Effects of Balancing Exchangeable Cations Ca, Mg, and K on the Growth of Tomato Seedlings (Solanum lycopersicum L.) Based on Increased Soil Cation Exchange Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Soil, Fertilizers, and Tomato Seeds
2.2. Experimental Design
2.3. Balancing Soil Exchangeable Cations Ca, Mg, and K
2.4. Statistical Analysis
3. Results
3.1. Short-Term Effects of Different Combinations of Organic Fertilizer, Montmorillonite, and Humic Acid on Soil CEC
3.2. Effects of Balancing Soil Exchangeable Cations on the Tomato Plants’ Height, Biomass, Leaf SPAD Values, and N Content
3.3. Effect of Balancing Soil Exchangeable Cations on the Concentration and Uptake of Ca, Mg, and K in Tomato Seedlings
4. Discussion
4.1. Interrelationships between Soil CEC and SOM, Exchangeable Cations, and pH
4.2. Effect of Balancing Soil Exchangeable Cations Ca, Mg, and K Based on Increased CEC on the Growth of Tomato Seedlings
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zalewska, M. The effect of various calcium, magnesium, potassium and hydrogen saturation of CEC on the yield and mineral composition of sunflower. Pol. J. Nat. Sci. 2008, 23, 347–365. [Google Scholar] [CrossRef]
- Martin, J.; Page, A. Influence of high and low exchangeable Mg and Ca percentages at different degrees of base saturation on growth and chemical composition of citrus plants. Plant Soil 1965, 22, 65–80. Available online: https://www.jstor.org/stable/42932091 (accessed on 3 July 2023).
- Takamoto, A.; Takahashi, T.; Togami, K. Effect of changes in the soil calcium-to-magnesium ratio by calcium application on soybeans, Glycine max (L.) Merr., growth. Soil Sci. Plant Nutr. 2021, 67, 139–149. [Google Scholar] [CrossRef]
- Astera, M. The Ideal Soil 2014: A Handbook for the New Agriculture V2.0; AbeBooks Inc.: Victoria, BC, Canada, 2014. [Google Scholar]
- Brady, N.C.; Weil, R.R.; Weil, R.R. The Nature and Properties of Soils; Prentice Hall Upper: Saddle River, NJ, USA, 2008; Volume 13. [Google Scholar]
- Culman, S.W.; Brock, C.; Doohan, D.; Jackson-Smith, D.; Herms, C.; Chaganti, V.N.; Kleinhenz, M.; Sprunger, C.D.; Spargo, J. Base cation saturation ratios vs. sufficiency level of nutrients: A false dichotomy in practice. Agron. J. 2021, 113, 5623–5634. [Google Scholar] [CrossRef]
- McLean, E.; Carbonell, M. Calcium, magnesium, and potassium saturation ratios in two soils and their effects upon yields and nutrient contents of German millet and alfalfa. Soil Sci. Soc. Am. J. 1972, 36, 927–930. [Google Scholar] [CrossRef]
- Zalewska, M.; Nogalska, A.; Wierzbowska, J. Effect of basic cation saturation ratios in soil on yield of annual ryegrass (Lolium multiflorum L.). J. Elem. 2018, 23, 95–105. [Google Scholar] [CrossRef]
- Hailu, H.; Mamo, T.; Keskinen, R.; Karltun, E.; Gebrekidan, H.; Bekele, T. Soil fertility status and wheat nutrient content in Vertisol cropping systems of central highlands of Ethiopia. Agric. Food Secur. 2015, 4, 19. [Google Scholar] [CrossRef]
- Raman, N.; Sathiyanarayanan, D. Physico-Chemical characteristics of soil and influence of cation exchange capacity of soil in and around Chennai. Rasayan J. Chem. 2009, 2, 875–885. [Google Scholar]
- Culman, S.; Mann, M.; Brown, C. Calculating Cation Exchange Capacity, Base Saturation, and Calcium Saturation; Ohio State University: Columbus, OH, USA, 2019. [Google Scholar]
