Transgenic Tobacco with the BADH Gene Shows Enhanced Photosynthesis Resistance to Drought Stress Induced by PEG-6000
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Stress Treatments
2.2. GB Extraction and Quantification
2.3. Chlorophyll and Carotenoid Contents
times/1000/sample fresh weight(g)
2.4. Analysis of Photosynthetic Parameters
2.5. Chlorophyll a Fluorescence Analysis
2.6. Analysis of OJIP Chlorophyll (Chl) a Fluorescence Induction Transients Using the JIP Test
2.7. Measurement of the Water Status of Tobacco Leaves
2.8. Determination of Soluble Protein, Free Proline, and Soluble Sugar Contents
2.9. Measurement of Ion Leakage and Malondialdehyde Levels
2.10. Measurement of Superoxide Radical and Hydrogen Peroxide Production
2.11. Measurement of Antioxidant Enzyme Activities
2.12. Analysis of Thylakoid Membrane Lipids
2.13. Statistical Analysis
3. Results
3.1. Genetic Engineering of GB Synthesis Results in GB Accumulation in Tobacco Leaves
3.2. Effects of Accumulated GB and PEG-6000-Induced Drought Stress on Phenotype of Tobacco
3.3. Effects of Accumulated GB and PEG-6000-Induced Drought Stress on Photosynthetic Pigments in Tobacco Leaves
3.4. Accumulated GB Improved the Photosynthesis of Tobacco Leaves under PEG-6000-Induced Drought Stress
3.5. GB Accumulation Improved the PSII Photochemical Activity of Tobacco Leaves under PEG-6000-Induced Drought Stress
3.6. Effects of GB Accumulation on the Water Status of Tobacco Leaves under 30% PEG-6000-Induced Drought Stress
3.7. Effects of GB Accumulation on Soluble Sugar Content and Proline Accumulation in Tobacco Leaves under PEG-6000-Induced Drought Stress
3.8. Effects of GB Accumulation on Membrane Leakage and MDA Levels in Tobacco Leaves under PEG-6000-Induced Drought Stress
3.9. Effects of GB Accumulation on Antioxidant Enzyme Activities in Tobacco Leaves under PEG-6000-Induced Drought Stress
3.10. Effects of GB Accumulation on the Fatty Acid Composition of Thylakoid Membrane Lipids in Tobacco Leaves under PEG-6000-Induced Drought Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grosse-Holz, F.; Kelly, S.; Blaskowski, S.; Kaschani, F.; Kaiser, M.; van der Hoorn, R.A.L. The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire. Plant Biotechnol. J. 2018, 16, 1068–1084. [Google Scholar] [CrossRef] [PubMed]
- Sifola, M.I.; Carrino, L.; Cozzolino, E.; Piano, L.D.; Graziani, G.; Ritieni, A. Potential of pre-harvest wastes of tobacco (Nicotiana tabacum L.) crops, grown for smoke products, as source of bioactive compounds (Phenols and Flavonoids). Sustainability 2021, 13, 2087. [Google Scholar] [CrossRef]
- Song, Z.P.; Wang, D.B.; Gao, Y.B.; Li, C.J.; Jiang, H.L.; Zhu, X.W.; Zhang, H.Y. Changes of lignin biosynthesis in tobacco leaves during maturation. Funct. Plant Biol. 2021, 48, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Que, Y.H.; Yu, Q.W.; Jia, R.L.; Zhou, G.; Guo, K.Y.; Huang, Y.; Liu, R.X. Genetic Analysis and Gene Mapping of Leaf Number of Flue-cured Tobacco (Nicotiana tabacum) Variety ‘Jiucaiping 2’. J. Mt. Agric. Biol. 2023, 31, 50–60. [Google Scholar] [CrossRef]
- Xiang, X.H.; Wu, X.R.; Chao, J.T.; Yang, M.L.; Yang, F.; Chen, G.; Liu, G.S.; Wang, Y.Y. Genome-wide identification and expression analysis of the WRKY gene family in common tobacco (Nicotiana tabacum L.). Hereditas 2016, 38, 840–856. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.K.; Falk, B.W.; Dandekar, A.M.; Dandekar, A.M.; Mcdonald, K.A. Enhancement of Recombinant Protein Production in Transgenic Nicotiana benthamiana Plant Cell Suspension Cultures with Co-Cultivation of Agrobacterium Containing Silencing Suppressors. Int. J. Mol. Sci. 2018, 19, 1561. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.; Wang, C.K.; Liu, X.F.; Zhao, X.; Liu, Y.H.; Liu, X.M.; Du, Y.M.; Zhang, Z.F.; Zhang, H.B. Identification of Eukaryotic Enzymes Compatible with Tobacco Bioreactor for Astaxanthin Synthesis. Chin. Tob. Sci. 2019, 40, 9–16. [Google Scholar]
