Achieving the Rewards of Smart Agriculture
Abstract
:1. Introduction
2. Definitions of Smart Agriculture
3. Basic Concepts and Technologies
3.1. Related Terminology, Concepts, and Technology
3.2. Big Data Analytics, Artificial Intelligence, and Machine Learning
“Recent advances in DNA sequencing and phenotyping technologies, in concert with analysis of large datasets have spawned ‘phenomics’, the use of large-scale approaches to study how genetic instructions from a single gene or the whole genome translate into the full set of phenotypic traits of an organism”.
3.3. Synopsis of Data Driven Methods
4. Discussion and Perspective
Challenges to Agricultural Digital Transition
- -
- Dealing with legacy technology;
- -
- Connectivity in rural areas;
- -
- Maintenance and servicing of technologies;
- -
- Compatibility (also as a system of systems);
- -
- Need for standards;
- -
- Modernizing infrastructure;
- -
- Adoption/ability to adopt.
5. The Expected Value and Development of Smart Agricultural Ecosystems
5.1. The Anticipated Value of Developing the Smart Agriculture Ecosystem
Climate Friendly Agriculture/Digital + Regenerative
5.2. The Application and Impact of AL/ML in Smart Agriculture
5.2.1. Socioeconomic Benefits
5.2.2. Digital Image and Deep Learning with Agriculture/Horticulture Industries
6. Conclusions
- -
- The role of digital technologies as a catalyst of change in how we produce food and practice agriculture/horticulture/livestock management;
- -
- The improved efficiency of agriculture/horticulture/livestock production;
- -
- Incorporate environmental considerations from the beginning and from all aspects;
- -
- The ability to link all aspects of the value chain in real time.
Author Contributions
Funding
Conflicts of Interest
References
- United Nations (UN). World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100. United Nations, Department of Economic and Social Affairs. 21 June 2017. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed on 15 May 2019).
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A.; Kumar, V.; Kumar, A. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput. Oper. Res. 2020, 119, 104926. [Google Scholar] [CrossRef]
- Song, J.; Zhong, Q.; Wang, W.; Su, C.; Tan, Z.; Liu, Y. FPDP: Flexible privacy-preserving data publishing scheme for smart agriculture. IEEE Sens. J. 2020, 21, 17430–17438. [Google Scholar] [CrossRef]
- Deloitte. From Agriculture to AgTech: An Industry Transformed beyond Molecules and Chemicals. Monitor Deloitte. 2017. Available online: https://www2.deloitte.com/content/dam/Deloitte/de/Documents/consumer-industrial-products/Deloitte-Tranformation-from-Agriculture-to-AgTech-2016.pdf (accessed on 11 June 2019).
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef]
- Villa-Henriksen, A.; Edwards, G.T.; Pesonen, L.A.; Green, O.; Sørensen, C.A.G. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosyst. Eng. 2020, 191, 60–84. [Google Scholar] [CrossRef]
- Agroop. The State of AgTech in 2019. 2019. Available online: https://agroop.net (accessed on 27 May 2019).
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A Compilation of UAV Applications for Precision Agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Magnin, C. How Big Data Will Revolutionize the Global Food Chain; Digital McKinsey: Brisbane, Australia, 2016. [Google Scholar]
- Daheim, C.; Poppe, K.; Schrijver, R. Precision Agriculture and the Future of Farming in Europe. European Parliamentary Research Service, Scientific Foresight Unit, PE 581.892. Available online: https://publications.europa.eu/en/publication-detail/-/publication/40fe549e-cb49-11e7-a5d5-01aa75ed71a1/language-en (accessed on 10 July 2019).
- Giesler, S. Digitisation in Agriculture—From Precision Farming to Farming 4.0. Bioeconomy BW, BIOPRO Baden-Württemberg GmbH. 9 April 2018. Available online: https://www.biooekonomie-bw.de/en/articles/dossiers/digitisation-in-agriculture-from-precision-farming-to-farming-40 (accessed on 17 June 2019).
- International Organization for Standardization (ISO). Smart Farming. ISO Focus #122, May–June 2017–ISSN 2226-1095. 2017. Available online: https://www.iso.org/files/live/sites/isoorg/files/news/magazine/ISOfocus%20(2013-NOW)/en/2017/ISOfocus_122/ISOfocus_122_EN.pdf (accessed on 22 April 2019).
- De Clercq, M.; Vats, A.; Biel, A. Agriculture 4.0: The future of farming technology. In Proceedings of the World Government Summit, Dubai, United Arab Emirates, 11 February 2018; pp. 11–13. [Google Scholar]
- Lezoche, M.; Hernandez, J.E.; Díaz, M.D.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Maddox, T. Agriculture 4.0: How Digital Farming Is Revolutionizing the Future of Food. The Next Step in Feeding the World’s Rapidly Growing Population Involves Self-Driving Tractors, Precision Farming, and Internet of Things Sensors to Quantify Agriculture in Vast New Ways; TechRepublic: Louisville, KY, USA, 2018. [Google Scholar]
- Hao, T.; Nikoloski, Z. Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data. J. Plant Physiol. 2021, 257, 153354. [Google Scholar]
- Government of Canada. Advisory Council on Economic Growth. Unleashing the Growth Potential of Key Sectors. 2017. 19p. Available online: https://www.budget.gc.ca/aceg-ccce/pdf/key-sectors-secteurs-cles-eng.pdf (accessed on 29 June 2019).
