Monitoring the Composting Process of Olive Oil Industry Waste: Benchtop FT-NIR vs. Miniaturized NIR Spectrometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composting Plant and Sample Description
2.2. Physical–Chemical Analyses
2.3. Near-Infrared Spectra Acquisition
2.4. Chemometrics
3. Results
3.1. Physical–Chemical Characterization of Calibration and Prediction Sets
3.2. Spectral Characteristics
3.3. Quantitative Prediction of Compost Quality Parameters
3.3.1. Spectral Preprocessing
3.3.2. Prediction Performance Using FT-NIR and Micro-NIR Using Different Regression Algorithms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alburquerque, J.A.; Gonzálvez, J.; García, D.; Cegarra, J. Measuring Detoxification and Maturity in Compost Made from “Alperujo”, the Solid by-Product of Extracting Olive Oil by the Two-Phase Centrifugation System. Chemosphere 2006, 64, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Gigliotti, G.; Proietti, P.; Said-Pullicino, D.; Nasini, L.; Pezzolla, D.; Rosati, L.; Porceddu, P.R. Co-Composting of Olive Husks with High Moisture Contents: Organic Matter Dynamics and Compost Quality. Int. Biodeterior. Biodegrad. 2012, 67, 8–14. [Google Scholar] [CrossRef]
- Peña, D.; Fernández, D.; Albarrán, A.; Gómez, S.; Martín, C.; Sánchez-Terrón, J.; Vicente, L.; López-Piñeiro, A. Using Olive Mill Waste Compost with Sprinkler Irrigation as a Strategy to Achieve Sustainable Rice Cropping under Mediterranean Conditions. Agron. Sustain. Dev. 2022, 42, 36. [Google Scholar] [CrossRef]
- Masmoudi, S.; Abid, W.; Medhioub, K.; Ammar, E. Compost Derived from Olive Mill Cake: Effects on Isohumic Soil Quality Based on Humic Acids Characterization. Heliyon 2024, 10, e36456. [Google Scholar] [CrossRef]
- Buyukcan, M.B.; Kavdir, I. Prediction of Some Internal Quality Parameters of Apricot Using FT-NIR Spectroscopy. J. Food Meas. Charact. 2017, 11, 651–659. [Google Scholar] [CrossRef]
- Kavdir, I.; Buyukcan, M.B.; Lu, R.; Kocabiyik, H.; Seker, M. Prediction of Olive Quality Using FT-NIR Spectroscopy in Reflectance and Transmittance Modes. Biosyst. Eng. 2009, 103, 304–312. [Google Scholar] [CrossRef]
- Walsh, K.B.; Blasco, J.; Zude-Sasse, M.; Sun, X. Visible-NIR ‘Point’ Spectroscopy in Postharvest Fruit and Vegetable Assessment: The Science behind Three Decades of Commercial Use. Postharvest Biol. Technol. 2020, 168, 111246. [Google Scholar] [CrossRef]
- Krähmer, A.; Engel, A.; Kadow, D.; Ali, N.; Umaharan, P.; Kroh, L.W.; Schulz, H. Fast and Neat—Determination of Biochemical Quality Parameters in Cocoa Using near Infrared Spectroscopy. Food Chem. 2015, 181, 152–159. [Google Scholar] [CrossRef] [PubMed]
- United Nations Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 15 October 2023).