- Zou, Q.; Pan, W.S.; Qiu, J.; Shu, W.S.; Wu, C. Recent advances in optimization strategies and applications of plant bioreactors. China Biotechnol. 2023, 43, 71–86. [Google Scholar] [CrossRef]
- Clough, B.F.; Milthorpe, F.L. Effects of Water Deficit on Leaf Development in Tobacco. Funct. Plant Biol. 1974, 2, 291–300. [Google Scholar] [CrossRef]
- Wang, Y.H.; Xu, Z.C.; Gao, S.; Chen, Z.; Niu, G.Y.; Zhao, P.P. Research progress of tobacco drought stress. Water Sav. Irrig. 2016, 12, 103–107, 111. [Google Scholar] [CrossRef]
- Guang, J.; Shao, X.; Yang, X.; Zhang, C.; Wu, W.; Miao, Q.; Zhao, T. Research on drought resisting effect of water—Retaining agent in flue-cured tobacco production. In Proceedings of the 2018 International Conference on Advanced Chemical Engineering and Environmental Sustainability, Xiamen, China, 26 September 2018. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Wang, H.Y.; Shi, H.Z.; Zhao, S.M.; Chang, L.K.; Yang, Q.M.; Yang, H.J. Research on the differential physiological responses in different flue-cured tobacco lines under drought stress. J. Nucl. Agri. Sci. 2019, 33, 607–615. [Google Scholar] [CrossRef]
- Qi, M.; Zheng, X.; Niu, G.; Ye, A.; Rather, S.A.; Ahmed, N.; Mustafad, N.S.; Wang, P.; Siddiqui, M.H.; Kimar, R.; et al. Supplementation of Acetylcholine Mediates Physiological and Biochemical Changes in Tobacco Lead to Alleviation of Damaging Effects of Drought Stress on Growth and Photosynthesis. J. Plant Growth Regul. 2022, 42, 4616–4628. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Mittler, R.; Balfagon, D. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018, 162, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.; Tomar, R.S.; Jajoo, A. Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynth. Res. 2019, 139, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Medyouni, I.; Zouaoui, R.; Rubio, E.; Serino, S.; Ahmed, H.B.; Bertin, N. Effects of Water deficit on leaves and fruit quality during the development period in tomato plant. Food Sci. Nutr. 2021, 9, 1949–1960. [Google Scholar] [CrossRef] [PubMed]
- Kamanga, R.M.; Mbega, E.; Ndakidemi, P. Drought Tolerance Mechanisms in Plants: Physiological Responses Associated with Water Deficit Stress in Solanum lycopersicum. Adv. Crop Sci. Tech. 2018, 6, 362. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Li, X.; Yang, Y.; Liu, C.; Cheng, Y. Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H2O2–mediated stomatal closure. Environ. Exp. Bot. 2019, 171, 103960. [Google Scholar] [CrossRef]
- Jiao, S.; Zeng, F.; Huang, Y.; Zhang, L.; Mao, J.; Chen, B. Physiological, biochemical and molecular responses associated with drought tolerance in grafted grapevine. BMC Plant Biol. 2023, 23, 110. [Google Scholar] [CrossRef]
- Yu, F.Y.; Jin, L.Y.; Li, J.J. Characteristics of Spring Drought in Southwest China and the Anomalous Circulation. Desert Oasis Meteor. 2020, 14, 68–76. (In Chinese) [Google Scholar] [CrossRef]
- Hanson, A.D.; Nelsen, C.E.; Everson, E.H. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars1. Crop Sci. 1977, 17, 720–726. [Google Scholar] [CrossRef]
- Ibrahim, E.A.; Ebrahim, N.E.S.; Mohamed, G.Z. Effect of water stress and foliar application of chitosan and glycine betaine on lettuce. Sci. Rep. 2023, 13, 17274. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.M.; Li, H.; Zhou, Y.Y.; Li, W.J.; Jiang, Y.H.; Li, H. Exogenous glycine betaine application contributes to abiotic stress tolerance in maize. J. Plant Biol. 2022, 65, 517–529. [Google Scholar] [CrossRef]
