Effects of Different Spray Adjuvants on the Permeation of Dinotefuran in Rice Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Instruments and Software
2.3. Treatment
2.4. Sample Preparation
2.5. Quantification of Dinotefuran Concentrations
2.6. Permeation of Dinotefuran
2.7. SFE of Rice Leaf Surfaces and Surface Tension
2.8. Statistical Analysis
3. Results
3.1. Method Validation
3.2. Permeation of Rice Leaves with Dinotefuran
3.3. Surface Free Energy of Rice Leaf Surfaces
3.4. Energy Difference (Δγ)
Rice Leaf | Static Contact Angle (°) | γLW (mJ/m2) | γAB (mJ/m2) | SFE γs (mJ/m2) | Mean (mJ/m2) | ||
---|---|---|---|---|---|---|---|
Water (W) | Glycerol (G) | Diiodomethane (DM) | |||||
Adaxial Leaf | 137.8 ± 2.4 a | 108.4 ± 2.2 a | 88.9 ± 1.6 a | 16.08 | 12.48 | 28.56 | 29.28 |
Abaxial Leaf | 132.5 ± 1.9 b | 104.5 ± 1.8 b | 89.7 ± 1.3 a | 15.55 | 14.45 | 30.00 |
3.5. Correlation Analysis between Permeation and Energy Difference (Δγ)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Graham-Bryce, I.J. Crop protection: A consideration of the effectiveness and disadvantages of current methods and of the scope for improvement. Phil. Trans. R. Soc. Lond. B 1997, 281, 163–179. [Google Scholar]
- Foqué, D.; Pieters, J.G.; Nuyttens, D. Spray deposition and distribution in a bay laurel crop as affected by nozzle type, air assistance and spray direction when using vertical spray booms. Crop Prot. 2012, 41, 77–87. [Google Scholar] [CrossRef]
- Enserink, M.; Hines, P.J.; Vignieri, S.N.; Wigginton, N.S.; Yeston, J.S. The pesticide paradox. Science 2013, 341, 728–729. [Google Scholar] [CrossRef]
- Witton, J.T.; Pickering, M.D.; Alvarez, T.; Reed, M.; Weyman, G.; Hodson, M.E.; Ashauer, R. Quantifying pesticide deposits and spray patterns at micro-scales on apple (Malus domesticus) leaves with a view to arthropod exposure. Pest Manag. Sci. 2018, 74, 2884–2893. [Google Scholar] [CrossRef]
- Cao, C.; Song, Y.Y.; Zhou, Z.L.; Cao, L.D.; Li, F.M.; Huang, Q.L. The role of adhesion force in the bouncing height of pesticide nanoparticles on the rice (Oryza sativa) leaf surface. J. Mol. Liq. 2018, 272, 92–96. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Yu, C.X.; Li, Y.; Zhu, Q.Q.; Zhou, L.; Cao, C.; Yu, T.T.; Du, F.P. Research on the changes in wettability of rice (Oryza sativa) leaf surfaces at different development stages using the OWRK method. Pest Manag. Sci. 2014, 70, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.M.; Chen, H.Z.; Zhang, Y.P.; Xiang, J.; Wang, Y.L.; Wang, Z.G.; Zhu, D.F.; Zhang, Y.K. Leaf surface characteristics affect the deposition and distribution of droplets in rice (Oryza sativa L.). Sci. Rep. 2021, 11, 17846. [Google Scholar] [CrossRef] [PubMed]
- Lichiheb, N.; Personne, E.; Bedos, C.; Berg, F.V.D.; Barriuso, E. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants. Sci. Total Environ. 2016, 550, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, A.; Trapp, S. How active ingredient localisation in plant tissues determines the targeted pest spectrum of different chemistries. Pest Manag. Sci. 2016, 72, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Wakita, T.; Yasui, N.; Yamada, E.; Kishi, D. Development of a novel insecticide, dinotefuran. Pestic. Sci. 2005, 30, 122–123. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Yu, Z.T.; Gao, Y.; Ye, W.N.; Peng, Y.X.; Zhang, S.; Gao, C.F. Dinotefuran resistance in Nilaparvata lugens: Resistance monitoring, inheritance, resistance mechanism and fitness costs. J. Pest Sci. 2023, 96, 1213–1227. [Google Scholar] [CrossRef]