- Bai, Z.; Zhang, S.; Zhong, Q.; Wang, G.; Xu, G.; Ma, X. Characteristics and impact factors of soil cation exchange capacity (CEC) in western margin of Sichuan basin. Soils 2020, 52, 581–587. [Google Scholar] [CrossRef]
- Hayashi, R.; Maie, N.; Wagai, R.; Hirano, Y.; Matsuda, Y.; Makita, N.; Mizoguchi, T.; Wada, R.; Tanikawa, T. An increase of fine-root biomass in nutrient-poor soils increases soil organic matter but not soil cation exchange capacity. Plant Soil 2023, 482, 89–110. [Google Scholar] [CrossRef]
- Allison, F.E. Soil Organic Matter and Its Role in Crop Production; Elsevier: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Jiang, J.; Wang, Y.-P.; Yu, M.; Cao, N.; Yan, J. Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chem. Geol. 2018, 501, 86–94. [Google Scholar] [CrossRef]
- Olk, D.; Bloom, P.; De Nobili, M.; Chen, Y.; McKnight, D.; Wells, M.; Weber, J. Using humic fractions to understand natural organic matter processes in soil and water: Selected studies and applications. J. Environ. Qual. 2019, 48, 1633–1643. [Google Scholar] [CrossRef]
- Menšík, L.; Hlisnikovský, L.; Pospíšilová, L.; Kunzová, E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Iturri, L.A.; Buschiazzo, D.E. Cation exchange capacity and mineralogy of loess soils with different amounts of volcanic ashes. Catena 2014, 121, 81–87. [Google Scholar] [CrossRef]
- Tomašic, M.; Zgorelec, Ž.; Jurišic, A.; Kisic, I. Cation exchange capacity of dominant soil types in the Republic of Croatia. J. Cent. Eur. Agric. 2013, 14, 937–951. [Google Scholar] [CrossRef]
- Fang, K.; Kou, D.; Wang, G.; Chen, L.; Ding, J.; Li, F.; Yang, G.; Qin, S.; Liu, L.; Zhang, Q. Decreased soil cation exchange capacity across northern China’s grasslands over the last three decades. J. Geophys. Res. Biogeosci. 2017, 122, 3088–3097. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Gull, A.; Nayik, G.A. Tomato (Solanum lycopersicon). In Antioxidants in Vegetables and Nuts-Properties and Health Benefits; Springer: Berlin/Heidelberg, Germany, 2020; pp. 191–207. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Zhou, T.; Liu, Y.; Zhou, J. High potassium to magnesium ratio affected the growth and magnesium uptake of three tomato (Solanum lycopersicum L.) cultivars. J. Integr. Agric. 2018, 17, 2813–2821. [Google Scholar] [CrossRef]
- Tanoi, K.; Kobayashi, N.I. Leaf senescence by magnesium deficiency. Plants 2015, 4, 756–772. [Google Scholar] [CrossRef]
- Ramos, F.T.; Dores, E.F.d.C.; Weber, O.L.d.S.; Beber, D.C.; Campelo, J.H., Jr.; Maia, J.C.d.S. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. J. Sci. Food Agric. 2018, 98, 3595–3602. [Google Scholar] [CrossRef]
- Yang, S.; Han, Z.; Wang, S.; Duan, A.; Sun, D.; Li, M. Study on the relationship between cation exchange capacity and organic matter, mechanical composition in soil. Sci. Tech. Eng. J. 2023, 23, 2799–2805. [Google Scholar] [CrossRef]
- Yunan, D.; Xianliang, Q.; Xiaochen, W. Study on cation exchange capacity of agricultural soils. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 042039. [Google Scholar] [CrossRef]
- Liu, C.; Tian, W.; Liu, Y. Analysis on the correlation between cation exchange capacity and physical and chemical properties of farmland soil. Seed Technol. 2021, 39, 36–37. [Google Scholar]