- Seymen, M.; Şahin, A.Ş.; Tanrıverdi, Ö.B. Mitigation Effects of Proline and Glycine Betaine to Green Onion Under Flooding Stress. Gesunde Pflanz. 2023, 75, 1639–1652. [Google Scholar] [CrossRef]
- Chungloo, D.; Tisarum, R.; Samphumphuang, T.; Sotesaritkul, T.; Singh, H.P.; Takabe, T.; Cha-um, S. Mitigation of Water-Deficit Stress, Physio-morphological Adaptation, and Elevation of Andrographolide in Andrographis paniculata using Foliar Glycine Betaine. J. Plant Growth Regul. 2023, 42, 6273–6285. [Google Scholar] [CrossRef]
- Yang, X.H.; Liang, Z.; Wen, X.G.; Lu, C.M. Genetic engineering of the biosynthesis of glycine betaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol. Biol. 2008, 66, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.W. Study on the Mechanism of Glycine Betaine Improve the Tolerance of Cd Stress in Tobacco. Master’s Thesis, Shandong Agricultural University, Taian, China, 2018. [Google Scholar]
- Shahbazi, M.; Tohidfar, M.; Aliniaeifard, S.; Yazdanpanah, F.; Bosacchi, M. Transgenic tobacco co-expressing flavodoxin and betaine aldehyde dehydrogenase confers cadmium tolerance through boosting antioxidant capacity. Protoplasma 2022, 259, 965–979. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.H.; Liang, Z.; Lu, C.M. Genetic engineering of the biosynthesis of glycine betaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol. 2005, 38, 2299–2309. [Google Scholar] [CrossRef]
- Gorham, J.; McDonnell, E.; WynJones, R.G. Determination of Betaines as Ultraviolet-Absorbing Esters. Ann. Chim. Acta 1982, 138, 277–283. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts-polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Ann. Rev. Plant Pysiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Butler, W.L.; Kitajima, M. Fluorescence quenching in photosystem II of chloroplasts. Biochim. Biophys. Acta 1975, 376, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electrontransport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Strasser, R.J. The grouping model of plant photosynthesis. In Chloroplast Development; Akoyunoglou, G., Argyroudi-Akoyunoglou, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1978; pp. 513–524. [Google Scholar]
- Strasser, R.J. The grouping model of plant photosynthesis: Heterogeneity of pho tosynthetic units in thylakoids. In Photosynthesis III. Structure and Molecular Organization of the Photosynthetic Apparatus; Akoyunoglou, G., Ed.; Balaban International Science Services: Philadelphia, PA, USA, 1981; pp. 727–737. [Google Scholar]
- Strasser, B.J.; Strasser, R.J. Measuring fast fluorescence transients to address environmental questions: The JIP-test. In Photosynthesis: From Light to Biosphere; Mathis, P., Ed.; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1995; Volume V, pp. 977–980. [Google Scholar]
- Strasser, R.J. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transient. Photosynth. Res. 1997, 52, 147–155. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanism, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor and Francis: London, UK, 2000; pp. 445–483. [Google Scholar]
- Weatherley, P.E. Studies in water relations of cotton plants. I. The field measurement of water deficit in leaves. New Phytol. 1950, 49, 81–87. [Google Scholar] [CrossRef]