- Balabin, R.M.; Lomakina, E.I. Support Vector Machine Regression (SVR/LS-SVM)—An Alternative to Neural Networks (ANN) for Analytical Chemistry? Comparison of Nonlinear Methods on near Infrared (NIR) Spectroscopy Data. Analyst 2011, 136, 1703–1712. [Google Scholar] [CrossRef] [PubMed]
- Pissard, A.; Marques, E.J.N.; Dardenne, P.; Lateur, M.; Pasquini, C.; Pimentel, M.F.; Fernández Pierna, J.A.; Baeten, V. Evaluation of a Handheld Ultra-Compact NIR Spectrometer for Rapid and Non-Destructive Determination of Apple Fruit Quality. Postharvest Biol. Technol. 2021, 172, 111375. [Google Scholar] [CrossRef]
- Malegori, C.; Nascimento Marques, E.J.; de Freitas, S.T.; Pimentel, M.F.; Pasquini, C.; Casiraghi, E. Comparing the Analytical Performances of Micro-NIR and FT-NIR Spectrometers in the Evaluation of Acerola Fruit Quality, Using PLS and SVM Regression Algorithms. Talanta 2017, 165, 112–116. [Google Scholar] [CrossRef]
- Tange, R.; Rasmussen, M.A.; Tairac, E.; Bro, R. Application of Support Vector Regression for Simultaneous Modelling of near Infrared Spectra from Multiple Process Steps. J. Near Infrared Spectrosc. 2015, 23, 75–84. [Google Scholar] [CrossRef]
- Thissen, U.; Pepers, M.; Üstün, B.; Melssen, W.J.; Buydens, L.M.C. Comparing Support Vector Machines to PLS for Spectral Regression Applications. Chemom. Intell. Lab. Syst. 2004, 73, 169–179. [Google Scholar] [CrossRef]
- Galvez-Sola, L.; Moral, R.; Perez-Murcia, M.D.; Perez-Espinosa, A.; Bustamante, M.A.; Martinez-Sabater, E.; Paredes, C. The Potential of near Infrared Reflectance Spectroscopy (NIRS) for the Estimation of Agroindustrial Compost Quality. Sci. Total Environ. 2010, 408, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Vergnoux, A.; Guiliano, M.; Le Dréau, Y.; Kister, J.; Dupuy, N.; Doumenq, P. Monitoring of the Evolution of an Industrial Compost and Prediction of Some Compost Properties by NIR Spectroscopy. Sci. Total Environ. 2009, 407, 2390–2403. [Google Scholar] [CrossRef]
- Abid, W.; Ben Mahmoud, I.; Masmoudi, S.; Triki, M.A.; Mounier, S.; Ammar, E. Physico-Chemical and Spectroscopic Quality Assessment of Compost from Date Palm (Phoenix dactylifera L.) Waste Valorization. J. Environ. Manag. 2020, 264, 110492. [Google Scholar] [CrossRef] [PubMed]
- Sokač Cvetnić, T.; Krog, K.; Benković, M.; Jurina, T.; Valinger, D.; Radojčić Redovniković, I.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Application of Near-Infrared Spectroscopy for Monitoring and/or Control of Composting Processes. Appl. Sci. 2023, 13, 6419. [Google Scholar] [CrossRef]
- Rueda, M.P.; Comino, F.; Aranda, V.; Ayora-Cañada, M.J.; Domínguez-Vidal, A. Understanding the Compositional Changes of Organic Matter in Torrefied Olive Mill Pomace Compost Using Infrared Spectroscopy and Chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 293, 122450. [Google Scholar] [CrossRef]
- Pasquini, C. Near Infrared Spectroscopy: A Mature Analytical Technique with New Perspectives—A Review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhuang, X.; Shen, R.; Sang, M.; Meng, Z.; Cao, G.; Zang, H.; Nie, L. In Situ Rapid Evaluation Method of Quality of Peach Kernels Based on near Infrared Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 313, 124108. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.M.; Badaró, A.T.; Esquerre, C.A.; Kamruzzaman, M.; Barbin, D.F. Handheld and Benchtop Vis/NIR Spectrometer Combined with PLS Regression for Fast Prediction of Cocoa Shell in Cocoa Powder. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 298, 122807. [Google Scholar] [CrossRef] [PubMed]
- Mayr, S.; Beć, K.B.; Grabska, J.; Schneckenreiter, E.; Huck, C.W. Near-Infrared Spectroscopy in Quality Control of Piper Nigrum: A Comparison of Performance of Benchtop and Handheld Spectrometers. Talanta 2021, 223, 121809. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Siesler, H.W.; Huck, C.W. Handheld Near-Infrared Spectrometers: Where Are We Heading? NIR News 2020, 31, 28–35. [Google Scholar] [CrossRef]
- Barthès, B.G.; Kouakoua, E.; Clairotte, M.; Lallemand, J.; Chapuis-Lardy, L.; Rabenarivo, M.; Roussel, S. Performance Comparison between a Miniaturized and a Conventional near Infrared Reflectance (NIR) Spectrometer for Characterizing Soil Carbon and Nitrogen. Geoderma 2019, 338, 422–429. [Google Scholar] [CrossRef]
- Angeletti da Fonseca, A.; Pasquini, C.; Cristina Costa, D.; Mercês Barros Soares, E. Effect of the Sample Measurement Representativeness on Soil Carbon Determination Using Near-Infrared Compact Spectrophotometers. Geoderma 2022, 409, 115636. [Google Scholar] [CrossRef]
- Pierna, J.A.F.; Vermeulen, P.; Chamberland, N.; Decruyenaere, V.; Froidmont, E.; Minet, O.; Lecler, B.; Baeten, V. Performance of Three Handheld NIR Spectrometers for Predicting Grass Silage Quality. Biotechnol. Agron. Soc. Environ. 2022, 26, 309–318. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Kenney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Ballabio, C. Spatial Prediction of Soil Properties in Temperate Mountain Regions Using Support Vector Regression. Geoderma 2009, 151, 338–350. [Google Scholar] [CrossRef]
- Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J. Near Infrared Spectroscopy for Determination of Various Physical, Chemical and Biochemical Properties in Mediterranean Soils. Soil. Biol. Biochem. 2008, 40, 1923–1930. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Baumdicker, F.; Hölker, U. Method Comparison with Repeated Measurements—Passing–Bablok Regression for Grouped Data with Errors in Both Variables. Stat. Probab. Lett. 2020, 164, 108801. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. The Use of Elemental Sulphur as Organic Alternative to Control PH during Composting of Olive Mill Wastes. Chemosphere 2004, 57, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Paredes, C.; Roig, A.; Bernal, M.P.; Sánchez-Monedero, M.A.; Cegarra, J. Evolution of Organic Matter and Nitrogen during Co-Composting of Olive Mill Wastewater with Solid Organic Wastes. Biol. Fertil. Soils 2000, 32, 222–227. [Google Scholar] [CrossRef]
- BOE Real Decreto 999/2017, de 24 de Noviembre, Por El Que Se Modifica El Real Decreto 506/2013, de 28 de Junio, Sobre Productos Fertilizantes. Boletín Oficial del Estado 2017, 296, 119396–119450.