- Bouajila, K.; Hechmi, S.; Mechri, M.; Jeddi, F.B.; Jedidi, N. Short-term effects of Sulla residues and farmyard manure amendments on soil properties: Cation exchange capacity (CEC), base cations (BC), and percentage base saturation (PBS). Arab. J. Geosci. 2023, 16, 410. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2014, 60, 393–404. [Google Scholar] [CrossRef]
- Tohumcu, F.; Aydin, A.; Simsek, U. The Effects of Organic Wastes Applied to Alkaline Soils on Some Physical and Chemical Properties of the Soil. Eurasian Soil Sci. 2023, 56, 387–403. [Google Scholar] [CrossRef]
- Wacal, C.; Ogata, N.; Basalirwa, D.; Sasagawa, D.; Ishigaki, T.; Handa, T.; Kato, M.; Tenywa, M.M.; Masunaga, T.; Yamamoto, S. Imbalanced soil chemical properties and mineral nutrition in relation to growth and yield decline of sesame on different continuously cropped upland fields converted paddy. Agronomy 2019, 9, 184. [Google Scholar] [CrossRef]
- Ertiftik, H.; Zengin, M. Response of maize for grain to potassium and magnesium fertilizers in soils with high lime contents. J. Plant Nutr. 2017, 40, 93–103. [Google Scholar] [CrossRef]
- Hannan, J.M. Potassium-Magnesium Antagonism in High Magnesium Vineyard Soils. Master’s Thesis, Iowa State University, Ames, IA, USA, 2011. [Google Scholar]
- Wacal, C.; Ogata, N.; Basalirwa, D.; Sasagawa, D.; Masunaga, T.; Yamamoto, S.; Nishihara, E. Growth and K nutrition of sesame (Sesamum indicum L.) seedlings as affected by balancing soil exchangeable cations Ca, Mg, and K of continuously monocropped soil from upland fields converted paddy. Agronomy 2019, 9, 819. [Google Scholar] [CrossRef]
- Mengutay, M.; Ceylan, Y.; Kutman, U.B.; Cakmak, I. Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant Soil 2013, 368, 57–72. [Google Scholar] [CrossRef]
- Garcia, A.; Crusciol, C.A.C.; Rosolem, C.A.; Bossolani, J.W.; Nascimento, C.A.C.; McCray, J.M.; dos Reis, A.R.; Cakmak, I. Potassium-magnesium imbalance causes detrimental effects on growth, starch allocation and Rubisco activity in sugarcane plants. Plant Soil 2022, 472, 225–238. [Google Scholar] [CrossRef]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant 2018, 163, 414–431. [Google Scholar] [CrossRef] [PubMed]
- Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 307–321. [Google Scholar] [CrossRef] [PubMed]
Soil | pH | EC 1 (mS·cm−1) | SOM 2 (%) | CEC 3 (cmol·kg−1) | Ex. Ca2+ 4 (cmol·kg−1) | Ex. Mg2+ 5 (cmol·kg−1) | Ex. K+ 6 (cmol·kg−1) | PBS 7 (%) | Ca/M 8 | Mg/K 9 | Ca/K 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Yellow-brown soil | 6.96 | 0.24 | 0.69 | 19.88 | 6.42 | 1.74 | 0.19 | 42.00 | 3.69 | 9.16 | 33.79 |
Treatments | CEC (cmol·kg−1) | PBS (%) | Ex. Ca2+ (cmol·kg−1) | Ex. Mg2+ (cmol·kg−1) | Ex. K+ (cmol·kg−1) | Ca/Mg | Mg/K | Ca/K |
---|---|---|---|---|---|---|---|---|
CK | 19.21 | 43.46 | 6.42 | 1.74 | 0.19 | 3.69 | 9.16 | 33.79 |
OMHA | 27.10 | 31.61 | 6.76 | 1.87 | 0.20 | 3.61 | 9.35 | 33.80 |
Treatments | CEC (cmol·kg−1) | Measured Value (cmol·kg−1) | Target Value (cmol·kg−1) | Supplemental Value (cmol·kg−1) | Fertilizer Application (mg·kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ex. Ca2+ | Ex. Mg2+ | Ex. K+ | Ex. Ca2+ | Ex. Mg2+ | Ex. K+ | Ex. Ca2+ | Ex. Mg2+ | Ex. K+ | Ex. Ca2+ | Ex. Mg2+ | Ex. K+ | ||