- Huawei. The Connected Farm: A Smart Agriculture Market Assessment. 2017. Available online: https://www.huawei.com/en/industry-insights/outlook/mobile-broadband/insights-reports/smart-agriculture (accessed on 30 April 2019).
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- OECD. The Internet of Things: Seizing the Benefits and Addressing the Challenges. In 2016 Ministerial Meeting on the Digital Economy, Background Report; OECD Digital Economy Papers No. 252; OECD Publishing: Paris, France, 2016; Available online: https://www.oecd-ilibrary.org/science-and-technology/the-internet-of-things_5jlwvzz8td0n-en (accessed on 22 May 2019).
- Schmaltz, R. Canada AgriFood Tech Market Map: 166 Startups Growing Canada’s Agricultural Sector. 2019. Available online: https://www.globalagtechinitiative.com/market-watch/canada-agrifood-tech-market-map-166-startups-growing-canadas-agricultural-sector/ (accessed on 25 April 2019).
- Stanford Business. Technology in AgriBusiness: Opportunities to Drive Value; Stanford Value Chain Innovation Initiative, White Paper; Stanford University: Stanford, CA, USA, 2017. [Google Scholar]
- Statista. Smart Agriculture. Statista Dossier on Smart Agriculture, 64p. 2019. Available online: https://www.statista.com/topics/4134/smart-agriculture/ (accessed on 25 April 2019).
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Du, J.; Guo, X.; Wen, W.; Gu, S.; Wang, J.; Fan, J. Crop phenomics: Current status and perspectives. Front. Plant Sci. 2019, 10, 714. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef] [PubMed]
- Crain, J.; Mondal, S.; Rutkoski, J.; Singh, R.P.; Poland, J. Combining high-throughput phenoty** and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome 2018, 11, 170043. [Google Scholar] [CrossRef] [PubMed]
- Gao, C. Genome engineering for crop improvement and future agriculture. Cell 2021, 184, 1621–1635. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiang, J.; Jin, Y.; Liu, R.; Yan, J.; Wang, L. Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey. Remote Sens. 2021, 13, 4387. [Google Scholar] [CrossRef]
- Matthews, M.; Maschall-Colón, A. Multiscale plant modelling: From genome to phenbome and beyond. Emerg. Top. Life Sci. 2021, 5, 231–237. [Google Scholar] [PubMed]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Aziz, I.; Mujeeb, A.; Belgacem, A.O.; Baig, M.B. Crop Diversification Using Saline Resources: Step towards Climate-Smart Agriculture and Reclamation of Marginal Lands[M]//The Food Security, Biodiversity, and Climate Nexus; Springer International Publishing: Cham, Switzerland, 2022; pp. 405–421. [Google Scholar]
- Mustapha, U.F.; Alhassan, A.W.; Jiang, D.N.; Li, G.L. Sustainable aquaculture development: A review on the roles of cloud computing, internet of things and artificial intelligence (CIA). Rev. Aquac. 2021, 13, 2076–2091. [Google Scholar] [CrossRef]
- Bi, C.; Hu, N.; Zou, Y.; Zhang, S.; Xu, S.; Yu, H. Development of Deep Learning Methodology for Maize Seed Variety Recognition Based on Improved Swin Transformer. Agronomy 2022, 12, 1843. [Google Scholar] [CrossRef]
- Peng, C.; Vougioukas, S.; Slaughter, D.; Fei, Z.; Arikapudi, R. A strawberry harvest-aiding system with crop-transport co-robots: Design, development, and field evaluation. arXiv 2021, arXiv:2107.13063. [Google Scholar]
- Cai, C.; Tan, J.; Zhang, P.; Ye, Y.; Zhang, J. Determining Strawberries’ Varying Maturity Levels by Utilizing Image Segmentation Methods of Improved DeepLabV3+. Agronomy 2022, 12, 1875. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Trautman, D.; Liu, Y.; Bi, C.; Chen, W.; Ou, L.; Goebel, R. Achieving the Rewards of Smart Agriculture. Agronomy 2024, 14, 452. https://doi.org/10.3390/agronomy14030452
Zhang J, Trautman D, Liu Y, Bi C, Chen W, Ou L, Goebel R. Achieving the Rewards of Smart Agriculture. Agronomy. 2024; 14(3):452. https://doi.org/10.3390/agronomy14030452
Chicago/Turabian StyleZhang, Jian, Dawn Trautman, Yingnan Liu, Chunguang Bi, Wei Chen, Lijun Ou, and Randy Goebel. 2024. "Achieving the Rewards of Smart Agriculture" Agronomy 14, no. 3: 452. https://doi.org/10.3390/agronomy14030452
APA StyleZhang, J., Trautman, D., Liu, Y., Bi, C., Chen, W., Ou, L., & Goebel, R. (2024). Achieving the Rewards of Smart Agriculture. Agronomy, 14(3), 452. https://doi.org/10.3390/agronomy14030452