- Marion, M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Tear, I.D. Rapid Determination of Free Proline for Water Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Tissue, D.T.; Wright, S.J. Effect of seasonal water availability on phenology and the annual shoot carbohydrate cycle of tropical forest shrubs. Funct. Ecol. 1995, 9, 518–527. [Google Scholar] [CrossRef]
- Fan, L.; Zheng, S.Q.; Wang, X.M. Antisense suppression of phospholipase D alpha retards abscisic acid and ethylene promoted senescence of postharvest Arabidopsis leaves. Plant Cell 1997, 9, 2183–2196. [Google Scholar] [CrossRef]
- Prochazkova, D.; Sairam, R.K.; Srivastava, G.C.; Singh, D.V. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci. 2001, 161, 765–771. [Google Scholar] [CrossRef]
- Wang, A.G.; Luo, G.H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol. Commun. 1990, 6, 55–57. [Google Scholar] [CrossRef]
- Sairam, P.K.; Srivastava, G.C. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 2002, 162, 897–904. [Google Scholar] [CrossRef]
- Bartoli, C.G.; Tambussi, E.; Beltrano, J.; Montaldi, E.; Puntarulo, S.; Simontacchi, M. Drought and watering-dependent oxidative stress: Effect on antioxidant content in Triticum aestivum L. leaves. J. Exp. Bot. 1999, 50, 375–383. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Suproxide Dismusase: Improved assays and an assay applicable to acrylamidegel. Anal. Biochem. 1971, 44, 276–2871. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Maehly, A.; Chance, B. Catalases and peroxidases. Methods Biochem. Anal. 1954, 1, 357–424. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Droppa, M.; Masojidek, J.; Rózsa, Z.; Wolak, A.; Horváth, G. Characteristics of Cu deficiency-induced inhibition of photosynthetic electron transport in spinach chloroplasts. BBA-Bioenerg. 1987, 891, 75–84. [Google Scholar] [CrossRef]
- Deng, L.Y.; Wang, H.C. Cold hardiness of crape in relation to membrane lipid composition. Acta Physiol. Sin. 1982, 8, 273–283, (In Chinese with English Abstract). [Google Scholar]
- Wang, G.P.; Xue, X.M.; Yang, X.H.; Chen, R.; Han, X.P. The genetic engineering of glycine betaine synthesis in tobacco improves the resistance of the photosynthetic apparatus to drought stress. Plant Biotechnol. Rep. 2022, 16, 229–242. [Google Scholar] [CrossRef]
- Nuccio, M.L.; Russell, B.L.; Nolte, K.D.; Rathinasabapathi, B.; Gage, D.A.; Hanson, A.D. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J. 1998, 16, 487–496. [Google Scholar] [CrossRef]
- Wang, W.S. Analysis of Effects of Drought/NaCl Stress on Soybean Based on Chlorophyll Fluorescence Kinetics. Ph.D. Thesis, Shenyang Agricultural University, Shenyang, China, 2018. [Google Scholar]
- Liu, J.; Zhu, L.J.; Zhang, K.; Wang, X.M.; Wang, L.W.; Gao, X.N. Effects of Drought Stress/Rewatering on Photosynthetic Characteristics and Yield of Soybean at Different Growth Stages. Ecol. Environ. Sci. 2022, 31, 286–296. [Google Scholar] [CrossRef]
- Grumet, R.; Hanson, A.D. Genetic evidence for an osmoregulatory/function of glycinebetaine accumulation in barley. Funct. Plant Biol. 1986, 13, 353–364. [Google Scholar] [CrossRef]
- Tisarum, R.; Theerawitaya, C.; Samphumphuang, T.; Singh, H.P.; Cha-Um, S. Foliar application of glycinebetaine regulates soluble sugars and modulates physiological adaptations in sweet potato (Ipomoea batatas) under water deficit. Protoplasma 2020, 257, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.S. Effects of Exogenous Glycine Betaine on Physiologicalcharacteristics in Super Black Waxy Maize under Cadmium Stress. Master’s Thesis, Huaibei Normal University, Huaibei, China, 2017. [Google Scholar] [CrossRef]
