Efficiency of Vivianite from Water Purification Depending on Its Mixing with Superphosphate and Application Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Soil
2.1.2. Experimental Factors: Fertilizer Treatments and Application Methods
- Fertilizer Treatment: Two sources of P (vivianite and superphosphate) were used in this experiment. We used four different combinations of vivianite and superphosphate, and a non-fertilized control making a total of five fertilizer treatments. The summary of the five fertilizer treatments is given below:
- 2.
- Fertilizer Application Method: Two fertilizer application methods were used in the experiment.
- (a)
- Banding (fertilizer product placed at certain points in the soil in the pot around the plants).
- (b)
- Powder mix (mixing of fertilizer product with soil).
2.1.3. Plant Material
2.1.4. Pot Experimental Design
2.1.5. Experimental Setup
2.2. Collection and Analysis of Plant and Soil Samples
2.2.1. Collection of Plant and Soil Samples
2.2.2. Plant and Soil Analysis at the End of the Experiment
2.3. Fertilizer Efficiency Indexes
2.4. Statistical Analysis
3. Results
3.1. Fertilizer Properties
3.2. Effect of Fertilizer on Plant Development and Nutrition
3.3. Phosphorus Fertilizer Replacement Value and Nutrient Use Efficiency
3.4. Effect of Fertilizers on Soil Phosphorus and Iron Availability Index
4. Discussion
4.1. Efficiency of Vivianite as a Phosphorus and Iron Fertilizer
4.2. Mixture of Vivianite and Superphosphate as Phosphorus Fertilizers
4.3. The Effect of Fertilizer Products on Soil Phosphorus and Iron Availability Index
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- International Fertilizer Development Centre. World Phosphate Rock Reserves and Resources; International Fertilizer Development Centre: Muscle Shoals, AL, USA, 2010. [Google Scholar]
- Available online: https://www.earthmagazine.org/article/mineral-resource-month-phosphate-rock/ (accessed on 24 May 2024).
- Vaccari, D.A. Phosphorus: A looming crisis. Sci. Am. 2009, 300, 54–59. [Google Scholar] [CrossRef]
- Blackwell, M.; Darch, T.; Haslam, R. Phosphorus use efficiency and fertilizers: Future opportunities for improvements. Front. Agric. Sci. Eng. 2019, 6, 332–340. [Google Scholar] [CrossRef]
- Schröder, J.J.; Smit, A.L.; Cordell, D.; Rosemarin, A. Improved phosphorus use efficiency in agriculture: A key requirement for its sustainable use. Chemosphere 2011, 84, 822–831. [Google Scholar] [CrossRef]
- Sharmin Hoque, T.; Sarkar, D.; Datta, R.; Golam Kibria, M.; Ullah, R.; Ahmed, N.; Anwar Hossain, M.; Masood, A.; Anjum, N.A. Sustainable Management of Phosphorus in Agriculture for Environmental Conservation. In Phosphorus in Soils and Plants; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Talboys, P.J.; Heppell, J.; Roose, T.; Healey, J.R.; Jones, D.L.; Withers, P.J.A. Struvite: A slow-release fertiliser for sustainable phosphorus management? Plant Soil 2016, 401, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef]
- Delgado, A.; Scalenghe, R. Aspects of phosphorus transfer from soils in Europe. J. Plant Nutr. Soil Sci. 2008, 171, 552–575. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Mcdowell, R.W.; Kleinman, P.J.A. Phosphorus loss from land to water: Integrating agricultural and environmental management. Plant Soil 2001, 237, 287–307. [Google Scholar] [CrossRef]
- Conijn, J.G.; Bindraban, P.S.; Schröder, J.J.; Jongschaap, R.E.E. Can our global food system meet food demand within planetary boundaries? Agric. Ecosyst. Environ. 2018, 251, 244–256. [Google Scholar] [CrossRef]
- Veneklaas, E.J.; Lambers, H.; Bragg, J.; Finnegan, P.M.; Lovelock, C.E.; Plaxton, W.C.; Price, C.A.; Scheible, W.R.; Shane, M.W.; White, P.J.; et al. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 2012, 195, 306–320. [Google Scholar] [CrossRef]
