Status of Soil Health Indicators after 18 Years of Systematic Tillage in a Long-Term Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Meteorological Data
2.2. Soil Physical Parameters
2.3. Soil Chemical Parameters
2.4. Soil Biological Parameters
2.5. Statistical Analyses
3. Results
3.1. Soil Physical Parameters
3.2. Soil Chemical Parameters
3.3. Soil Biological Parameters
4. Discussion
4.1. Physical Soil Parameters
4.2. Chemical Soil Parameters
4.3. Biological Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R. Managing soils and ecosystems for mitigating anthropogenic carbon emission and advancing global food security. BioScience 2010, 60, 708–721. [Google Scholar] [CrossRef]
- Follett, R. Soil management concepts and carbon sequestration in crop-land soils. Soil Tillage Res. 2001, 61, 77–92. [Google Scholar] [CrossRef]
- Kimble, J.M.; Follett, R.F.; Cole, C.V. The potential of US cropland to sequester carbon and mitigate the greenhouse effect. Am. J. Food Technol. 1998, 16, 47. [Google Scholar] [CrossRef]
- Sauerbeck, D. CO2 emissions and C sequestration by agriculture perspectives and limitations. Nutr. Cycl. Agroecosyst. 2001, 60, 253–266. [Google Scholar] [CrossRef]
- Smith, P. How long before a change in soil organic carbon can be detected? Glob. Chang. Biol. 2004, 10, 1878–1883. [Google Scholar] [CrossRef]
- Kan, Z.R.; Ma, S.T.; Liu, Q.Y.; Liu, B.Y.; Virk, A.L.; Qi, J.Y.; Zhao, X.; Lal, R.; Zhang, H.L. Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain. Catena 2020, 188, 104428. [Google Scholar] [CrossRef]
- Govaerts, B.; Verhulst, N.; Castellanos-Navarrete, A.; Sayre, K.D.; Dixon, J.; Dendooven, L. Conservation agriculture and soil carbon sequestration: Between myth and farmer reality. Crit. Rev. Plant Sci. 2009, 28, 97–122. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- VandenBygaart, B.; Gregorich, E.; Angers, D. Influence of agricultural management on soil organic carbon: A compendium and assessment of Canadian Studies. Can. J. Soil Sci. 2003, 83, 363–380. [Google Scholar] [CrossRef]
- Kucharik, C.J.; Brye, K.R.; Norman, J.M.; Foley, J.A.; Gower, S.T.; Bundy, L.G. Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: Potential for SOC sequestration during the next 50 years. Ecosystems 2001, 4, 237–258. [Google Scholar] [CrossRef]
- Reicosky, D.C. Tillage-induced CO2 emissions and carbon sequestration: Effect of secondary tillage and compaction. In Conservation Agriculture; García-Torres, L., Benites, J., Martínez-Vilela, A., Holgado-Cabrera, A., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 291–300. [Google Scholar] [CrossRef]
- González-Sánchez, E.J.; Ordóñez-Fernández, R.; Carbonell-Bojollo, R.; Veroz-González, O.; Gil-Ribes, J.A. Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Tillage Res. 2012, 122, 52–60. [Google Scholar] [CrossRef]
- Lal, R.; Delgado, J.A.; Groffman, P.M.; Millar, N.; Dell, C.; Rotz, A. Management to mitigate and adapt to climate change. J. Soil Water Conserv. 2011, 66, 276–285. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R.K. The role of conservation agriculture in sustainable agriculture. Phil. Trans. R. Soc. B. 2007, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Naik, S.K.; Haris, A.A.; Mishra, J.S.; Mukherjee, J.; Rao, K.K.; Bhatt, B.P. Effect of conservation tillage and rice-based cropping systems on soil aggregation characteristics and carbon dynamics in Eastern Indo-Gangetic Plain. Paddy Water Environ. 2020, 18, 573–586. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, S.; Lu, C.; Xiaoyu, L.I.; Li, F.; Wang, T. Effects of different tillage and fertilization management practices on soil organic carbon and aggregates under the rice–wheat rotation system. Soil Tillage Res. 2021, 212, 105071. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jorgensen, H.B.; Isberg, P.E. How does tillage intensity affect soil organic carbon? A systematic review. Environ Evid. 2017, 6, 30. [Google Scholar] [CrossRef]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil organic carbon sequestration and agricultural greenhouse gas emissions in the Southeastern USA. Soil Tillage Res. 2005, 83, 120–147. [Google Scholar] [CrossRef]
- Blanco-Cangui, H.; Lal, R. No-tillage and soil-profile carbon sequestration: An on-farm assessment. Soil Sci. Soc. Am J. 2008, 72, 693–701. [Google Scholar] [CrossRef]
- Tedone, L.; Verdini, L.; De Mastro, G. Effects of different types of soil management on organic carbon and nitrogen contents and the stability index of a durum wheat–faba bean rotation under a Mediterranean climate. Agronomy 2023, 13, 1298. [Google Scholar] [CrossRef]
- Szostek, M.; Szpunar-Krok, E.; Pawlak, R.; Stanek-Tarkowska, J.; Ilek, A. Effect of different tillage systems on soil organic carbon and enzymatic activity. Agronomy 2022, 12, 208. [Google Scholar] [CrossRef]
- Dekemati, I.; Simon, B.; Vinogradov, S.; Birkás, M. The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil Tillage Res. 2019, 194, 104334. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Nakamura, K. Mulching type-induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in central Japan. Int. Soil Water Conserv. Res. 2017, 5, 302–308. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef]
- Smith, J. Soil organic carbon stocks in shallow-cultivated agroecosystems: A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 132–139. [Google Scholar]
- Wang, H.; Wang, S.; Yu, Q.; Zhang, Y.; Wang, R.; Li, J.; Wang, X. Ploughing/zero-tillage rotation regulates soil physicochemical properties and improves productivity of erodible soil in a residue return farming system. Land Degrad. Dev. 2021, 32, 1833–1843. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kogel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Dekemati, I.; Simon, B.; Bogunovic, I.; Kisic, I.; Kassai, K.; Kende, Z.; Birkás, M. Long term effects of ploughing and conservation tillage methods on earthworm abundance and crumb ratio. Agronomy 2020, 10, 1552. [Google Scholar] [CrossRef]
- New, M.G.; Lister, D.; Hulme, M.; Makin, I.W. A high-resolution data set of surface climate over global land areas. Clim. Res. 2002, 21, 1–25. [Google Scholar] [CrossRef]
- Buzás, I. (Ed.) Talaj-Talaj-És Agrokémiai Vizsgálati Módszerkönyv; Physico-Chemical and Chemical Test Methods of Soils; INDA 4231 Kiadó: Budapest, Hungary, 1993. (In Hungarian) [Google Scholar]
- Buzás, I. (Ed.) Talaj-És Agrokémiai Vizsgálati Módszerkönyv; Method Book for Soil and Agrochemical Analyses; Mezőgazdasági Kiadó: Budapest, Hungary, 1988. (In Hungarian) [Google Scholar]
- MSZ-08-0452; Use of High-Capacity Analyser Systems for Soils Analyses. Quantitative Determination of the Organic Carbon Content of the Soil on Contiflo Analyzer System. Official Hungarian Standard: Budapest, Hungary, 1980.
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef]
- Cheng, F.; Peng, X.; Zhao, P.; Yuan, J.; Zhong, C.; Cheng, Y.; Cui, C.; Zhang, S. Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains. PLoS ONE 2013, 8, e67353. [Google Scholar] [CrossRef] [PubMed]
- ISO23611-1; Soil Quality—Sampling of Soil Invertebrates—Part 1: Hand-Sorting and Formalin Extraction of Earthworms. ISO: Geneva, Switzerland, 2006.