- Workman, J.; Weyer, L. Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Frizon, C.N.T.; Oliveira, G.A.; Perussello, C.A.; Peralta-Zamora, P.G.; Camlofski, A.M.O.; Rossa, Ü.B.; Hoffmann-Ribani, R. Determination of Total Phenolic Compounds in Yerba Mate (Ilex paraguariensis) Combining near Infrared Spectroscopy (NIR) and Multivariate Analysis. LWT Food Sci. Technol. 2015, 60, 795–801. [Google Scholar] [CrossRef]
- Durante, M.; Oesterheld, M.; Piñeiro, G.; Vassallo, M.M. Estimating Forage Quantity and Quality under Different Stress and Senescent Biomass Conditions via Spectral Reflectance. Int. J. Remote Sens. 2014, 35, 2963–2981. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Eiland, F.; Klamer, M.; Lind, A.-M.; Leth, M.; Bååth, E. Influence of Initial C/N Ratio on Chemical and Microbial Composition during Long Term Composting of Straw. Microb. Ecol. 2001, 41, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High Spectral Resolution Reflectance Spectroscopy of Minerals. J. Geophys. Res. Solid Earth 1990, 95, 12653–12680. [Google Scholar] [CrossRef]
- Hemidat, S.; Jaar, M.; Nassour, A.; Nelles, M. Monitoring of Composting Process Parameters: A Case Study in Jordan. Waste Biomass Valori 2018, 9, 2257–2274. [Google Scholar] [CrossRef]
- Weindorf, D.C.; Chakraborty, S.; Li, B.; Deb, S.; Singh, A.; Kusi, N.Y. Compost Salinity Assessment via Portable X-Ray Fluorescence (PXRF) Spectrometry. Waste Manag. 2018, 78, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Bertinetto, C.G.; Schoot, M.; Dingemans, M.; Meeuwsen, W.; Buydens, L.M.C.; Jansen, J.J. Influence of Measurement Procedure on the Use of a Handheld NIR Spectrophotometer. Food Res. Int. 2022, 161, 111836. [Google Scholar] [CrossRef] [PubMed]
Quality Parameters | Calibration Set (101 Samples) | Prediction Set (25 Samples) | ||
---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | |
pH | 5.3–9.8 | 7.3 ± 0.9 | 5.7–8.7 | 7.1 ± 0.9 |
EC25 (dS m−1) | 2.9–7.9 | 5.2 ± 0.8 | 2–8 | 5 ± 1 |
C/N | 15–36 | 22 ± 4 | 15–37 | 22 ± 6 |
LOI (%) | 62–87 | 76 ± 5 | 68–85 | 77 ± 4 |
PLS Model | SVM Model | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LVs | Rc2 | RMSEC | Rp2 | RMSEP | RPD | Bias | Rc2 | RMSEC | Rp2 | RMSEP | RPD | Bias | |
pH | 6 | 0.81 | 0.44 | 0.72 | 0.51 | 1.9 | 0.07 | 0.99 | 0.13 | 0.91 | 0.26 | 3.8 | 0.05 |
EC25 (dS m−1) | 7 | 0.88 | 0.39 | 0.85 | 0.48 | 2.4 | 0.2 | 0.89 | 0.38 | 0.79 | 0.55 | 2.1 | 0.1 |
C/N | 7 | 0.81 | 1.7 | 0.52 (0.78) | 3.8 (2.4) | 1.5 (2.5) | 0.4 (1.5) | 0.83 | 1.7 | 0.54 (0.78) | 3.7 (2.3) | 1.5 (2.5) | 0.5 (1) |