- Li, K.X.; Liu, J.T.; Geng, Z.Q.; Xu, W.; Zhang, Z.; Chun, D.; Guo, L. Resistance to dinotefuran in Bemisia tabaci in China: Status and characteristics. Pest Manag. Sci. 2022, 79, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Tefagiorgis, H.B.; Annegarn, H.J. Evaluation of adjuvants for enhanced management of Podosphaera xanthii using potassium silicate and biocontrol agents. Crop Prot. 2013, 48, 69–75. [Google Scholar] [CrossRef]
- Kirkwood, R.C. Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic. Sci. 1999, 55, 69–77. [Google Scholar] [CrossRef]
- Wang, S.L.; Li, X.; Zeng, A.J.; Song, J.L.; Xu, T.; Lv, X.L.; He, X.K. Effects of Adjuvants on spraying characteristics and control efficacy in unmanned aerial application. Agriculture 2022, 12, 138. [Google Scholar] [CrossRef]
- He, L.F.; Ding, L.; Li, B.X.; Mu, W.; Li, P.Q.; Liu, F. Regulating droplet wetting and pinning behaviors on pathogen-modified hydrophobic surfaces: Strategies and working mechanisms. J. Agri. Food Chem. 2021, 69, 11720–11732. [Google Scholar] [CrossRef]
- Knoche, M. Organosilicone surfactant performance in agricultural spray application: A review. Weed Res. 1994, 34, 221–239. [Google Scholar] [CrossRef]
- Jian, Y.Q.; Chen, X.; Ma, H.Q.; Luo, Y.Q.; Jiang, J.H.; Yin, Y. Limonene formulation exhibited potential application in the control of mycelial growth and deoxynivalenol production in Fusarium graminearum. Front. Microbiol. 2023, 14, 1161244. [Google Scholar] [CrossRef] [PubMed]
- Santier, S.; Chamel, A. Penetration of triolein and methyl oleate through isolated plant cuticles and their effect on penetration of [14C]quizalofop-ethyl and [14C]fenoxaprop-ethyl. Weed Res. 1996, 36, 167–174. [Google Scholar] [CrossRef]
- Xu, G.C.; Yan, D.D.; Fang, W.S.; Xu, D.J.; Xu, L.; Wang, Q.X.; Cao, A.C. Synergistic effect of orange oil adjuvant on acetamiprid in the control of Edentatipsylla shanghaiensis. Sustainability 2023, 15, 10113. [Google Scholar] [CrossRef]
- Zheng, L.; Cao, C.; Chen, Z.; Cao, L.D.; Huang, Q.L.; Song, B.A. Efficient pesticide formulation and regulation mechanism for improving the deposition of droplets on the leaves of rice (Oryza sativa L.). Pest Manag. Sci. 2021, 77, 3198–3207. [Google Scholar] [CrossRef]
- Song, M.R.; Ju, J.; Luo, S.Q.; Han, Y.C.; Dong, Z.C.; Wang, Y.L.; Gu, Z.; Zhang, L.J.; Hao, R.R.; Jiang, L. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant. Sci. Adv. 2017, 3, e1602188. [Google Scholar] [CrossRef] [PubMed]
- Jañczuk, B.; Bialopiotrowicz, T.; Zdziennicka, A. Some remarks on the components of the liquid surface free energy. J. Colloid Interface Sci. 1999, 211, 96–113. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, V.; Khayet, M. Evaluation of the surface free energy of plant surfaces: Toward standardizing the procedure. Front. Plant Sci. 2015, 6, 510. [Google Scholar] [CrossRef] [PubMed]
- Nairn, J.J.; Forster, W.A. Methods for evaluating leaf surface free energy and polarity having accounted for surface roughness. Pest Manag. Sci. 2017, 73, 1854–1865. [Google Scholar] [CrossRef] [PubMed]
- Shalel-levanon, S.; Marmur, A. Validity and accuracy in evaluating surface tension of solids by additive approaches. J. Colloid Interface Sci. 2003, 262, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Li, H.J.; Wu, J.S.; Chen, C.; Xin, W.F.; Zhang, W.S. Simultaneous determination of 74 pesticide residues in Panax notoginseng by QuEChERS coupled with gas chromatography tandem mass spectrometry. Food Sci. Hum. Well. 2021, 10, 241–250. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, S.H.; Chen, H.Q.; Gu, Z.N.; Zhang, H.; Chen, W.; Chen, Y.Q. Evaluation of methylations and external/internal standard quantification of lipids using gas chromatography-mass spectrometry. Anal. Methods 2017, 9, 419–426. [Google Scholar]