CK | 19.21 | 6.42 | 1.74 | 0.19 | 9.61 | 3.84 | 1.92 | 3.19 | 2.10 | 1.73 | 638.0 | 253.0 | 665.4 |
OMHA | 27.10 | 6.76 | 1.87 | 0.20 | 13.55 | 5.42 | 2.71 | 6.79 | 3.55 | 2.51 | 1358.0 | 427.7 | 965.4 |
Treatments | pH | EC 1 (mS·cm−1) | SOM 2 (%) | CEC 3 (cmol·kg−1) | Ex. Ca2+ 4 (cmol·kg−1) | Ex. Mg2+ 5 (cmol·kg−1) | Ex. K+ 6 (cmol·kg−1) | PBS 7 (%) |
---|---|---|---|---|---|---|---|---|
CK | 7.33 ± 0.01 a | 0.22 ± 0.01 e | 1.07 ± 0.00 c | 19.21 ± 0.26 e | 6.42 ± 0.15 c | 1.74 ± 0.06 bc | 0.19 ± 0.03 abc | 43.67 ± 1.33 a |
O | 6.97 ± 0.04 cd | 0.40 ± 0.00 b | 1.21 ± 0.00 ab | 27.03 ± 0.14 a | 6.48 ± 0.11 c | 1.76 ± 0.02 bc | 0.21 ± 0.02 ab | 31.33 ± 0.88 c |
M | 6.99 ± 0.01 cd | 0.24 ± 0.00 de | 1.10 ± 0.00 c | 26.81 ± 0.19 ab | 7.22 ± 0.24 ab | 1.93 ± 0.06 ab | 0.18 ± 0.01 abc | 34.67 ± 0.67 c |
HA | 7.05 ± 0.04 bc | 0.25 ± 0.01 d | 1.10 ± 0.01 c | 25.00 ± 0.13 bcd | 6.37 ± 0.15 c | 1.75 ± 0.03 bc | 0.16 ± 0.00 bc | 33.00 ± 0.58 c |
OM | 6.96 ± 0.02 cd | 0.34 ± 0.01 c | 1.18 ± 0.01 b | 25.80 ± 0.19 abc | 7.21 ± 0.16 ab | 1.94 ± 0.06 ab | 0.21 ± 0.01 ab | 35.67 ± 1.20 bc |
OHA | 6.93 ± 0.02 d | 0.43 ± 0.01 a | 1.25 ± 0.01 a | 24.64 ± 1.17 cd | 7.36 ± 0.28 a | 2.02 ± 0.09 a | 0.22 ± 0.01 a | 39.67 ± 2.67 ab |
MHA | 7.14 ± 0.06 b | 0.26 ± 0.01 d | 1.11 ± 0.01 c | 23.55 ± 0.77 d | 6.53 ± 0.13 bc | 1.60 ± 0.05 c | 0.16 ± 0.01 c | 35.00 ± 0.58 c |
OMHA | 6.88 ± 0.01 d | 0.45 ± 0.00 a | 1.25 ± 0.03 a | 27.10 ± 0.86 a | 6.76 ± 0.64 abc | 1.87 ± 0.18 ab | 0.20 ± 0.03 abc | 32.00 ± 2.08 c |
Soil | Balance | Plant Height (cm) | Dry Weight (g·plant−1) |
---|---|---|---|
CK | Unbalanced | 3.57 | 0.02 |
Balanced | 3.09 | 0.04 | |
ANOVA (p Values) | ns | ns | |
OMHA | Unbalanced | 3.71 | 0.04 |
Balanced | 4.22 | 0.09 | |
ANOVA (p Values) | ns | *** | |
Source of variation | |||
Soil(S) | * | *** | |
Balance(B) | ns | *** | |
S × B | ns | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Zhou, D.; Hang, H.; Chen, S.; Liu, H.; Su, J.; Lv, H.; Jia, H.; Zhao, G. Effects of Balancing Exchangeable Cations Ca, Mg, and K on the Growth of Tomato Seedlings (Solanum lycopersicum L.) Based on Increased Soil Cation Exchange Capacity. Agronomy 2024, 14, 629. https://doi.org/10.3390/agronomy14030629
Yang M, Zhou D, Hang H, Chen S, Liu H, Su J, Lv H, Jia H, Zhao G. Effects of Balancing Exchangeable Cations Ca, Mg, and K on the Growth of Tomato Seedlings (Solanum lycopersicum L.) Based on Increased Soil Cation Exchange Capacity. Agronomy. 2024; 14(3):629. https://doi.org/10.3390/agronomy14030629
Chicago/Turabian StyleYang, Mengyuan, Dongxian Zhou, Huixian Hang, Shuo Chen, Hua Liu, Jikang Su, Huilin Lv, Huixin Jia, and Gengmao Zhao. 2024. "Effects of Balancing Exchangeable Cations Ca, Mg, and K on the Growth of Tomato Seedlings (Solanum lycopersicum L.) Based on Increased Soil Cation Exchange Capacity" Agronomy 14, no. 3: 629. https://doi.org/10.3390/agronomy14030629
APA StyleYang, M., Zhou, D., Hang, H., Chen, S., Liu, H., Su, J., Lv, H., Jia, H., & Zhao, G. (2024). Effects of Balancing Exchangeable Cations Ca, Mg, and K on the Growth of Tomato Seedlings (Solanum lycopersicum L.) Based on Increased Soil Cation Exchange Capacity. Agronomy, 14(3), 629. https://doi.org/10.3390/agronomy14030629