LOI (%) | 7 | 0.93 | 1.4 | 0.81 | 2.0 | 2.7 | −0.4 | 0.92 | 1.7 | 0.82 | 2.1 | 2.5 | −0.9 |
Sample Status–Mode | PLS Model | SVM Model | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LVs | Rc2 | RMSEC | Rp2 | RMSEP | RPD | Bias | Rc2 | RMSEC | Rp2 | RMSEP | RPD | Bias | ||
pH | FG-S | 5 | 0.58 | 0.66 | 0.46 | 0.70 | 1.4 | 0.18 | 0.77 | 0.49 | 0.51 | 0.61 | 1.6 | 0.01 |
I-S | 9 | 0.66 | 0.59 | 0.46 | 0.66 | 1.5 | 0.09 | 0.77 | 0.49 | 0.49 | 0.72 | 1.4 | 0.18 | |
I-R | 10 | 0.81 | 0.45 | 0.54 | 0.62 | 1.6 | 0.12 | 0.73 | 0.53 | 0.62 | 0.58 | 1.7 | 0.12 | |
EC25 (dS m−1) | FG-S | 5 | 0.64 | 0.67 | 0.69 | 0.56 | 2.1 | 0.15 | 0.71 | 0.62 | 0.69 | 0.61 | 2.0 | 0.30 |
I-S | 8 | 0.71 | 0.61 | 0.82 | 0.57 | 2.1 | 0.04 | 0.85 | 0.45 | 0.77 | 0.56 | 2.1 | 0.05 | |
I-R | 8 | 0.74 | 0.58 | 0.57 | 0.82 | 1.4 | −0.03 | 0.72 | 0.57 | 0.64 | 0.66 | 1.8 | 0.24 | |
C/N * | FG-S | 9 | 0.65 | 2.4 | 0.76 | 2.9 | 2.0 | 2.1 | 0.74 | 2.1 | 0.70 | 3.1 | 2.0 | 1.3 |
I-S | 7 | 0.62 | 2.5 | 0.53 | 2.8 | 2.4 | 1.4 | 0.66 | 2.4 | 0.55 | 2.6 | 2.2 | 1.0 | |
I-R | 9 | 0.66 | 2.2 | 0.54 | 2.4 | 2.4 | 1.4 | 0.55 | 2.4 | 0.57 | 1.7 | 3.4 | 0.19 | |
LOI (%) | FG-S | 9 | 0.63 | 3.4 | 0.48 | 3.9 | 1.3 | −2.1 | 0.83 | 2.3 | 0.57 | 3.5 | 1.5 | −1.6 |
I-S | 7 | 0.43 | 4.3 | 0.42 | 4.0 | 1.3 | −0.92 | 0.73 | 2.8 | 0.59 | 3.2 | 1.7 | −1.5 | |
I-S | 8 | 0.58 | 3.4 | 0.66 | 3.4 | 1.6 | −2.0 | 0.63 | 3.2 | 0.52 | 3.4 | 1.6 | −2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
P. Rueda, M.; Domínguez-Vidal, A.; Aranda, V.; Ayora-Cañada, M.J. Monitoring the Composting Process of Olive Oil Industry Waste: Benchtop FT-NIR vs. Miniaturized NIR Spectrometer. Agronomy 2024, 14, 3061. https://doi.org/10.3390/agronomy14123061
P. Rueda M, Domínguez-Vidal A, Aranda V, Ayora-Cañada MJ. Monitoring the Composting Process of Olive Oil Industry Waste: Benchtop FT-NIR vs. Miniaturized NIR Spectrometer. Agronomy. 2024; 14(12):3061. https://doi.org/10.3390/agronomy14123061
Chicago/Turabian StyleP. Rueda, Marta, Ana Domínguez-Vidal, Víctor Aranda, and María José Ayora-Cañada. 2024. "Monitoring the Composting Process of Olive Oil Industry Waste: Benchtop FT-NIR vs. Miniaturized NIR Spectrometer" Agronomy 14, no. 12: 3061. https://doi.org/10.3390/agronomy14123061
APA StyleP. Rueda, M., Domínguez-Vidal, A., Aranda, V., & Ayora-Cañada, M. J. (2024). Monitoring the Composting Process of Olive Oil Industry Waste: Benchtop FT-NIR vs. Miniaturized NIR Spectrometer. Agronomy, 14(12), 3061. https://doi.org/10.3390/agronomy14123061