- Revilla, P.; Fernandez, V.; Alvarez-Iglesias, L.; Medina, E.T.; Cavero, J. Leaf physico-chemical and physiological properties of maize (Zea mays L.) populations from different origins. Plant Physiol. Biochem. 2016, 107, 319–325. [Google Scholar] [CrossRef]
- Jang, M.Y.; Park, J.W.; Baek, S.Y.; Kim, T.W. Anisotropic wetting characteristics of biomimetic rice leaf surface with asymmetric asperities. J. Nanosci. Nanotechno. 2020, 20, 4331–4335. [Google Scholar] [CrossRef]
- Ma, J.; Liu, K.; Dong, X.Y.; Chen, C.G.; Qiu, B.J.; Zhang, S.C. Effects of leaf surface roughness and contact angle on in vivo measurement of droplet retention. Agronomy 2022, 12, 12092228. [Google Scholar] [CrossRef]
- Jing, J.; Zhou, Y.; Zhang, Z.Y.; Wu, L.X.; Bao, F.F.; Zhang, H.Y. Uptake, translocation, and terminal residue of chlorantraniliprole and difenoconazole in rice: Effect of the mixed-application with adjuvant. J. Agric. Food Chem. 2023, 71, 6838–6845. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, A.; Mukherjee, A. Nanoencapsulation-based edible coating of essential oils as a novel green strategy against fungal spoilage, mycotoxin contamination, and quality deterioration of stored fruits: An overview. Front. Microbiol. 2021, 12, 768414. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.Y.; Han, F. The spreading and superspeading behavior of new glucosamide-based trisiloxane surfactants on hydrophobic foliage. Colloids Surf. A 2006, 276, 100–106. [Google Scholar] [CrossRef]
- Wanger, R.; Wu, Y.; Czichocki, G.; Berlepsch, H.V.; Weiland, B.; Rexin, F.; Perepelittchenko, L. Silicon-modified surfactants and wetting: I. Synthesis of the single components of Silwet L77 and their spreading performance on a low-energy solid surface. Appl. Organomental. Chem. 1999, 13, 611–620. [Google Scholar]
- Yu, Q.; Powles, S. Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiol. 2014, 166, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, T.; Kaffarnik, F.; Riederer, M.; Schreiber, L. Cuticular permeability of the three tree species Prunus laurocerasus L., Ginkgobiloba L. and Juglans regia L.: Comparative investigation of the transport properties of intact leaves, isolated cuticles and reconstituted cuticular waxes. J. Exp. Bot. 1997, 48, 1035–1045. [Google Scholar] [CrossRef]
- Ferreira, P.H.U.; Thiesen, L.V.; Pelegrini, G.; Ramos, M.F.T.; Pinto, M.M.D.; Ferreira, M.D. Physicochemical properties, droplet size and volatility of dicamba with herbicides and adjuvants on tank-mixture. Sci. Rep. 2020, 10, 18833. [Google Scholar] [CrossRef] [PubMed]
- Wise, J.C.; Jenkins, P.E.; Schilder, A.M.C.; Vandervoort, C.; Isaacs, R. Sprayer type and water volume influence pesticide deposition and control of insect pests and diseases in juice grapes. Crop Prot. 2010, 29, 378–385. [Google Scholar] [CrossRef]
- Zhao, K.F.; Xu, G.C.; Wang, L.; Wu, T.Y.; Zhang, X.Y.; Zhang, C.H.; Zhao, Y.H.; Li, Z.L.; Gao, Y.X.; Du, F.P. Using a dynamic hydrophilization strategy to achieve nanodispersion, full wetting, and precise delivery of hydrophobic pesticide. ACS Appl. Mater. Interfaces 2023, 15, 37093–37106. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.L.; Cao, C.; Cao, L.D.; Zheng, L.; Xu, J.; Li, F.M.; Huang, Q.L. Effect of surfactant concentration on the evaporation of droplets on cotton (Gossypium hirsutum L.) leaves. Colloids Surf. B 2018, 167, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Hanba, Y.T.; Moriya, A.; Kimura, K. Effect of leaf surface wetness and wettability on photosynthesis in bean and pea. Plant Cell Environ. 2004, 27, 413–421. [Google Scholar] [CrossRef]
