Yield Responses to Total Water Input from Irrigation and Rainfall in Six Wheat Cultivars Under Different Climatic Zones in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites, Experimental Set-Up, Cultivars and Measurements of Agronomic/Morphological Traits
2.2. Measurements of Agronomic and Morphological Traits
2.3. Daily Weather Records
2.4. Data Analysis
2.4.1. Analysis of Variance for Agronomic and Morphologic Traits
2.4.2. Determination of Relationships Between Grain/Above-Ground Biomass Yield and Total Seasonal Water Input
2.4.3. Grain Yield Stability Analysis
3. Results
3.1. Aggregated Weather and Total Seasonal Water Input in Each Irrigation Treatment
3.2. Effect of Cropping Season, Irrigation Times and Cultivar on Agronomic/Morphological Traits
3.2.1. Days to Heading and Maturity
3.2.2. Plant Height (cm)
3.2.3. Flag Leaf Area (cm2)
3.2.4. Spikes per Square Metre
3.2.5. Number of Kernels per Spike
3.2.6. Thousand Grain Weight (1000 GWT, g)
3.2.7. Grain Yield per Harvested Plot Area (kg/2.8 m2)
3.2.8. Above-Ground Biomass Yield per Harvested Plot Area (kg/2.8 m2)
3.2.9. Correlation of Grain Yield with Other Agronomic and Morphological Traits
3.3. Grain Yield Response to Total Water Input
3.4. Abov-Ground Biomass Yield Response to Total Water Input
3.5. Grain Yield Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sewore, B.M.; Abe, A.; Nigussie, M. Evaluation of bread wheat genotypes for drought tolerance using morpho-physiological traits under drought stressed and well-watered conditions. PLoS ONE 2023, 18, e0283347. [Google Scholar] [CrossRef] [PubMed]
- Asseng, S.; Kheir, A.M.; Kassie, B.T.; Hoogenboom, G.; Abdelaal, A.I.; Haman, D.Z.; Ruane, A.C. Can Egypt become self-sufficient in wheat? Environ. Res. Lett. 2018, 13, 094012. [Google Scholar] [CrossRef]
- Daher, R. Beyond scarcity: An assessment of water management in Egypt from a political ecology perspective. Hung. J. Afr. Stud. 2022, 16, 21–27. [Google Scholar] [CrossRef]
- Kheir, A.M.; Hoogenboom, G.; Ammar, K.A.; Ahmed, M.; Feike, T.; Elnashar, A.; Liu, B.; Ding, Z.; Asseng, S. Minimizing trade-offs between wheat yield and resource-use efficiency in the Nile Delta—A multi-model analysis. Field Crops Res. 2022, 287, 108638. [Google Scholar] [CrossRef]
- Nikiel, C.A.; Eltahir, E.A.B. Past and future trends of Egypt’s water consumption and its sources. Nat. Commun. 2021, 12, 4508. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Abuaraba, M.E.; Mehawed, H.S.; Kasem, M.A. Water footprint as a tool of water resources management—Review. Egypt. J. Chem. 2021, 64, 7331–7338. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S. Climatic zonation of Egypt based on high-resolution dataset using image clustering technique. Prog. Earth Planet. Sci. 2022, 9, 35. [Google Scholar] [CrossRef]
- Satoh, M.; Aboulroos, S.A. Irrigated Agriculture in Egypt: Past, Present and Future; Satoh, M., Aboulroos, S.A., Eds.; Springer Nature: Cham, Switzerland, 2017. [Google Scholar]
- Saleh, E.M.A. Can irrigation water saving options cope with water scarcity in Egypt? Environ. Sci. Agric. Food Sci. 2020, 6, 167–176. [Google Scholar]
- El-Bendary, N.; Elhariri, E.; Hazman, M.; Saleh, S.M.; Hassanien, A.E. Cultivation time recommender system based on climatic conditions for newly reclaimed lands in Egypt. Procedia Comput. Sci. 2016, 96, 110–119. [Google Scholar] [CrossRef]
