Adaptation of NO2− Extraction Methods to Different Agricultural Soils: Fine-Tuning Based on Existing Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Experimental Design
2.3. Statistical Analyses
3. Results
3.1. Higher Soil NO2− Contents with DIW Extraction
3.2. Storage Increased NO2− and NH4+ Content
3.3. Effect of Shaking Time on NO2− Recovery
4. Discussion
4.1. Soil NO2− Concentration
4.2. Soil NH4+ and NO3− Concentrations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Butterbach-Bahl, K.; Dannenmann, M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr. Opin. Environ. Sustain. 2011, 3, 389–395. [Google Scholar] [CrossRef]
- Li, Y.; Ju, X.; Wu, D. Transient nitrite accumulation explains the variation of N2O emissions to N fertilization in upland agricultural soils. Soil Biol. Biochem. 2023, 177, 108917. [Google Scholar] [CrossRef]
- Kool, D.M.; Dolfing, J.; Wrage, N.; Van Groenigen, J.W. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol. Biochem. 2011, 43, 174–178. [Google Scholar] [CrossRef]
- Pandey, A.; Suter, H.; He, J.Z.; Hu, H.W.; Chen, D.L. Dissimilatory nitrate reduction to ammonium dominates nitrate reduction in long-term low nitrogen fertilized rice paddies. Soil Biol. Biochem. 2019, 131, 149–156. [Google Scholar] [CrossRef]
- Wang, M.; Hu, R.; Ruser, R.; Schmidt, C.; Kappler, A. Role of Chemodenitrification for N2O Emissions from Nitrate Reduction in Rice Paddy Soils. ACS Earth Space Chem. 2020, 4, 122–132. [Google Scholar] [CrossRef]
- Nie, S.; Mo, S.; Gao, T.; Yan, B.; Shen, P.; Kashif, M.; Zhang, Z.; Li, J.; Jiang, C. Coupling effects of nitrate reduction and sulfur oxidation in a subtropical marine mangrove ecosystem with Spartina alterniflora invasion. Sci. Total Environ. 2023, 862, 160930. [Google Scholar] [CrossRef]
- Müller, C.; Laughlin, R.J.; Spott, O.; Rütting, T. Quantification of N2O emission pathways via a 15N tracing model. Soil Biol. Biochem. 2014, 72, 44–54. [Google Scholar] [CrossRef]
- Russow, R.; Stange, C.; Neue, H. Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: Results from 15N tracer experiments. Soil Biol. Biochem. 2009, 41, 785–795. [Google Scholar] [CrossRef]
- Maharjan, B.; Venterea, R.T. Nitrite intensity explains N management effects on N2O emissions in maize. Soil Biol. Biochem. 2013, 66, 229–238. [Google Scholar] [CrossRef]
- Serna, M.; Bañuls, J.; Quiñones, A.; Primo-Millo, E.; Legaz, F. Evaluation of 3,4-dimethylpyrazole phosphate as a nitrification inhibitor in a Citrus-cultivated soil. Biol. Fertil. Soils 2000, 32, 41–46. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Ju, X.; Wu, D. Oxygen-depletion by rapid ammonia oxidation regulates kinetics of N2O, NO and N2 production in an ammonium fertilised agricultural soil. Soil Biol. Biochem. 2021, 163, 108460. [Google Scholar] [CrossRef]