- Koch, K.; Blecher, I.C.; Koenig, G.; Kehraus, S.; Barthlott, W. The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): A biological model for spreading of water and oil on surfaces. Funct. Plant Biol. 2009, 36, 339–350. [Google Scholar] [CrossRef] [PubMed]
Concentrations (mg/L) | Permeation (mg/kg) | ||
---|---|---|---|
Coerce | Wetcit | Silwet408 | |
16 | 3.840 ± 0.161 d | 4.011 ± 0.208 e | 6.406 ± 0.222 c |
31 | 3.297 ± 0.147 d | 3.853 ± 0.084 ef | 7.340 ± 0.197 b |
63 | 3.812 ± 0.127 d | 4.925 ± 0.259 d | 8.177 ± 0.363 a |
125 | 5.343 ± 0.073 c | 5.625 ± 0.197 c | 7.718 ± 0.152 ab |
250 | 7.264 ± 0.116 b | 7.884 ± 0.067 b | 7.191 ± 0.296 b |
500 | 7.181 ± 0.445 b | 7.628 ± 0.237 b | 6.510 ± 0.005 c |
1000 | 8.149 ± 0.190 a | 8.496 ± 0.124 a | 6.488 ± 0.022 c |
0 | 3.381 ± 0.081 d | 3.381 ± 0.081 f | 3.381 ± 0.081 d |
Concentrations (mg/L) | Coerce | Wetcit | Silwet408 | ||||||
---|---|---|---|---|---|---|---|---|---|
γ (mN/m) | γs liquid (mJ/m2) | Δγ | γ (mN/m) | γs liquid (mJ/m2) | Δγ | γ (mN/m) | γs liquid (mJ/m2) | Δγ | |
16 | 37.17 | 37.17 | 7.89 | 36.31 | 36.31 | 7.03 | 33.07 | 33.07 | 3.79 |
31 | 36.75 | 36.75 | 7.47 | 35.29 | 35.29 | 6.01 | 28.32 | 28.32 | −0.96 |
63 | 35.39 | 35.39 | 6.11 | 34.53 | 34.53 | 5.25 | 23.57 | 23.57 | −5.71 |
125 | 34.31 | 34.31 | 5.03 | 32.78 | 32.78 | 3.5 | 20.67 | 20.67 | −8.61 |
250 | 32.66 | 32.66 | 3.38 | 30.46 | 30.46 | 1.18 | 20.69 | 20.69 | −8.59 |
500 | 31.25 | 31.25 | 1.97 | 30.41 | 30.41 | 1.13 | 20.46 | 20.46 | −8.82 |
1000 | 30.53 | 30.53 | 1.25 | 29.90 | 29.90 | 0.62 | 20.40 | 20.40 | −8.88 |
0 | 36.80 | 36.80 | 7.52 | 36.80 | 36.80 | 7.52 | 36.80 | 36.80 | 7.52 |
Spray Adjuvant | Curve Fitting | Function | Coefficient of Determination (R2) |
---|---|---|---|
Coerce | Linear | y = −0.7357Δγ + 9.0189 | 0.9401 |
Exponential | y = 10.012e−0.138Δγ | 0.9306 | |
Logarithmic | y = −2.718ln(Δγ) + 9.2369 | 0.8919 | |
Polynomial | y = 0.0104Δγ2 − 0.8331Δγ + 9.182 | 0.9406 | |
Power | y = 10.309Δγ−0.502 | 0.8304 | |
Wetcit | Linear | y = −0.71Δγ + 8.5868 | 0.9718 |
Exponential | y = 9.0115e−0.126Δγ | 0.9854 | |
Logarithmic | y = −2.036ln(Δγ) + 7.8845 | 0.9715 | |
Polynomial | y = 0.0528Δγ2 − 1.1277Δγ + 9.0493 | 0.9854 | |
Power | y = 7.8818Δγ−0.354 | 0.9389 | |
Silwet408 | Linear | y = −0.1562Δγ + 6.0604 | 0.4782 |
Exponential | y = 5.7649e−0.03Δγ | 0.4255 | |
Polynomial | y = −0.0381Δγ2 − 0.2621Δγ + 7.6066 | 0.9113 | |
Aggregate analysis | Polynomial | y = −0.04512Δγ2 − 0.27985Δγ + 7.9777 | 0.9167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Yan, D.; Fang, W.; Xu, D.; Xu, L.; Wang, Q.; Cao, A. Effects of Different Spray Adjuvants on the Permeation of Dinotefuran in Rice Leaves. Agronomy 2024, 14, 516. https://doi.org/10.3390/agronomy14030516
Xu G, Yan D, Fang W, Xu D, Xu L, Wang Q, Cao A. Effects of Different Spray Adjuvants on the Permeation of Dinotefuran in Rice Leaves. Agronomy. 2024; 14(3):516. https://doi.org/10.3390/agronomy14030516
Chicago/Turabian StyleXu, Guangchun, Dongdong Yan, Wensheng Fang, Dejin Xu, Lu Xu, Qiuxia Wang, and Aocheng Cao. 2024. "Effects of Different Spray Adjuvants on the Permeation of Dinotefuran in Rice Leaves" Agronomy 14, no. 3: 516. https://doi.org/10.3390/agronomy14030516
APA StyleXu, G., Yan, D., Fang, W., Xu, D., Xu, L., Wang, Q., & Cao, A. (2024). Effects of Different Spray Adjuvants on the Permeation of Dinotefuran in Rice Leaves. Agronomy, 14(3), 516. https://doi.org/10.3390/agronomy14030516