- Gamal, R.; Abou-Hadid, A.F.; Omar, M.E.D.; Elbana, M. Does climate change affect wheat productivity and water demand in arid regions? Case study of Egypt. J. Agric. Food Res. 2024, 16, 101181. [Google Scholar] [CrossRef]
- Satoh, M.; Gamal, T.E.; Taniguchi, T.; Yuan, X.; Ishii, A.; Hassan, W.H.A.E. Chapter 8. Water Management in the Nile Delta. In Irrigated Agriculture in Egypt: Past, Present and Future; Satoh, M., Aboulroos, S.A., Eds.; Springer Nature: Cham, Switzerland, 2017; pp. 188–224. [Google Scholar]
- Abdalla, A.; Stellmacher, T.; Becker, M. Trends and prospects of change in wheat self-sufficiency in Egypt. Agriculture 2023, 13, 7. [Google Scholar] [CrossRef]
- Abdelmageed, K.; Chang, X.H.; Wang, D.M.; Wang, Y.J.; Yang, Y.S.; Zhao, G.C.; Tao, Z.Q. Evolution of varieties and development of production technology in Egypt wheat: A review. J. Integr. Agric. 2019, 18, 483–495. [Google Scholar] [CrossRef]
- Almas, L.K.; Usman, M. Determinants of wheat consumption, irrigated agriculture, and food security challenges in Egypt. WSEAS Trans. Environ. Dev. 2021, 17, 696–712. [Google Scholar] [CrossRef]
- Hussien, A.I.A. An economic study of the most important problems of Egyptian agriculture. Int. J. Mod. Agric. Environ. 2022, 2, 73–95. [Google Scholar]
- Tellioglu, I.; Konandreas, P. Agricultural Policies, Trade and Sustainable Development in Egypt; International Centre for Trade and Sustainable Development, United Nations Food Agric Organ (FAO): Rome, Italy, 2017. [Google Scholar]
- El Afandi, G.; Abdrabbo, M.A.A. Evaluation of reference evapotranspiration equations under current climate conditions of Egypt. Turkish J. Agric.—Food Sci. Technol. 2015, 3, 819–825. [Google Scholar] [CrossRef]
- Ouda, S.A.H.; Noreldin, T.A. Evapotranspiration data to determine agro-climatic zones in Egypt. J. Water Land Dev. 2017, 32, 79–86. [Google Scholar] [CrossRef]
- Farag, A.A.; Abdrabbo, M.A.A.; El Sharkawi, H.M.; Abou-Hadid, A.F. Comparison between SERE and RCP scenarios in temperature and evapotranspiration under different climate zone in Egypt. IOSR J. Environ. Sci. Toxicol. Food Technol. 2016, 10, 54–64. [Google Scholar]
- Swelam, A.; Farag, A.; Ramasamy, S.; Ghandour, A. Effect of climate variability on water footprint of some grain crops under different agro-climatic regions of Egypt. Atmosphere 2022, 13, 1180. [Google Scholar] [CrossRef]
- Abdrabbo, M.A.; Farag, A.A.; El-Desokey, W.M.S. Implementing of RCPs scenarios for the prediction of evapotranspiration in Egypt. Int. J. Plant Soil Sci. 2015, 6, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Farag, A.A.; Abdrabbo, M.A.A.; Ahmed, M.S.M. GIS tool for distribution reference evapotranspiration under climate change in Egypt. Int. J. Plant Soil Sci. 2014, 3, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.A. Effect of climate change on evapotranspiration in Egypt. Researcher 2013, 5, 7–12. [Google Scholar]
- Khalil, A.A.; Essa, Y.H.; Hashem, F.A.; Refaie, K.M. Water consumption variability for major crops in Egypt under climate change conditions. Int. J. Adv. Res. 2016, 4, 1157–1168. [Google Scholar]
- Abdel-Latif, I.S.M.; EL-Kader, M.N.T.; Gebreel, M. Effect of irrigation level and seed rate on wheat productivity. Egypt. J. Plant Breed. 2023, 27, 419–442. [Google Scholar]