- Csuzdi, C.; Zicsi, A. Earthworms of Hungary (Annelida: Oligochaeta); Hungarian Natural History Museum: Budapest, Hungary, 2003. [Google Scholar] [CrossRef]
- Gál, A.; Vyn, T.J.; Michéli, E.; Kladivko, E.J.; McFee, W.W. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil Tillage Res. 2007, 96, 42–51. [Google Scholar] [CrossRef]
- Moussadek, P.; Mrabet, R.; Dahan, R.; Zouahri, A.; El Mourid, M.; Van Ranst, E. Tillage system affects soil organic carbon storage and quality in Central Morocco. Appl. Environ. Soil Sci. 2014, 2014, 654796. [Google Scholar] [CrossRef]
- Karlen, D.L.; Wollenhaupt, N.C.; Erbach, D.C.; Berry, E.C.; Swan, J.B.; Eash, N.S.; Jordahl, J.L. Crop residue effects on soil quality following 10-years of no-till corn. Soil Tillage Res. 1994, 31, 149–167. [Google Scholar] [CrossRef]
- Drijber, R.A.; Doran, J.W.; Parkhurst, A.M.; Lyon, D.J. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol. Biochem. 2000, 32, 1419–1430. [Google Scholar] [CrossRef]
- Ernst, G.; Emmerling, C. Impact of five different tillage systems on soil organic carbon content and the density, biomass, and community composition of earthworms after a ten years period. Eur. J. Soil Biol. 2009, 45, 247–251. [Google Scholar] [CrossRef]
- Pinheiro, É.F.M.; De Campos, D.V.B.; Balieiro, F.C.; Dos Anjos, L.H.C.; Pereira, M.G. Tillage systems effects on soil carbon stocks and physical fractions of soil organic matter. Agric. Syst. 2015, 132, 35–39. [Google Scholar] [CrossRef]
- Jakab, G.; Madarász, B.; Masoudi, M.; Karlik, M.; Király, C.; Zacháry, D.; Filep, T.; Dekemati, I.; Centeri, C.; Al-Graiti, T.; et al. Soil organic matter gain by reduced tillage intensity: Storage, pools, and chemical composition. Soil Tillage Res. 2023, 226, 105584. [Google Scholar] [CrossRef]
- Jha, P.; Hati, K.M.; Dalal, R.C.; Dang, Y.P.; Kopittke, P.M.; McKenna, B.A.; Menzies, N.W. Effect of 50 Years of no-tillage, stubble retention, and nitrogen fertilization on soil respiration, easily extractable glomalin, and nitrogen mineralization. Agronomy 2022, 12, 151. [Google Scholar] [CrossRef]
- Mirzavand, J.; Rahmani, H.A.; Moradi-Talebbeigi, R. Biological indicators of soil quality under conventional, reduced, and no-tillage systems. Arch. Agron. Soil Sci. 2022, 68, 311–324. [Google Scholar] [CrossRef]
- Gelybó, G.; Barcza, Z.; Dencső, M.; Potyó, I.; Kása, I.; Horel, Á.; Pokovai, K.; Birkás, M.; Kern, A.; Hollós, R.; et al. Effect of tillage and crop type on soil respiration in a long-term field experiment on chernozem soil under temperate climate. Soil Tillage Res. 2022, 216, 105239. [Google Scholar] [CrossRef]
- Du, K.; Li, F.; Leng, P.; Li, Z.; Tian, C.; Qiao, Y.; Li, Z. Differential influence of no-tillage and precipitation pulses on soil heterotrophic and autotrophic respiration of summer maize in the North China Plain. Agronomy 2020, 10, 2004. [Google Scholar] [CrossRef]
- Peigné, J.; Cannavaciuolo, M.; Gautronneau, Y.; Aveline, A.; Giteau, J.L.; Cluzeau, D. Earthworm populations under different tillage systems in organic farming. Soil Till Res. 2009, 104, 207–214. [Google Scholar] [CrossRef]
