian, K. Particle Size Distribution and Depth to Bedrock of Chinese Cultivated Soils: Implications for Soil Classification and Management. Agronomy 2023, 13, 1248. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Cadmium sorption and desorption in soils: A review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 489–533. [Google Scholar] [CrossRef]
- Lo, I.M.C.; Zhang, J.; Hu, L.; Shu, S. Effect of Soil Stress on Cadmium Transport in Saturated Soils. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2003, 7, 170–176. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, H.; Wen, X.; Zhu, C.; Hu, Y.; Ran, X.; Zhan, Z. Trends and suggestions in nutrition and feed field of pig industry in 2018. Guangdong J. Anim. Vet. Sci. 2019, 44, 4. [Google Scholar]
- Glaser, B.; Wiedner, K.; Seelig, S.; Schmidt, H.-P.; Gerber, H. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sustain. Dev. 2015, 35, 667–678. [Google Scholar] [CrossRef]
- Husted, S.; Minutello, F.; Pinna, A.; Tougaard, S.L.; Møs, P.; Kopittke, P.M. What is missing to advance foliar fertilization using nanotechnology? Trends Plant Sci. 2023, 28, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Xu, H.; Song, F.; Ge, H.; Chen, L.; Yue, S.; Yang, W. Effect of biochar on immobilization remediation of Cd rectanglecontaminated soil and environmental quality. Environ. Res. 2022, 204, 111840. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, H.; Wu, J.; Huang, L.; Brookes, P.C.; Mazza Rodrigues, J.L.; Xu, J.; Liu, X. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil. J. Hazard Mater. 2021, 414, 125494. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Du, L.; Wu, Y.; Wu, X.; Han, W. Numerical assessment of the passivator effectiveness for Cd-contaminated soil remediation. Sci. Total Environ. 2021, 779, 146485. [Google Scholar] [CrossRef] [PubMed]
- Hussain, B.; Umer, M.J.; Li, J.; Ma, Y.; Abbas, Y.; Ashraf, M.N.; Tahir, N.; Ullah, A.; Gogoi, N.; Farooq, M. Strategies for reducing cadmium accumulation in rice grains. J. Clean. Prod. 2021, 286, 125557. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Hussain, B.; Usman, M.; Gurajala, H.K.; Rashid, M.S.; He, Z.; Yang, X. Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. Environ. Pollut. 2020, 257, 113609. [Google Scholar] [CrossRef]
Soil Cd | Explanatory Variables | ||||
---|---|---|---|---|---|
Total Cd | Available Cd | HI | Duration | pH | |
Total Cd | 0.53 ** 363 | −0.14 ** 629 | 0.45 ** 608 | −0.26 * 416 | |
Available Cd | −0.23 ** 267 | 0.49 ** 625 | −0.31 * 282 | ||
HI | −0.09 * 135 | ||||
Duration | −0.16 ** 441 | ||||
pH |
Variation Explained (%) | Explanatory Variables | |||||
---|---|---|---|---|---|---|
Fertilizer | Crop | HI | Duration | pH | Soil Texture | |
Total Cd | 27 | 11 | 9 | 32 | 16 | 5 |
Available Cd | 28 | 10 | 17 | 25 | 14 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Li, L.; Xue, L.; Hu, Y.; Han, J. The Effect of Fertilizers on Soil Total and Available Cadmium in China: A Meta-Analysis. Agronomy 2024, 14, 978. https://doi.org/10.3390/agronomy14050978
Zhao X, Li L, Xue L, Hu Y, Han J. The Effect of Fertilizers on Soil Total and Available Cadmium in China: A Meta-Analysis. Agronomy. 2024; 14(5):978. https://doi.org/10.3390/agronomy14050978
Chicago/Turabian StyleZhao, Xiaoning, Li Li, Lihua Xue, Yi Hu, and Jiangang Han. 2024. "The Effect of Fertilizers on Soil Total and Available Cadmium in China: A Meta-Analysis" Agronomy 14, no. 5: 978. https://doi.org/10.3390/agronomy14050978
APA StyleZhao, X., Li, L., Xue, L., Hu, Y., & Han, J. (2024). The Effect of Fertilizers on Soil Total and Available Cadmium in China: A Meta-Analysis. Agronomy, 14(5), 978. https://doi.org/10.3390/agronomy14050978