- Abdrabbo, M.A.; Saleh, S.M.; Farag, A.A. Water requirements for maize under climate change. J. Appl. Sci. Res. 2016, 12, 19–28. [Google Scholar]
- Abdrabbo, M.A.; Ouda, S.; Noreldin, T. Modeling the irrigation schedule on wheat under climate change conditions. Nat. Sci. 2013, 11, 10–18. [Google Scholar]
- Ouda, S.A.H.; Zohry, A.E.-H.; Alkitkat, H.; Morsy, M.; Tarek, S.; Kamel, A. Obstacles and Opportunities. In Future of Food Gaps in Egypt; Springer Nature: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ouda, S.; Noreldin, T.; Zohry, A.H. Chapter 4. Field Crops and Deficit Irrigation in Egypt. In Deficit Irrigation: A Remedy for Water Scarcity; Ouda, S., Zohry, A.E.-H., Noreldin, T., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 59–84. [Google Scholar]
- Ouda, S.; Noreldin, T. Chapter 2. Deficit Irrigation and Water Conservation. In Deficit Irrigation: A Remedy for Water Scarcity; Ouda, S., Zohry, A.E.-H., Noreldin, T., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 15–28. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Hargreaves, G.H. Moisture availability and crop production. Trans. ASAE 1975, 18, 980–984. [Google Scholar] [CrossRef]
- Eberhart, S.A.; Russell, W.A. Stability parameters for comparing varieties. Crop Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef]
- Finlay, K.W.; Wilkinson, G.N. The analysis of adaptation in a plant breeding programme. Aust. J. Agric. Res. 1963, 14, 742–754. [Google Scholar] [CrossRef]
- El-Marsafawy, S.M.; Mohamed, A.I. Water footprint of Egyptian crops and its economics. Alex. Eng. J. 2021, 60, 4711–4721. [Google Scholar] [CrossRef]
- El-Fetyany, M.; Farag, H.; Abd El Ghany, S.H. Assessment of national water footprint versus water availability—Case study for Egypt. Alex. Eng. J. 2021, 60, 3577–3585. [Google Scholar] [CrossRef]
- Al-Otayk, S.M.; AL-Soqeer, A.A.; Menshawy, A.E.M.; Motawei, M.I. Evaluation of some bread wheat genotypes popular in Saudi Arabia under drought stress. Aust. J. Crop Sci. 2019, 13, 1892–1900. [Google Scholar] [CrossRef]
- Darwish, M.A.; Elkot, A.F.; Elfanah, A.M.S.; Selim, A.I.; Yassin, M.M.M.; Abomarzoka, E.A.; El-Maghraby, M.A.; Rebouh, N.Y.; Ali, A.M. Evaluation of wheat genotypes under water regimes using hyperspectral reflectance and agro-physiological parameters via genotype by yield*trait approaches in Sakha station, Delta, Egypt. Agriculture 2023, 13, 1338. [Google Scholar] [CrossRef]
- Emam, M.A.; Abd EL-Mageed, A.M.; Niedbała, G.; Sabrey, S.A.; Fouad, A.S.; Kapiel, T.; Piekutowska, M.; Mahmoud, S.A. Genetic characterization and agronomic evaluation of drought tolerance in ten Egyptian wheat (Triticum aestivum L.) cultivars. Agronomy 2022, 12, 1217. [Google Scholar] [CrossRef]
- Hamada, A.; Said, M.T.; Ibrahim, K.M.; Saber, M.; Sayed, M.A. A predictive study of the redistribution of some bread wheat genotypes in response to climate change in Egypt. Agronomy 2022, 12, 113. [Google Scholar] [CrossRef]
- Hernandez-Ochoa, I.M.; Luz Pequeno, D.N.; Reynolds, M.; Babar, M.A.; Sonder, K.; Milan, A.M.; Hoogenboom, G.; Robertson, R.; Gerber, S.; Rowland, D.L.; et al. Adapting irrigated and rainfed wheat to climate change in semi-arid environments: Management, breeding options and land use change. Eur. J. Agron. 2019, 109, 125915. [Google Scholar] [CrossRef]