- Ayeyemi, T.; Recena, R.; García-López, A.M.; Delgado, A. Circular Economy Approach to Enhance Soil Fertility Based on Recovering Phosphorus from Wastewater. Agronomy 2023, 13, 1513. [Google Scholar] [CrossRef]
- Grant, C.A.; Flaten, D.N.; Tomasiewicz, D.J.; Sheppard, S.C. The importance of early season phosphorus nutrition. Can. J. Plant Sci. 2001, 81, 211–224. [Google Scholar] [CrossRef]
- Desmidt, E.; Ghyselbrecht, K.; Zhang, Y.; Pinoy, L.; Van Der Bruggen, B.; Verstraete, W.; Rabaey, K.; Meesschaert, B. Global phosphorus scarcity and full-scale P-recovery techniques: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 336–384. [Google Scholar] [CrossRef]
- Recena, R.; García-López, A.M.; Quintero, J.M.; Skyttä, A.; Ylivainio, K.; Santner, J.; Buenemann, E.; Delgado, A. Assessing the phosphorus demand in European agricultural soils based on the Olsen method. J. Clean. Prod. 2022, 379, 134749. [Google Scholar] [CrossRef]
- Wilfert, P.; Dugulan, A.I.; Goubitz, K.; Korving, L.; Witkamp, G.J.; Van Loosdrecht, M.C.M. Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery. Water Res. 2018, 144, 312–321. [Google Scholar] [CrossRef]
- Eshun, L.E.; García-López, A.M.; Recena, R.; Coker, V.; Shaw, S.; Lloyd, J.; Delgado, A. Assessing microbially mediated vivianite as a novel phosphorus and iron fertilizer. Chem. Biol. Technol. Agric. 2024, 11, 47. [Google Scholar] [CrossRef]
- Rosenqvist, I.T. Formation of vivianite in holocene clay sediments. Lithos 1970, 3, 327–334. [Google Scholar] [CrossRef]
- Al-Borno, A.; Tomson, M.B. The temperature dependence of the solubility product constant of vivianite. Geochim. Cosmochim. Acta 1994, 58, 5373–5378. [Google Scholar] [CrossRef]
- Johnston, A.M.; Bruulsema, T.W. 4R Nutrient Stewardship for Improved Nutrient Use Efficiency. Procedia Eng. 2014, 83, 365–370. [Google Scholar] [CrossRef]
- Jing, J.; Rui, Y.; Zhang, F.; Rengel, Z.; Shen, J. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crops Res. 2010, 119, 355–364. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; De Willigen, P. Calculation of the root density required for growth in soils of different p-status. In The Soil–Root Interface; Academic Press: Cambridge, MA, USA, 1979; pp. 381–390. [Google Scholar] [CrossRef]
- Delgado, A.; Quemada, M.; Villalobos, F.J.; Mateos, L. Fertilization with Phosphorus, Potassium, and Other Nutrients. In Principles of Agronomy for Sustainable Agriculture; Springer International Publishing: Cham, Switzerland, 2016; pp. 381–405. [Google Scholar] [CrossRef]
- Yang, S.; Yang, X.; Zhang, C.; Deng, S.; Zhang, X.; Zhang, Y.; Cheng, X. Significantly enhanced P release from vivianite as a fertilizer in rhizospheric soil: Effects of citrate. Environ. Res. 2022, 212, 113567. [Google Scholar] [CrossRef] [PubMed]
- Degryse, F.; Baird, R.; da Silva, R.C.; McLaughlin, M.J. Dissolution rate and agronomic effectiveness of struvite fertilizers—Effect of soil pH, granulation and base excess. Plant Soil 2017, 410, 139–152. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; USDA-NRCS: Washington, DC, USA, 2010.
- Murphy, J.A.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture Circular: Washington, DC, USA, 1954; No. 939.
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Hijbeek, R.; ten Berge HF, M.; Whitmore, A.P.; Barkusky, D.; Schröder, J.J.; van Ittersum, M.K. Nitrogen fertiliser replacement values for organic amendments appear to increase with N application rates. Nutr. Cycl. Agroecosystems 2018, 110, 105–115. [Google Scholar] [CrossRef]
- Craswell, E. The efficiency of nitrogen fertilizers applied to cereals in different climates. Adv. Plant Nutr. 1984, 1, 1–55. Available online: https://www.researchgate.net/publication/284635091 (accessed on 28 May 2024).