- Figuetoa-soto, C.G.; Valenzuel-soto, M. Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie 2018, 147, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.L.; Wang, Y.J.; Xie, S.L.; Li, F.; Wang, W. Glycinebetaine Applied through Roots Protects the Photosynthetic Apparatus of Tobacco Seedlings under Water Stress. J. Plant Physiol. Mol. Biol. 2006, 32, 465–472. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Janik, E.; Bednarska, J.; Zubik, M.; Puzio, M.; Luchowski, R.; Grudzinski, W.; Mazur, R.; Garstka, M.; Maksymiec, W.; Kulik, A. Molecular architecture of plant thylakoids under physiological and light stress conditions: A study of lipid-light-harvesting complex II model membranes. Plant Cell 2013, 25, 2155–2170. [Google Scholar] [CrossRef]
- Kobayashi, K. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. J. Plant Res. 2016, 129, 565–580. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Boyle, D.L.; Welti, R.; Jagadish, S.V.K.; Prasad, P.V.V. Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biol. 2018, 18, 55. [Google Scholar] [CrossRef]
- Sen, A.; William, W.P.; KBrain, A.P.R. Formation of inverted micelles in dispersions of mixed galactolipids. Nature 1981, 293, 488–490. [Google Scholar] [CrossRef]
- Demé, B.; Cataye, C.; Block, M.A.; Maréchal, E.; Jouhet, J. Contribution of galactoglycero lipids to the 3-dimensional architecture of thylakoids. FASEB J. 2014, 28, 3373–3383. [Google Scholar] [CrossRef] [PubMed]
- Gounaris, K.; Brain, A.R.P.; Quinn, P.J.; Williams, W.P. Structural reorganization of fluidity of the thylakoid membranes in responses to heat stress. Biochim. Biophys. Acta 1984, 766, 198–208. [Google Scholar] [CrossRef]
- Yu, B.; Benning, C. Anionic lipids are required for chloroplaststructure and function in Arabidopsis. Plant J. 2003, 36, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Leng, J.; Li, L.B.; Chen, H.; Xu, Y.N.; Kuang, T.T. The membrane lipid compositions in spinach LHCII and the function role of PG in LHCII aggregation. Acta Biophys. Sin. 2002, 18, 388–393. [Google Scholar]
- Bai, M.; Zeng, W.; Chen, F.; Ji, X.; Zhuang, Z.; Jin, B.; Wang, J.; Jia, L.; Peng, Y. Transcriptome expression profiles reveal response mechanisms to drought and drought-stress mitigation mechanisms by exogenous glycine betaine in maize. Biotechnol. Lett. 2022, 44, 367–386. [Google Scholar] [CrossRef] [PubMed]
- Doyle, S.M.; Diamond, M.; Mccabe, P.F. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J. Exp. Bot. 2009, 61, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Shalmani, A.; Ali, M.; Yang, Q.H.; Ahmad, H.; Li, F.B. Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses. Front. Plant Sci. 2020, 11, 615942. [Google Scholar] [CrossRef] [PubMed]
- Saneoka, H.; Moghaieb, R.E.A.; Premachandra, G.S.; Fujita, K. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environ. Exp. Bot. 2004, 52, 131–138. [Google Scholar] [CrossRef]
- Lv, S.L.; Yang, A.F.; Zhang, K.W.; Wang, L.; Zhang, J.R. Increase of glycine betaine synthesis improves drought tolerance in cotton. Mol. Breed. 2007, 20, 233–248. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. Abiotic stress, generation of reactive oxygen species, and their consequences: An overview. In Revisiting the Role of Reactive Oxygen Species (ROS) in Plants: ROS Boon or Bane for Plants? Singh, V.P., Singh, S., Tripathi, D., Prasad, S.M., Chauhan, D.K., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 23–50. [Google Scholar]
- Hanson, A.D.; May, A.M.; Grumet, R.; Bode, J.; Jamieson, G.C.; Rhodes, D. Betaine synthesis in Chenopods: Localization in chloroplasts. Proc. Natl. Acad. Sci. USA 1985, 82, 3678–3682. [Google Scholar] [CrossRef]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Asada, K. Radical production and scavenging in chloroplasts. In Photosynthesis and the Environment; Baker, N.R., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 123–150. [Google Scholar]