- Ober, E.S.; Alahmad, S.; Cockram, J.; Forestan, C.; Hickey, L.T.; Kant, J.; Maccaferri, M.; Marr, E.; Milner, M.; Pinto, F.; et al. Wheat root systems as a breeding target for climate resilience. Theor. Appl. Genet. 2021, 134, 1645–1662. [Google Scholar] [CrossRef]
- Elhag, D.A.A. Effect of irrigations number on yield and yield components of some bread wheat cultivars in North Nile Delta of Egypt. Egypt. J. Agron. 2017, 39, 137–148. [Google Scholar] [CrossRef]
- Elkot, A.F.; Ibrahim, S.D.; Hamada, A.; Ahmed, E.G.; Ibrahim, A.R.; El-Maghraby, M.A.; Gill, K. Molecular characterization and evaluation of different irrigation regimens on yield and other agronomic traits of some Egyptian wheat cultivars. J. Crop Improv. 2024, 38, 488–512. [Google Scholar] [CrossRef]
- Eser, C.; Soylu, S.; Ozkan, H. Drought responses of traditional and modern wheats in different phenological stages. Field Crops Res. 2024, 305, 109201. [Google Scholar] [CrossRef]
- Farhat, W.Z.E. Response of 21 spring bread wheat genotypes to normal and reduced irrigation in North Delta. J. Plant Prod. Mansoura Univ. 2015, 6, 943–963. [Google Scholar] [CrossRef]
- Gab Alla, M.M.M.; Abdelkhalek, A.A.; Neiven, L.E.; Sahar, A.F. Response of some bread wheat genotypes to less irrigation water. J. Plant Prod. 2019, 10, 917–927. [Google Scholar] [CrossRef]
- Mohiy, M.M.; Mohamed, M.; Alla, M.M.M.G. Effect of reduced irrigation on productivity and behavior of twenty bread wheat genotypes under Upper Egypt conditions. Egypt. J. Plant Breed. 2022, 25, 277–297. [Google Scholar]
- Maqbool, M.M.; Ali, A.; Haq, T.; Majeed, M.N.; Lee, D.J. Response of spring wheat (Triticum aestivum L.) to induced water stress at critical growth stages. Sarhad J. Agric. 2015, 31, 53–58. [Google Scholar]
- Poudel, M.R.; Ghimire, S.; Pandy, M.P.; Dhakal, K.; Thapa, D.B.; Poudel, H.K. Evaluation of wheat genotypes under irrigated, heat stress and drought conditions. J. Biol. Today’s World 2020, 9, 001–003. [Google Scholar]
- Ramunaidu, P.V.S.; Sekhar, D.; Sowjanya, A.; Srinivas, D.; Pavankumar, P.; Babu, P. Yield attributes and yield of wheat affected by irrigation schedules and varieties under HAT zone conditions of Andhra Pradesh, India. Int. J. Environ. Clim. Change 2023, 13, 2819–2828. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. 30 years of free-air carbon enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 2021, 27, 27–49. [Google Scholar] [CrossRef]
- Gamal, G.; Samak, M.; Shahba, M. The possible impacts of different global warming levels on major crops in Egypt. Atmosphere 2021, 12, 1589. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Ragab, R.; Rakibuzzaman, M.; Khan, A.I.; Zhao, J.; Akbar, N. Climate change impacts on future wheat (Triticum aestivum) yield, growth periods and irrigation requirements: A SALTMED model simulations analysis. Agronomy 2024, 14, 1484. [Google Scholar] [CrossRef]
- Karrou, M.; Oweis, T.; Abou El Enein, R.; Sherif, M. Yield and water productivity of maize and wheat under deficit and raised bed irrigation practices in Egypt. African J. Agric. Res. 2012, 7, 1755–1760. [Google Scholar]
- Si, Z.; Qin, A.; Liang, Y.; Duan, A.; Gao, Y. A review on regulation of irrigation management on wheat physiology, grain yield, and quality. Plants 2023, 12, 692. [Google Scholar] [CrossRef]
- Singh, S.; Singh, V.; Pal, R.; Trivedi, H.; Narayan, A.; Gautam, M. Effect of sowing methods and irrigation levels on wheat (Triticum aestivum L.). Ecol. Environ. Conserv. 2023, 29, S170–S176. [Google Scholar] [CrossRef]
