Thermodormancy and Germination Response to Temperature of Pyrus ussuriensis Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Research Methodology
2.2.1. Determination of Suitable Germination Temperatures for Non-Dormant P. ussuriensis Seeds
2.2.2. Effect of the Duration of High Temperature on the Germination of Non-Dormant Seeds
2.2.3. Effect of GA and ABA on the Germination Ability of Isolated Embryos at Different Dormant States
2.2.4. Activity of the Inhibitors of the Seed Coat of P. ussuriensis Seeds at Different Dormant States
2.2.5. Changes in Endogenous Hormone Content during Seed Germination at Different Temperatures
2.3. Statistical Analysis
3. Results
3.1. Effect of Temperature on Germination of Lifted Dormant Seeds
3.2. Effect of the Duration of the High-Temperature Treatment on the Germination of Non-Dormant Seeds
3.3. Effect of GA and ABA on the Germination of Isolated Embryos at Different Dormant States
3.4. Activity of Inhibitors in the Seed Coat of Thermodormant P. ussuriensis Seeds
3.5. Changes in Endogenous Hormone Content during Seed Germination at Different Temperatures
3.5.1. Changes in GA Content
3.5.2. Changes in ABA Content
4. Discussion
4.1. Temperature and Time Inducing Thermodormancy in P. ussuriensis Seeds
4.2. Evidence of a Hormonal Control of Thermodormancy
4.3. Role of the Seed Coat in Thermodormancy Induction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, L.L.; Zhang, D.F.; Xia, T. Research Progress of Molecular Regulation Mechanism of Seed Dormancy. Agric. Sci. Technol. 2016, 17, 786–791+848. [Google Scholar]
- Kigel, J.; Galili, G. Seed Development & Germination; CRC Press: Boca Raton, FL, USA, 1995; Volume 54, pp. 311–338. [Google Scholar]
- Shang, X.L.; Xu, X.Z.; Fang, S.Z. Induction of the Secondary Dormancy and Metabolism Changes of Storage Substances in Cyclocarya paliurus. J. Nanjing For. Univ. 2016, 49, 99. [Google Scholar]
- Jiao, C.J.; Li, M.Y.; Zhang, P. Effects of Exogenous Hormones Soaking and Osmotic Treatment on Thermal Dormancy of Seeds of Fraxinus mandshurica. Bull. Bot. Res. 2023, 43, 370–378. [Google Scholar]
- Zhao, T.T. Physiology Mechanism of GA and Ethephon to Release Thermodormancy in Fraxinus mandshurica Rupr Seeds; Northeast Forestry University: Harbin, China, 2019. [Google Scholar]
- Zhang, P.; Sun, H.Y.; Shen, H.L. Effect of Temperature on Germination of Stratified Seeds of Fraxinus mandshurica Rupr. Plant Physiol. J. 2007, 43, 21–24. [Google Scholar]
- Song, B.Y. Regulation Mechanism of Thermodormancy in Fraxinus mandshurica Rupr. Seeds; Northeast Forestry University: Harbin, China, 2017. [Google Scholar]
- Li, M.Y.; Zhao, T.T.; Zhang, P. Germination Response of Fraxinus mandshurica Seed to Polyethylene Glycol Osmotic Treatment under Different Temperatures. J. Northeast For. Univ. 2019, 47, 8–11. [Google Scholar]
- Geshnizjani, N.; Ghaderi-Far, F.; Willems, L.A.; Hilhorst, H.W.; Ligterink, W. Characterization of and genetic variation for tomato seed thermo-inhibition and thermodormancy. BMC Plant Biol. 2018, 18, 229. [Google Scholar] [CrossRef] [PubMed]
- Visser, T. Ater-ripening and germination of apple seeds in relation to the seed coats. Proc. K. Ned. Akad. Van Wetenscappen 1954, 57, 175–185. [Google Scholar]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; University of Kentucky: Lexington, KY, USA, 2014; pp. 45–59. [Google Scholar]
- Sun, J.; Guo, J.F.; Wei, S.N. Overview on Inhibitors of Plant Seed Germination. Seed 2012, 31, 57–61. [Google Scholar]
- Liao, Y.; Cai, S.; Li, X.; Lin, R. Preliminary study of endogenous inhibitors activity of Euscaphis japonica seeds. Guihaia 2016, 36, 600–606. [Google Scholar]
- Wang, X.L. Morphological and Physiological Changes and Germination Temperature during Stratification of Pinus koraiensis Seeds; Northeast Forestry University: Harbin, China, 2020. [Google Scholar]