- Zhu, G.; Song, X.; Ju, X.; Zhang, J.; Müller, C.; Sylvester-Bradley, R.; Thorman, R.E.; Bingham, I.; Rees, R.M. Gross N transformation rates and related N2O emissions in Chinese and UK agricultural soils. Sci. Total Environ. 2019, 666, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Giguere, A.T.; Taylor, A.E.; Suwa, Y.; Myrold, D.D.; Bottomley, P.J. Uncoupling of ammonia oxidation from nitrite oxidation: Impact upon nitrous oxide production in non-cropped Oregon soils. Soil Biol. Biochem. 2017, 104, 30–38. [Google Scholar] [CrossRef]
- Venterea, R.; Coulter, J.; Clough, T. Nitrite accumulation and nitrogen gas production increase with decreasing temperature in urea-amended soils: Experiments and modeling. Soil Biol. Biochem. 2020, 142, 10772. [Google Scholar] [CrossRef]
- Ma, L.; Shan, J.; Yan, X. Nitrite behavior accounts for the nitrous oxide peaks following fertilization in a fluvo-aquic soil. Biol. Fertil. Soils 2015, 51, 563–572. [Google Scholar] [CrossRef]
- Lim, N.Y.N.; Frostegård, Å.; Bakken, L.R. Nitrite kinetics during anoxia: The role of abiotic reactions versus microbial reduction. Soil Biol. Biochem. 2018, 119, 203–209. [Google Scholar] [CrossRef]
- Medinets, S.; Skiba, U.; Rennenberg, H.; Butterbach-Bahl, K. A review of soil NO transformation: Associated processes and possible physiological significance on organisms. Soil Biol. Biochem. 2015, 80, 92–117. [Google Scholar] [CrossRef]
- Oswald, R.; Behrendt, T.; Ermel, M.; Wu, D.; Su, H.; Cheng, Y.; Breuninger, C.; Moravek, A.; Mougin, E.; Delon, C.; et al. HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen. Science 2013, 341, 1233–1235. [Google Scholar] [CrossRef]
- Song, Y.; Wu, D.; Ju, X.; Dörsch, P.; Wang, M.; Wang, R.; Song, X.; Deng, L.; Wang, R.; Gao, Z.; et al. Nitrite stimulates HONO and NOx but not N2O emissions in Chinese agricultural soils during nitrification. Sci. Total Environ. 2023, 902, 166451. [Google Scholar] [CrossRef]
- Homyak, P.M.; Vasquez, K.T.; Sickman, J.O.; Parker, D.R.; Schimel, J.P. Improving Nitrite Analysis in Soils: Drawbacks of the Conventional 2 M KCl Extraction. Soil Sci. Soc. Am. J. 2015, 79, 1237–1242. [Google Scholar] [CrossRef]
- Islam, A.; Chen, D.; White, R.E.; Weatherley, A.J. Chemical decomposition and fixation of nitrite in acidic pasture soils and implications for measurement of nitrification. Soil Biol. Biochem. 2008, 40, 262–265. [Google Scholar] [CrossRef]
- Reuss, J.O.; Smith, R.L. Chemical Reactions of Nitrites in Acid Soils. Soil Sci. Soc. Am. J. 1965, 29, 267–270. [Google Scholar] [CrossRef]
- Nelson, D.W.; Bremner, J.M. Factors affecting chemical transformations of nitrite in soils. Soil Biol. Biochem. 1969, 1, 229–239. [Google Scholar] [CrossRef]
- Stevens, R.J.; Laughlin, R.J. Nitrite Transformations during Soil Extraction with Potassium Chloride. Soil Sci. Soc. Am. J. 1995, 59, 933–938. [Google Scholar] [CrossRef]
- Fujitake, N.; Kusumoto, A.; Tsukamoto, M.; Kawahigashi, M.; Suzuki, T.; Otsuka, H. Properties of soil humic substances in fractions obtained by sequential extraction with pyrophosphate solutions at different pHs. Soil Sci. Plant Nutr. 1998, 44, 253–260. [Google Scholar] [CrossRef]
- Ju, X.; Zhang, C. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review. J. Integr. Agric. 2017, 16, 2848–2862. [Google Scholar] [CrossRef]