- Sugita, M.; Matsuno, A.; El-Kilanic, R.M.M.; Abdel-Fattahe, A.; Mahmoud, M.A. Crop evapotranspiration in the Nile Delta under different irrigation methods. Hydrol. Sci. J. 2017, 62, 1618–1635. [Google Scholar] [CrossRef]
- Kheir, A.M.; Alrajhi, A.A.; Ghoneim, A.M.; Ali, E.F.; Magrashi, A.; Zoghdan, M.G.; Abdelkhalik, S.A.; Fahmy, A.E.; Elnashar, A. Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions. Agric. Water Manag. 2021, 256, 107122. [Google Scholar] [CrossRef]
- Ouda, S.; Noreldin, T.; Alarcón, J.J.; Ragab, R.; Caruso, G.; Sekara, A.; Abdelhamid, M.T. Response of spring wheat (Triticum aestivum) to deficit irrigation management under the semi-arid environment of Egypt: Field and modeling study. Agriculture 2021, 11, 90. [Google Scholar] [CrossRef]
- Zaman, E.; Karim, M.A.; Bari, M.N.; Akter, N.; Ahmed, J.U. Growth and yield performance of selected wheat varieties under water deficit conditions. Bangladesh J. Sci. Res. 2016, 29, 163–172. [Google Scholar] [CrossRef]
- Yigezu, Y.A.; Abbas, E.; Swelam, A.; Sabry, S.R.S.; Moustafa, M.A.; Halila, H. Socioeconomic, biophysical, and environmental impacts of raised beds in irrigated wheat—A case study from Egypt. Agric. Water Manag. 2021, 249, 10680. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, A.; Zhang, P.; Deng, X.; Gu, X. Are water use efficiency and effectiveness relatively lower in arid zones? Comparative analyses of the water productivity of typical crops. Agronomy 2024, 14, 2153. [Google Scholar] [CrossRef]
- Feng, T.; Shen, H.; Yang, X.; Nianga, J.-M.; Wang, Z. Integration of large language models with IoT in smart agriculture to improve efficiency, yield, and quality. Ind. Sci. Eng. 2024, 1, 15–35. [Google Scholar] [CrossRef]
- Hachisuca, A.M.M.; Abdala, M.C.; de Souza, E.G.; Rodrigues, M.; Ganascini, D.; Bazzi, C.L. Growing degree-hours and degree-days in two management zones for each phenological stage of wheat (Triticum aestivum L.). Int. J. Biometeorol. 2023, 67, 1169–1183. [Google Scholar] [CrossRef]
- Ober, E.S.; Howell, P.; Thomelin, P.; Kouidri, A. The importance of accurate developmental staging. J. Exp. Bot. 2020, 71, 3375–3379. [Google Scholar] [CrossRef]
- Ouda, S.A.E.-F.; Khalil, F.A.; Elenin, R.A.; Shreif, M.A.K.; Benli, B.; Qadir, M. Using yield-stress model in irrigation management for wheat grown in Egypt. J. Appl. Biol. Sci. 2008, 2, 57–65. [Google Scholar]
- You, Y.; Song, P.; Yang, X.; Zheng, Y.; Dong, L.; Chen, J. Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment. Agric. Water Manag. 2022, 273, 107901. [Google Scholar] [CrossRef]
- Darouich, H.; Cameira, M.R.; Gonçalves, J.M.; Paredes, P.; Pereira, L.S. Comparing sprinkler and surface irrigation for wheat using multi-criteria analysis: Water saving vs. economic returns. Water 2017, 9, 50. [Google Scholar] [CrossRef]
- Davarpanah, R.; Ahmadi, S.H. Modeling the effects of irrigation management scenarios on winter wheat yield and water use indicators in response to climate variations and water delivery systems. J. Hydrol. 2021, 598, 126269. [Google Scholar] [CrossRef]
- Hassanein, M.K.; Elsayed, M.; Khalil, A.A. Impacts of sowing date, cultivar, irrigation regimes and location on bread wheat production in Egypt under climate change conditions. Nat. Sci. 2012, 10, 141–150. [Google Scholar]