- Wyss, E.; Glasstetter, M.; Kretzschmar, A. Tillage treatments and earthworm distribution in a Swiss experimental corn field. Soil Biol. Biochem. 1992, 24, 1635–1639. [Google Scholar] [CrossRef]
- Ivask, M.; Kuu, A.; Sizov, E. Abundance of earthworm species in Estonian arable soils. Eur. J. Soil Biol. 2007, 43, S39–S42. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Straube, D.; Scheu, S. Efficiency of two widespread non-destructive extraction methods under dry soil conditions for different ecological earthworm groups. Eur. J. Soil Biol. 2008, 44, 141–145. [Google Scholar] [CrossRef]
- Gutiérrez-López, M.; Moreno, G.; Trigo, D.; Juárez, E.; Jesús, J.B.; Díaz Cosín, D.J. The efficiency of earthworm extraction methods is determined by species and soil properties in the Mediterranean communities of Central-Western Spain. Eur. J. Soil Biol. 2016, 73, 59–68. [Google Scholar] [CrossRef]
- Edwards, C.A.; Lofty, J.R. The invertebrate fauna of the Park Grass plots I. In Report Rothamsted Experimental Station for 1974; Rothamsted Research: Harpenden, UK, 1975; Volume 2, pp. 133–154. [Google Scholar] [CrossRef]
- Bogunovic, I.; Kisic, I. Soil water content in tillage induced system. In Conference: Soil and Crop Management: Adaptation and Mitigation of Climate Change; Vukadinović, V., Đurđević, B., Eds.; Croatia Soil Tillage Research Organization: Osijek, Croatia, 2013; pp. 99–107. [Google Scholar]
- Kuhn, N.J.; Hu, Y.; Bloemertz, L.; He, J.; Li, H.; Greenwood, P. Conservation tillage and sustainable intensification of agriculture: Regional vs. global benefit analysis. Agric. Ecosyst. Environ. 2016, 216, 155–165. [Google Scholar] [CrossRef]
Vegetation | 2019/2020 winter oat |
Tillage | 2 October 2019 |
Seedbed preparation | 3 October 2019 |
Seeding | 9 October 2019 |
Variety | Mv Hópehely |
Seeding rate | 175 kg ha−1 |
Fertilizers | Top dressing, 60 kg ha−1 CAN, N:27 (20 February 2020) |
Crop protection | Sekator OD 0.15 L ha−1 (10 April 2020) Tango Star 1 L ha−1 (10 April 2020) Decis Mega 0.15 L ha−1 (16 May 2020) |
Harvesting | 15 July 2020 |
Growing period (day) | 279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, H.T.M.; Modiba, M.M.; Dekemati, I.; Gelybó, G.; Birkás, M.; Simon, B. Status of Soil Health Indicators after 18 Years of Systematic Tillage in a Long-Term Experiment. Agronomy 2024, 14, 278. https://doi.org/10.3390/agronomy14020278
Ibrahim HTM, Modiba MM, Dekemati I, Gelybó G, Birkás M, Simon B. Status of Soil Health Indicators after 18 Years of Systematic Tillage in a Long-Term Experiment. Agronomy. 2024; 14(2):278. https://doi.org/10.3390/agronomy14020278
Chicago/Turabian StyleIbrahim, Hanaa Tharwat Mohamed, Maxwell Maimela Modiba, Igor Dekemati, Györgyi Gelybó, Márta Birkás, and Barbara Simon. 2024. "Status of Soil Health Indicators after 18 Years of Systematic Tillage in a Long-Term Experiment" Agronomy 14, no. 2: 278. https://doi.org/10.3390/agronomy14020278
APA StyleIbrahim, H. T. M., Modiba, M. M., Dekemati, I., Gelybó, G., Birkás, M., & Simon, B. (2024). Status of Soil Health Indicators after 18 Years of Systematic Tillage in a Long-Term Experiment. Agronomy, 14(2), 278. https://doi.org/10.3390/agronomy14020278