- Mengel, K.; Hütsch, B.; Kane, Y. Nitrogen fertilizer application rates on cereal crops according to available mineral and organic soil nitrogen. Eur. J. Agron. 2006, 24, 343–348. [Google Scholar] [CrossRef]
- Weeks, J.J.; Hettiarachchi, G.M. A Review of the Latest in Phosphorus Fertilizer Technology: Possibilities and Pragmatism. J. Environ. Qual. 2019, 48, 1300–1313. [Google Scholar] [CrossRef]
- de Oliveira, A.K.S.; Soares, E.B.; Dos Santos, M.G.; Lins, H.A.; de Freitas Souza, M.; dos Santos Coêlho, E.; Silveira, L.M.; Mendonça, V.; Barros Júnior, A.P.; de Araújo Rangel Lopes, W. Efficiency of Phosphorus Use in Sunflower. Agronomy 2022, 12, 1558. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 2004, 38, 4222–4246. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, J.; Guerinot, M.L. Iron uptake and transport in plants: The good, the bad, and the ionome. Chem. Rev. 2009, 109, 4553–4567. [Google Scholar] [CrossRef] [PubMed]
- Krohling, C.A.; Eutrópio, F.J.; Bertolazi, A.A.; Dobbss, L.B.; Campostrini, E.; Dias, T.; Ramos, A.C. Ecophysiology of iron homeostasis in plants. Soil Sci. Plant Nutr. 2016, 62, 39–47. [Google Scholar] [CrossRef]
- Alcantara, E.; De La Guardia, M.D. Variability of sunflower inbred lines to iron deficiency stress. Plant Soil 1991, 130, 93–96. [Google Scholar] [CrossRef]
- Nieminen, M.; Laurén, A.; Hökkä, H.; Sarkkola, S.; Koivusalo, H.; Pennanen, T. Recycled iron phosphate as a fertilizer raw material for tree stands on drained boreal peatlands. For. Ecol. Manag. 2011, 261, 105–110. [Google Scholar] [CrossRef]
- Wang, B.L.; Shen, J.B.; Zhang, W.H.; Zhang, F.S.; Neumann, G. Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum. New Phytol. 2007, 176, 581–589. [Google Scholar] [CrossRef]
- Delgado, A.; Madrid, A.; Kassem, S.; Andreu, L.; Del Carmen Del Campillo, M. Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids. Plant Soil 2002, 245, 277–286. [Google Scholar] [CrossRef]
- Roberts, T.L.; Johnston, A.E. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 2015, 105, 275–281. [Google Scholar] [CrossRef]
- Syers, J.K.; John, K.; Johnston, A.E.; Curtin, D.; Food and Agriculture Organization of the United Nations. Efficiency of Soil and Fertilizer Phosphorus Use: Reconciling Changing Concepts of Soil Phosphorus Behaviour with Agronomic Information; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Eynard, A.; Del Campillo, M.C.; Barr6n, V.; Torrent, J. Use of vivianite (Fe3(PO4)2.8H2O) to prevent iron chlorosis in calcareous soils. Fertil. Res. 1992, 31, 61–67. [Google Scholar] [CrossRef]
- Rosado, R.; Del Campillo, M.C.; Martínez, M.A.; Barrón, V.; Torrent, J. Long-term effectiveness of vivianite in reducing iron chlorosis in olive trees. Plant Soil 2002, 241, 139–144. [Google Scholar] [CrossRef]
- Díaz, I.; Barrón, V.; Del Campillo, M.C.; Torrent, J. Vivianite (ferrous phosphate) alleviates iron chlorosis in grapevine. Vitis 2009, 48, 107–113. [Google Scholar]
- de Santiago, A.; Delgado, A. Predicting Iron Chlorosis of Lupin in Calcareous Spanish Soils from Iron Extracts. Soil Sci. Soc. Am. J. 2006, 70, 1945–1950. [Google Scholar] [CrossRef]