- Lal, D.; Niwas, R. Yield predication by DSSAT model of wheat crop: A review. Int. J. Environ. Clim. Change 2024, 14, 519–524. [Google Scholar] [CrossRef]
- Toumi, J.; Er-Raki, S.; Ezzahar, J.; Khabba, S.; Jarlan, L.; Chehbouni, A. Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agric. Water Manag. 2016, 163, 219–235. [Google Scholar] [CrossRef]
- Mohamed, N.S.; Sathyamoorthy, N.K.; Dheebakaran, G.; Pazhanivelan, S.; Vadivel, N. Coupled weather and crop simulation modeling for smart irrigation planning: A review. Water Supply 2024, 24, 2844–2865. [Google Scholar]
Location * | Latitude | Longitude | Altitude | Soil Type | SAWC | Sowing Date |
---|---|---|---|---|---|---|
Nubaria | 30.69 N | 30.66 E | 54 | Loamy sand | 12 | 05-Dec-2019 |
Loamy sand | 13 | 25-Nov-2020 | ||||
Sids | 29.07 N | 31.09 E | 18 | Clay | 19 | 01-Dec-2019 |
Clay | 18 | 25-Nov-2020 | ||||
Al Mataenah | 25.30 N | 32.55 E | 82 | Clay loam | 18 | 25-Nov-2020 |
Clay loam | 18 | 27-Nov-2021 | ||||
Ismailia | 30.61 N | 32.28 E | 5 | Sandy soil | 12 | 13-Dec-2020 |
Sandy soil | 12 | 21-Nov-2021 |
Cultivar | Cross/Pedigree and Selection History | Release Year |
---|---|---|
Sids 1 | HD2172/Pavon “S”//1158.57/Maya 74 “S” Sd46-4Sd-2Sd-1Sd-0Sd | 1996 |
Sids 14 | BOW “S”/VEE “S”//BOW “S”/TSI/3/BANI SEWEF 1 SD293-1SD-2SD-4SD-0SD | 2015 |
Sakha 94 | Opata/Rayon//Kauz CMBW90Y3180-0TOPM-3Y-010M-010M-010Y-10M-015Y-0Y-0AP-0S | 2004 |
Sakha 95 | PASTOR//SITE/MO/3/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/4/WBLL1 CMA01Y00158S-040POY-040M-030ZTM-040SY-26M-0Y-0SY-0S | 2019 |
Gemmiza 12 | Bow “s”/Kvz “s”//7C/Seri 82/3/Giza 168/Sakha61 GM 7892-2GM-1GM-2GM-1GM-0GM | 2011 |
Shandaweel 1 | Site/Mo/4/Nac/Th.Ac//3* Pvn/3/Mirlo/Buc CMSS93B00567S-72Y-010M-010Y-010M-3Y-0M-0THY-0SH | 2011 |
Days After Sowing | Irrigation Timing | ||||
---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | |
0 | 1st | 1st | 1st | 1st | 1st |
20 | 2nd | 2nd | |||
40 | 3rd | 3rd | 2nd | 2nd | 2nd |
60 | 4th | ||||
80 | 5th | 4th | 3rd | 3rd | |
110 | 6th | 5th | 4th |
Location | Sowing Date | Tmax (°C) | Tmin (°C) | Tave (°C) | Radiation (MJ) | Rainfall (mm) | Humidity (%) | Wind Speed (m s−1) | ETo (mm) |
---|---|---|---|---|---|---|---|---|---|
Nubaria | 05-Dec-2019 | 22.1 | 12.7 | 17.4 | 3535.8 | 288.0 | 68.8 | 3.5 | 700.6 |
25-Nov-2020 | 23.6 | 13.3 | 18.4 | 3717.9 | 264.1 | 65.7 | 3.1 | 757.3 | |
Sids | 01-Dec-2019 | 24.4 | 10.2 | 17.3 | 3731.0 | 100.8 | 54.4 | 2.9 | 746.3 |
25-Nov-2020 | 26.7 | 11.4 | 19.1 | 3910.1 | 29.9 | 45.7 | 2.9 | 817.2 | |
Al Mataenah | 25-Nov-2020 | 29.8 | 12.4 | 21.1 | 4169.6 | 0.8 | 30.8 | 2.8 | 916.4 |
27-Nov-2021 | 28.0 | 11.6 | 19.8 | 3915.9 | 5.6 | 33.8 | 3.0 | 836.3 | |
Ismailia | 13-Dec-2020 | 27.0 | 11.5 | 19.3 | 3351.7 | 81.6 | 57.5 | 2.5 | 706.9 |
21-Nov-2021 | 24.9 | 10.7 | 17.8 | 3288.9 | 22.0 | 56.4 | 2.7 | 670.6 |
Site | Sowing Date | Rainfall (mm) | Irrigation Treatment | Irrigation (mm) | Total Water Input (mm) |
---|---|---|---|---|---|
Nubaria | 05-Dec-2019 | 195.4 | T1 | 524.0 | 719.4 |
T2 | 414.0 | 609.4 | |||
T3 | 321.0 | 516.4 | |||
T4 | 242.0 | 437.4 | |||
T5 | 184.0 | 379.4 | |||
25-Nov-2020 | 264.1 | T1 | 574.0 | 838.1 | |
T2 | 450.0 | 714.1 | |||
T3 | 355.0 | 619.1 | |||
T4 | 278.0 | 542.1 | |||
T5 | 210.0 | 474.1 | |||
Sids | 01-Dec-2019 | 100.7 | T1 | 600.0 | 700.7 |
T2 | 510.0 | 610.7 | |||
T3 | 410.0 | 510.7 | |||