- Tu, Q.; Dou, F.; Salem, H.M. Optimizing Conditions for the Measurement of Soil Inorganic Nitrogen with a Micro-Plate Reader. Glob. J. Agric. Innov. Res. Dev. 2021, 8, 22–31. [Google Scholar]
- Ma, B.L.; Ying, J.; Balchin, D. Impact of Sample Preservation Methods on the Extraction of Inorganic Nitrogen by Potassium Chloride. J. Integr. Agric. 2005, 28, 785–796. [Google Scholar] [CrossRef]
- Venterea, R.T.; Burger, M.; Spokas, K.A. Nitrogen Oxide and Methane Emissions under Varying Tillage and Fertilizer Management. J. Environ. Qual. 2005, 34, 1467–1477. [Google Scholar] [CrossRef]
- Isobe, K.; Koba, K.; Suwa, Y.; Ikutani, J.; Kuroiwa, M.; Fang, Y.; Yohb, M.; Mo, J.; Otsuka, S.; Senoo, S. Nitrite transformations in an N-saturated forest soil. Soil Biol. Biochem. 2012, 52, 61–63. [Google Scholar] [CrossRef]
- Nelson, D.W.; Bremner, J.M. Gaseous products of nitrite decomposition in soils. Soil Biol. Biochem. 1970, 2, 203–215. [Google Scholar] [CrossRef]
- Zhu, Q.; Ma, L.; Ma, Q.; Li, L.; Chen, B.C.; Liu, Z.G.; Zhang, M. Content of soil mineral nitrogen as influenced by sample extraction and preservation. Chin. J. Eco-Agric. 2012, 20, 138–143. (In Chinese) [Google Scholar] [CrossRef]
- Li, K.; Zhao, Y.; Yuan, X.; Zhao, H.; Wang, Z.; Li, S.; Malhi, S. Comparison of Factors Affecting Soil Nitrate Nitrogen and Ammonium Nitrogen Extraction. Commun. Soil Sci. Plant Anal. 2012, 43, 571–588. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, G.; Qiu, Z.; Wang, Z.; Yu, B. Study on the Methods of Sample Collection and Keeping in Forest Soil NO3−-N Determination. For. Res. 2005, 18, 209–213. (In Chinese) [Google Scholar]
- Zhu, J.; Wang, C.; Paerhati, X.Y.; Cao, X.; Hua, Z. Effect of Oscillation and Extraction Time on Measurement of Content of NO3−-N and NH4+-N in Soil Held by Different Saving Methods. Xinjiang Agric. Sci. 2014, 51, 761–767. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Wu, D.; Dörsch, P.; Yue, L.; Deng, L.; Liao, C.; Sha, Z.; Dong, W.; Yu, Y. Adaptation of NO2− Extraction Methods to Different Agricultural Soils: Fine-Tuning Based on Existing Techniques. Agronomy 2024, 14, 331. https://doi.org/10.3390/agronomy14020331
Song Y, Wu D, Dörsch P, Yue L, Deng L, Liao C, Sha Z, Dong W, Yu Y. Adaptation of NO2− Extraction Methods to Different Agricultural Soils: Fine-Tuning Based on Existing Techniques. Agronomy. 2024; 14(2):331. https://doi.org/10.3390/agronomy14020331
Chicago/Turabian StyleSong, Yaqi, Dianming Wu, Peter Dörsch, Lanting Yue, Lingling Deng, Chengsong Liao, Zhimin Sha, Wenxu Dong, and Yuanchun Yu. 2024. "Adaptation of NO2− Extraction Methods to Different Agricultural Soils: Fine-Tuning Based on Existing Techniques" Agronomy 14, no. 2: 331. https://doi.org/10.3390/agronomy14020331
APA StyleSong, Y., Wu, D., Dörsch, P., Yue, L., Deng, L., Liao, C., Sha, Z., Dong, W., & Yu, Y. (2024). Adaptation of NO2− Extraction Methods to Different Agricultural Soils: Fine-Tuning Based on Existing Techniques. Agronomy, 14(2), 331. https://doi.org/10.3390/agronomy14020331