- Lafta, A.; Mou, B. Evaluation of Lettuce Genotypes for Seed Thermotolerance. HortScience 2013, 48, 708–714. [Google Scholar] [CrossRef]
- Cdhwn, D.J. Carrot seed germination and respiration at high temperature in response to seed maturity and priming. Seed Sci. Technol. 2013, 41, 164–169. [Google Scholar]
- Toh, S.; Imamura, A.; Watanabe, A.; Nakabayashi, K.; Okamoto, M.; Jikumaru, Y.; Hanada, A.; Aso, Y.; Ishiyama, K.; Tamura, N. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 2008, 146, 1368–1385. [Google Scholar] [CrossRef] [PubMed]
- Corbineau, F.; Rudnicki, M.R.; Côme, D. Induction of secondary dormancy in sunflower seeds by high temperature. Possible involvement of ethylene biosynthesis. Physiol. Plant. 1988, 73, 368–373. [Google Scholar] [CrossRef]
- Argyris, J.; Dahal, P.; Hayashi, E.; Still, D.W.; Bradford, K.J. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic Acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiol. 2008, 148, 926–947. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.Y.; Wu, C.H.; Wang, Q.; Yan, X.; Liu, M.; Zhang, M. Analysis of photosynthetic pigments and mineral elements content of leaves of wild Pyrus ussuriensis Maxin with different color grown in saline alkali soil. Non-Wood For. Res. 2021, 39, 10–17. [Google Scholar]
- Shui, Y.H. Growth habit and standardised and efficient cultivation technology of sorbets. Jilin Agric. 2019, 93. [Google Scholar]
- Nasr, H.M.S.; Savadkoohi, K.S.; Ahmadi, E. Effect of different seed treatments on dormancy breaking and germination in three species in arid and semi-arid lands. For. Sci. Pract. 2013, 15, 130–136. [Google Scholar] [CrossRef]
- Zhang, P. A Method for Determining the Concentration of an Extract to Be Used in a Bioassay for Seed Germination Inhibitors and Its Application. CN201910371707.6, 31 March 2020. [Google Scholar]
- Zhu, G.L.; Zhong, H.W.; Zhang, A.Q. Plant Physiology Experiments; Beijing University Press: Beijing, China, 1990. [Google Scholar]
- Wuyun, T.; Amo, H.; Xu, J.; Ma, T.; Uematsu, C.; Katayama, H. Population Structure of and Conservation Strategies for Wild Pyrus ussuriensis Maxim. in China. PLoS ONE 2015, 10, e0133686. [Google Scholar] [CrossRef]
- Li, Y.K.; Liu, S.Z.; Kang, C.Z.; Man, D.; Li, D. Effects of Temperature on Germination Characteristics of Pinus Sylvesiris var. Mongolica and Picea Mongolica Seed. Bull. Soil Water Conserv. 2011, 31, 73–77. [Google Scholar]
- Hourston, J.E.; Steinbrecher, T.; Chandler, J.O.; Pérez, M.; Dietrich, K.; Turečková, V.; Tarkowská, D.; Strnad, M.; Weltmeier, F.; Meinhard, J.; et al. Cold-induced secondary dormancy and its regulatory mechanisms in Beta Vulgaris. Plant Cell Environ. 2022, 45, 1315–1332. [Google Scholar] [CrossRef]
- Yang, L.; Liu, C.P.; Shen, H.L. Effect of cold stratification duration and germination temperatures on seed germination of Sorbus Pohuashanensis. Seed 2008, 20–22+25. [Google Scholar]
- Batlla, D.; Benech, R.L. A framework for the interpretation of temperature effects on dormancy and germination in seed populations showing dormancy. Seed Sci. Res. 2015, 25, 147–158. [Google Scholar] [CrossRef]
- Dürr, C.; Dickie, J.B.; Yang, X.Y.; Pritchard, H.W. Ranges of critical temperature and water potential values for the germination of seeds worldwide: Contribution to a seed trait database. Agric. For. Meteorol. 2015, 200, 222–232. [Google Scholar] [CrossRef]
- Chen, F.; Bradford, K.J. Expression of an expansion is associated with endosperm weakening during tomato seed germination. Plant Physiol. 2000, 124, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Leymarie, J.; Benech, R.B.; Farrant, J.M.; Corbineau, F. Thermodormancy and ABA metabolism in barley grains. J. Plant Signal. Behav. 2009, 4, 205–207. [Google Scholar] [CrossRef] [PubMed]
- Ghaderi, F. Light and temperature requirements for germination in the Mediterranean shrub Lavandula stoechas (Lamiaceae). Plant Biol. 2021, 23, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Hills, P.N.; van Staden, J. Thermoinhibition of seed germination. S. Afr. J. Bot. 2003, 69, 455–461. [Google Scholar] [CrossRef]