T4 | 300.0 | 400.7 | |||
T5 | 210.0 | 310.7 | |||
25-Nov-2020 | 29.6 | T1 | 640.0 | 669.6 | |
T2 | 520.0 | 549.6 | |||
T3 | 420.0 | 449.6 | |||
T4 | 330.0 | 359.6 | |||
T5 | 220.0 | 249.6 | |||
Al Mataenah | 25-Nov-2020 | 0.8 | T1 | 614.0 | 614.8 |
T2 | 511.0 | 511.8 | |||
T3 | 416.0 | 416.8 | |||
T4 | 388.0 | 388.8 | |||
T5 | 221.0 | 221.8 | |||
27-Nov-2021 | 5.6 | T1 | 621.1 | 626.7 | |
T2 | 516.4 | 522.0 | |||
T3 | 416.4 | 422.0 | |||
T4 | 306.8 | 312.4 | |||
T5 | 209.2 | 214.8 | |||
Ismailia | 13-Dec-2020 | 81.6 | T1 | 615.5 | 697.1 |
T2 | 482.6 | 564.2 | |||
T3 | 354.8 | 436.4 | |||
T4 | 295.0 | 376.6 | |||
T5 | 189.0 | 270.6 | |||
21-Nov-2021 | 22.0 | T1 | 439.0 | 461.0 | |
T2 | 394.0 | 416.0 | |||
T3 | 340.0 | 362.0 | |||
T4 | 287.0 | 309.0 | |||
T5 | 214.0 | 236.0 |
Location | Cultivar | Location Mean | |||||
---|---|---|---|---|---|---|---|
Gemmiza 12 | Sakha 94 | Sakha 95 | Shandaweel 1 | Sids 1 | Sids 14 | ||
Al Mataenah | 9211.9 | 9341.7 | 9579.8 | 9950.0 | 9467.9 | 9204.8 | 9459.3 |
Ismailia | 3893.2 | 4359.6 | 4324.0 | 4534.0 | 3889.4 | 4637.7 | 4273.0 |
Nubaria | 5692.9 | 6263.1 | 6525.0 | 6160.1 | 5354.8 | 6744.0 | 6123.3 |
Sids | 10,624.8 | 9833.7 | 9240.8 | 11,061.8 | 10,415.0 | 10,191.8 | 10,228.0 |
Cultivar mean | 7355.7 | 7449.5 | 7417.4 | 7926.5 | 7281.8 | 7694.6 |
Trait | Cultivar | |||||
---|---|---|---|---|---|---|
Gemmiza 12 | Sakha 94 | Sakha 95 | Shandaweel 1 | Sids 1 | Sids 14 | |
Days to heading | 0.51 | 0.52 | 0.48 | 0.53 | 0.55 | 0.52 |
Days to maturity | 0.44 | 0.47 | 0.45 | 0.43 | 0.47 | 0.44 |
Plant height (cm) | 0.58 | 0.63 | 0.63 | 0.61 | 0.64 | 0.67 |
Flag leaf area (cm2) | 0.57 | 0.46 | 0.61 | 0.53 | 0.56 | 0.54 |
Spikes per m2 | 0.19 | 0.05 | 0.09 | 0.13 | 0.11 | 0.15 |
Kernels per spike | 0.35 | 0.49 | 0.25 | 0.39 | 0.34 | 0.36 |
1000 GWT (g) | 0.61 | 0.67 | 0.66 | 0.73 | 0.60 | 0.70 |
Grain yield (kg/2.8 m2) | 0.34 | 0.42 | 0.35 | 0.36 | 0.26 | 0.46 |
Above-ground biomass yield (kg/2.8 m2) | 0.38 | 0.33 | 0.35 | 0.37 | 0.26 | 0.46 |
Trait | Cultivar | |||||
---|---|---|---|---|---|---|
Gemmiza 12 | Sakha 94 | Sakha 95 | Shandaweel 1 | Sids 1 | Sids 14 | |
Days to heading | 0.19 | −0.01 | −0.07 | 0.10 | −0.06 | 0.14 |
Days to maturity | 0.40 | 0.22 | 0.11 | 0.26 | 0.20 | 0.27 |
Plant height (cm) | 0.74 | 0.72 | 0.71 | 0.69 | 0.48 | 0.63 |
Flag leaf area (cm2) | 0.23 | 0.32 | 0.63 | 0.21 | 0.01 | 0.31 |
Spikes per m2 | 0.75 | 0.62 | 0.64 | 0.69 | 0.76 | 0.63 |
Kernels per spike | 0.79 | 0.81 | 0.64 | 0.73 | 0.79 | 0.77 |
1000 GWT (g) | 0.28 | 0.59 | 0.42 | 0.44 | 0.56 | 0.46 |
Above-ground biomass yield (kg/2.8 m2) | 0.87 | 0.83 | 0.84 | 0.85 | 0.84 | 0.85 |
Location | Cultivar | Intercept | Slope | R2 (%) | Significant Probability |
---|---|---|---|---|---|
Nubaria | Gemmiza 12 | 2744 | 5.04 | 30.1 | p < 0.06 |
Sakha 94 | 3327 | 5.02 | 47.9 | p < 0.02 | |
Sakha 95 | 4862 | 2.84 | 19.6 | p < 0.11 | |
Shandaweel 1 | 2857 | 5.65 | 52.9 | p < 0.01 | |
Sids 1 | 3447 | 3.26 | 37.2 | p < 0.04 | |
Sids 14 | 4400 | 4.01 | 62.9 | p < 0.01 | |
Al Mataenah | Gemmiza 12 | 4097 | 12.03 | 80.6 | p < 0.01 |
Sakha 94 | 4098 | 12.33 | 78.1 | p < 0.01 | |
Sakha 95 | 5015 | 10.74 | 84.7 | p < 0.01 | |
Shandaweel 1 | 5768 | 9.84 | 82.8 | p < 0.01 | |
Sids 1 | 4097 | 12.63 | 69.7 | p < 0.01 | |
Sids 14 | 3580 | 13.23 | 93.7 | p < 0.01 | |
Ismailia | Gemmiza 12 | −500 | 10.64 | 65.4 | p < 0.01 |