PEG-6000 Concentration | WT | T | ||
---|---|---|---|---|
0% | 30% | 0% | 30% | |
GB content (μmol g−1 FW) | 0.3 ± 0.2 c | 0.4 ± 0.3 c | 4.9 ± 0.5 b | 9.0 ± 0.5 a |
PEG-6000 Concentration | WT | T | ||
---|---|---|---|---|
0% | 30% | 0% | 30% | |
Chl a + b (mg·g−1 FW) | 1.164 ± 0.082 a | 0.714 ± 0.022 c | 1.266 ± 0.093 a | 0.993 ± 0.042 b |
Car (mg·g−1 FW) | 0.144 ± 0.005 a | 0.113 ± 0.007 c | 0.145 ± 0.002 a | 1.134 ± 0.006 b |
PEG-6000 Concentration | WT | T | ||
---|---|---|---|---|
0% | 30% | 0% | 30% | |
Wk | 0.37 ± 0.01 c | 0.46 ± 0.02 a | 0.37 ± 0.03 c | 0.41 ± 0.02 b |
Sm | 13.5 ± 1.6 a | 8.0 ± 1.4 c | 12.8 ± 2.0 a | 11.0 ± 1.2 b |
N | 20.7 ± 1.7 a | 13.1 ± 2.2 c | 19.9 ± 2.7 a | 18.7 ± 1.6 ab |
ψEo | 0.40 ± 0.02 a | 0.35 ± 0.06 c | 0.41 ± 0.04 a | 0.39 ± 0.03 b |
RC/CSm | 1579.8 ± 99.1 a | 1102.9 ± 46.0 c | 1583.3 ± 41.6 a | 1275.2 ± 48.7 b |
PIabs | 28.5 ± 1.6 a | 16.0 ± 3.2 c | 27.3 ± 2.6 a | 21.2± 2.1 b |
PEG-6000 Concentration | WT | T | ||
---|---|---|---|---|
0% | 30% | 0% | 30% | |
Soluble sugar content (mg g−1 FW) | 1.39 ± 0.12 c | 2.80± 0.19 b | 1.58 ± 0.15 c | 5.34 ±0.71 a |
Free proline content (μg g−1 FW) | 1.26 ± 0.55 c | 15.48 ± 0.37 b | 1.63± 0.64 c | 26.64 ± 1.22 a |
Soluble protein content (mg g−1 FW) | 0.62 ± 0.01 c | 1.16 ± 0.01 b | 0.64 ± 0.03 c | 1.29± 0.02 a |
Lipid | FA | WT | T | ||
---|---|---|---|---|---|
0% | 30% | 0% | 30% | ||
MGDG | 16: 0 | 5.1 ± 0.3 c | 7.1 ± 0.4 a | 6.4 ± 0.1 b | 7.0 ± 0.2 a |
16: 1 (3 t) | tr | tr | tr | tr | |
18: 0 | 19.9 ± 0.02 a | 17.3 ± 0.2 b | 13.2 ± 0.6 d | 15.1 ± 0.2 c | |
18: 1 | 2.0 ± 0.2 a | 1.4 ± 0.3 b | 0.3 ± 0.01 c | 0.9 ± 0.03 d | |
18: 2 | 8.2 ± 0.6 a | 5.0 ± 0.4 c | 8.2 ± 0.6 a | 7.0 ± 0.5 b | |
18: 3 | 64.9 ± 1.7 c | 69.2 ± 1.7 ab | 71.9 ± 2.2 a | 70.0 ± 2.8 ab | |
DGDG | 16: 0 | 27.1 ± 1.2 a | 25.9 ± 1.3 ab | 21.3 ± 1.2 c | 21.5 ± 1.3 c |
16: 1 (3 t) | tr | tr | tr | tr | |
18: 0 | 15.5 ± 0.4 b | 16.7 ± 0.6 a | 5.1 ± 0.2 d | 6.1 ± 0.2 c | |
18: 1 | tr | 1.8 ± 0.1 c | 5.5 ± 0.3 b | 7.0 ± 0.3 a | |
18: 2 | 3.5 ± 0.6 d | 6.3 ± 0.5 c | 8.4 ± 0.7 b | 12.0 ± 0.7 a | |
18: 3 | 53.8 ± 1.2 b | 49.3 ± 1.3 c | 59.4 ± 1.0 a | 53.4 ± 1.5 b | |
PG | 16: 0 | 39.6 ± 2.4 ab | 42.1 ± 1.6 a | 31.6 ± 1.4 c | 28.6 ± 0.8 d |
16: 1 (3 t) | 10.9 ± 0.5 c | 6.6 ± 0.3 d | 15.8 ± 0.8 b | 24.3 ± 0.4 a | |
18: 0 | tr | 4.9 ± 0.1 a | 2.0 ± 0.1 b | tr | |
18: 1 | 8.0 ± 0.2 b | 5.1 ± 0.5 d | 6.5 ± 0.3 c | 9.8 ± 0.4 a | |
18: 2 | 9.8 ± 0.8 b | 13.7 ± 0.6 a | 7.7 ± 0.8 c | 1.0 ± 0.02 d | |
18: 3 | 31.8 ± 0.7 b | 27.8 ± 0.4 c | 36.5 ± 0.5 a | 36.3 ± 0.6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Yang, X.; Xue, X. Transgenic Tobacco with the BADH Gene Shows Enhanced Photosynthesis Resistance to Drought Stress Induced by PEG-6000. Agronomy 2024, 14, 690. https://doi.org/10.3390/agronomy14040690
Wang G, Yang X, Xue X. Transgenic Tobacco with the BADH Gene Shows Enhanced Photosynthesis Resistance to Drought Stress Induced by PEG-6000. Agronomy. 2024; 14(4):690. https://doi.org/10.3390/agronomy14040690
Chicago/Turabian StyleWang, Guiping, Xinghong Yang, and Xiaomin Xue. 2024. "Transgenic Tobacco with the BADH Gene Shows Enhanced Photosynthesis Resistance to Drought Stress Induced by PEG-6000" Agronomy 14, no. 4: 690. https://doi.org/10.3390/agronomy14040690
APA StyleWang, G., Yang, X., & Xue, X. (2024). Transgenic Tobacco with the BADH Gene Shows Enhanced Photosynthesis Resistance to Drought Stress Induced by PEG-6000. Agronomy, 14(4), 690. https://doi.org/10.3390/agronomy14040690