Clay | Silt | Sand | CCE | SOC | pH | EC | CEC | Ca | Mg | K | Na | Olsen P | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | dS m–1 | cmolc kg−1 | mg kg−1 | |||||||||||||
15 | 19 | 66 | 3.30 | 0.45 | 8.34 | 0.13 | 10.45 | 9.43 | 0.53 | 0.42 | 0.07 | 3.5 | 10.7 | 13.4 | 0.43 | 19.6 |
C | nd |
N | nd |
P | 108 g kg−1 |
K | 0.25 g kg−1 |
Ca | 8.9 g kg−1 |
Mg | 9.2 g kg−1 |
Fe | 280 g kg−1 |
Zn | 0.16 g kg−1 |
Mn | 1.14 g kg−1 |
Cu | 0.04 g kg−1 |
Mössbauer Fe speciation | |
Fe2+ | 75% |
Fe3+ | 25% |
XPS Fe Speciation | |
Fe2+ | 41% |
Fe3+ | 59% |
Fertilizer Treatment | Fe Uptake (mg Plant−1) | DTPA Fe (mg kg−1) |
---|---|---|
T1 (non-fertilized control) | 0.70 ± 0.05 b | 4.82 ± 0.26 ab |
T2 (100% vivianite) | 0.99 ± 0.18 b | 4.97 ± 0.23 a |
T3 (70% vivianite + 30% superphosphate) | 1.50 ± 0.27 b | 4.25 ± 0.15 bc |
T4 (30% vivianite + 70% superphosphate) | 3.43 ± 0.80 a | 4.22 ± 0.15 bc |
T5 (100% superphosphate | 3.43 ± 0.57 a | 4.20 ± 0.22 c |
Anova | p Value | |
Fertilizer Treatment (A) | 0.0000 | 0.0005 |
Fertilizer Location (B) | 0.0074 | 0.5627 |
A × B | 0.0004 | 0.2770 |
Fertilizer Treatment | Agronomic Efficiency (AE) | Apparent P Recovery (APR) | Olsen P Recovery (OPR) |
---|---|---|---|
kg DM g–1 P | kg kg–1 | kg kg–1 | |
T2 (100% vivianite) | 0.018 ± 0.005 d | 0.016 ± 0.011 d | 0.009 ± 0.014 ab |
T3 (70% vivianite + 30% superphosphate | 0.214 ± 0.010 c | 0.142 ± 0.006 c | 0.000 ± 0.010 b |
T4 (30% vivianite + 70% superphosphate) | 0.489 ± 0.028 b | 0.314 ± 0.014 b | 0.030 ± 0.007 ab |
T5 (100% superphosphate) | 0.747 ± 0.035 a | 0.427 ± 0.014 a | 0.044 ± 0.004 a |
ANOVA | p Value | ||
Fertilizer Treatment (A) | 0.0000 | 0.0000 | 0.0054 |
Fertilizer Location (B) | 0.2156 | 0.5556 | 0.9963 |
A × B | 0.1246 | 0.1018 | 0.5448 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayeyemi, T.; Recena, R.; García-López, A.M.; Quintero, J.M.; del Campillo, M.C.; Delgado, A. Efficiency of Vivianite from Water Purification Depending on Its Mixing with Superphosphate and Application Method. Agronomy 2024, 14, 2639. https://doi.org/10.3390/agronomy14112639
Ayeyemi T, Recena R, García-López AM, Quintero JM, del Campillo MC, Delgado A. Efficiency of Vivianite from Water Purification Depending on Its Mixing with Superphosphate and Application Method. Agronomy. 2024; 14(11):2639. https://doi.org/10.3390/agronomy14112639
Chicago/Turabian StyleAyeyemi, Tolulope, Ramiro Recena, Ana María García-López, José Manuel Quintero, María Carmen del Campillo, and Antonio Delgado. 2024. "Efficiency of Vivianite from Water Purification Depending on Its Mixing with Superphosphate and Application Method" Agronomy 14, no. 11: 2639. https://doi.org/10.3390/agronomy14112639
APA StyleAyeyemi, T., Recena, R., García-López, A. M., Quintero, J. M., del Campillo, M. C., & Delgado, A. (2024). Efficiency of Vivianite from Water Purification Depending on Its Mixing with Superphosphate and Application Method. Agronomy, 14(11), 2639. https://doi.org/10.3390/agronomy14112639