Sakha 94 | −699 | 12.25 | 71.3 | p < 0.01 | |
Sakha 95 | −201 | 10.96 | 74.7 | p < 0.01 | |
Shandaweel 1 | −786 | 12.88 | 78.7 | p < 0.01 | |
Sids 1 | −141 | 9.67 | 66.4 | p < 0.01 | |
Sids 14 | −867 | 13.33 | 75.3 | p < 0.01 | |
Sids * | Sakha 94 | 5655 | 8.68 | 37.7 | p < 0.04 |
Sakha 95 | 7307 | 4.02 | 3.1 | p < 0.28 | |
Shandaweel 1 | 6552 | 9.37 | 67.2 | p < 0.01 | |
Sids 14 | 6687 | 7.28 | 45.8 | p < 0.02 |
Location | Cultivar | Intercept | Slope | R2 (%) | Significant Probability |
---|---|---|---|---|---|
Nubaria | Gemmiza 12 | 11,488 | 9.25 | 26.3 | p < 0.07 |
Sakha 94 | 15,732 | 4.47 | 24.1 | p < 0.08 | |
Sakha 95 | 14,943 | 7.65 | 42.1 | p < 0.03 | |
Shandaweel 1 | 12,699 | 9.49 | 40.6 | p < 0.03 | |
Sids 1 | 12,348 | 6.85 | 30.6 | p < 0.06 | |
Sids 14 | 15,674 | 7.17 | 28.2 | p < 0.07 | |
Al Mataenah | Gemmiza 12 | 12,271 | 37.44 | 81.8 | p < 0.01 |
Sakha 94 | 15,480 | 32.33 | 78.6 | p < 0.01 | |
Sakha 95 | 15,937 | 32.57 | 85.3 | p < 0.01 | |
Shandaweel 1 | 16,122 | 30.97 | 89.4 | p < 0.01 | |
Sids 1 | 15,626 | 32.88 | 69.7 | p < 0.01 | |
Sids 14 | 12,448 | 36.27 | 92.7 | p < 0.01 | |
Ismailia | Gemmiza 12 | −3534 | 38.39 | 93.3 | p < 0.01 |
Sakha 94 | −2941 | 40.63 | 88.1 | p < 0.01 | |
Sakha 95 | −1621 | 34.60 | 90.2 | p < 0.01 | |
Shandaweel 1 | −2074 | 37.42 | 90.1 | p < 0.01 | |
Sids 1 | −2170 | 35.76 | 83.2 | p < 0.01 | |
Sids 14 | −3559 | 40.88 | 95.8 | p < 0.01 | |
Sids * | Gemmiza 12 | 14,421 | 15.63 | 47.1 | p < 0.02 |
Sakha 94 | 16,285 | 9.18 | 28.2 | p < 0.07 | |
Sakha 95 | 14,441 | 9.76 | 23.7 | p < 0.09 | |
Shandaweel 1 | 15,016 | 15.35 | 68.6 | p < 0.01 | |
Sids 1 | 17,503 | 8.10 | 15.2 | p < 0.15 |
Cultivar | Grain Yield (kg/ha) | βi | S2di | R2(%) |
Gemmiza 12 | 7355.7 | 1.0788 | 429,415 | 95.7 |
Sakha 94 | 7449.5 | 0.9768 | 296,957 | 96.4 |
Sakha 95 | 7417.4 | 0.8705 | 594,018 | 91.5 |
Shandaweel 1 | 7926.5 | 1.0749 | 210,918 | 97.9 |
Sids 1 | 7281.8 | 1.0717 | 400,651 | 95.9 |
Sids 14 | 7694.6 | 0.9273 | 331,070 | 95.5 |
Overall mean | 7520.9 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkot, A.F.; Shabana, Y.; Elsayed, M.L.; Saleh, S.M.; Gadallah, M.A.M.; Fitt, B.D.L.; Richard, B.; Qi, A. Yield Responses to Total Water Input from Irrigation and Rainfall in Six Wheat Cultivars Under Different Climatic Zones in Egypt. Agronomy 2024, 14, 3057. https://doi.org/10.3390/agronomy14123057
Elkot AF, Shabana Y, Elsayed ML, Saleh SM, Gadallah MAM, Fitt BDL, Richard B, Qi A. Yield Responses to Total Water Input from Irrigation and Rainfall in Six Wheat Cultivars Under Different Climatic Zones in Egypt. Agronomy. 2024; 14(12):3057. https://doi.org/10.3390/agronomy14123057
Chicago/Turabian StyleElkot, Ahmed Fawzy, Yasser Shabana, Maha L. Elsayed, Samir Mahmoud Saleh, Maha A. M. Gadallah, Bruce D. L. Fitt, Benjamin Richard, and Aiming Qi. 2024. "Yield Responses to Total Water Input from Irrigation and Rainfall in Six Wheat Cultivars Under Different Climatic Zones in Egypt" Agronomy 14, no. 12: 3057. https://doi.org/10.3390/agronomy14123057
APA StyleElkot, A. F., Shabana, Y., Elsayed, M. L., Saleh, S. M., Gadallah, M. A. M., Fitt, B. D. L., Richard, B., & Qi, A. (2024). Yield Responses to Total Water Input from Irrigation and Rainfall in Six Wheat Cultivars Under Different Climatic Zones in Egypt. Agronomy, 14(12), 3057. https://doi.org/10.3390/agronomy14123057