- Song, L.L.; Zhang, H.N.; Zhao, H.Q.; Jiang, Y.L.; Hou, M.F. In vitro germination and seedling development of Taxus chinensis var. mairei by embryo culture. J. Agric. Sci. Technol. 2014, 16, 1355–1363. [Google Scholar]
- Tang, S.; Yu, A.; Liu, A.Z. Molecular Mechanisms Underlain the Regulation of Seed Dormancy or Germination by the Interactions between ABA and GA. Mol. Plant Breed. 2022, 20, 6893–6900. [Google Scholar]
- Song, Y.; Zhu, J.; Yan, Q. Roles of abscisic acid and gibberellins in maintaining primary and secondary dormancy of Korean pine seeds. J. For. Res. 2020, 31, 2423–2434. [Google Scholar] [CrossRef]
- Ni, B.R.; Bradford, K.J. Quantitative models characterizing seed germination responses to abscisic acid and osmoticum. Plant Physiol. 1992, 98, 1057–1068. [Google Scholar] [CrossRef]
- Gianinetti, A.; Vernieri, P. On the role of abscisic acid in seed dormancy of red rice. J. Exp. Bot. 2007, 58, 3449–3462. [Google Scholar] [CrossRef]
- Kermode, A.R. Role of abscisic acid in seed dormancy. J. Plant Growth Regul. 2005, 24, 319–344. [Google Scholar] [CrossRef]
- Bradford, K.; Downie, A.; Gee, O.; Alvarado, V.; Yang, H.; Dahal, P. Abscisic acid and gibberellin differentially regulate expression of genes of the SNF1-related kinase complex in tomato seeds. Plant Physiol. 2003, 132, 1560–1576. [Google Scholar] [CrossRef]
- Sun, G.Z.; Xiao, S.H. Abscisic Acid and Seed Dormancy. Plant Physiol. J. 2004, 115–120. [Google Scholar]
- Corbineau, F.; Poljakoff, A.; Còne, D. Responsiveness to abscisis acid of embryos of dormant oat (Avena sativa) seeds. Involvement of ABA-inducible proteins. Physiol. Plant. 1991, 83, 1–6. [Google Scholar] [CrossRef]
- Hoang, H.H.; Sotta, B.; Gendreau, E.; Bailly, C.; Leymarie, J.; Corbineau, F. Water content: A key factor of the induction of secondary dormancy in barley grains as related to ABA metabolism. Physiol. Plant. 2013, 148, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, T.; Endo, T.; Satoh, S. Restoration of seed germination at supraoptimal temperatures by fluridone, an inhibitor of abscisic acid biosynthesis. Plant Cell Physiol. 1998, 39, 307–312. [Google Scholar] [CrossRef]
- Bewley, J.D. Breaking down the walls—A role for endo-β-mannanase in release from seed dormancy. Trends Plant Sci. 1997, 2, 464–469. [Google Scholar] [CrossRef]
- Fang, H.T. Study on activity of inner inhibitory substances of Prunus mongolica maxi fruits and seed. Yinshan Acad. J. 2007, 58–60. [Google Scholar]
- Lu, Y. Germination Response of Fraxinus Mandshurica Seeds in Different Released States of Primary Dormancy to Drying Treatment and Thermal Dormancy Induction; Northeast Forestry University: Harbin, China, 2021. [Google Scholar]
- Bian, F.; Su, J.; Liu, W. Dormancy release and germination of Taxus yunnanensis seeds during wet sand storage. Sci. Rep. 2018, 8, 3205. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Li, M.; Zhu, M.; López, R.; Salomón, R.L.; Zhang, P. Thermodormancy and Germination Response to Temperature of Pyrus ussuriensis Seeds. Agronomy 2024, 14, 475. https://doi.org/10.3390/agronomy14030475
Liu Z, Li M, Zhu M, López R, Salomón RL, Zhang P. Thermodormancy and Germination Response to Temperature of Pyrus ussuriensis Seeds. Agronomy. 2024; 14(3):475. https://doi.org/10.3390/agronomy14030475
Chicago/Turabian StyleLiu, Zhuolin, Mingyue Li, Meiru Zhu, Rosana López, Roberto L. Salomón, and Peng Zhang. 2024. "Thermodormancy and Germination Response to Temperature of Pyrus ussuriensis Seeds" Agronomy 14, no. 3: 475. https://doi.org/10.3390/agronomy14030475
APA StyleLiu, Z., Li, M., Zhu, M., López, R., Salomón, R. L., & Zhang, P. (2024). Thermodormancy and Germination Response to Temperature of Pyrus ussuriensis Seeds. Agronomy, 14(3), 475. https://doi.org/10.3390/agronomy14030475