Influence of Crop Residue Management on Maize Production Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Trials and Treatments
2.2. Meteorological Data
2.3. Maize Yield Components Observed
2.4. Statistical Analysis
3. Results
3.1. Analysis of Variance for Grain Yield and Yield Components
3.2. Yield Components and Grain Yield
3.3. Correlations Among Measured Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lesnikowski, A.; Ford, J.; Biesbroek, R.; Berrang-Ford, L.; Heymann, S.J. National-level progress on adaptation. Nat. Clim. Chang. 2016, 6, 261–264. [Google Scholar] [CrossRef]
- Dupuits, E.; Garcés, A.; Llambí, L.D.; Bustamante, M. for monitoring and evaluation of climate change adaptation: Localizing global approaches into Andean realities. npj Clim. Action 2024, 3, 19. [Google Scholar] [CrossRef]
- Yaofeng, Y.; Seyler, B.C.; Feng, M.; Tang, Y. A systematic review of scientific research focused on farmers in agricultural adaptation to climate change (2008–2017). bioRxiv 2020. [Google Scholar] [CrossRef]
- Olabanji, M.F.; Ndarana, T.; Davis, N. Impact of Climate Change on Crop Production and Potential Adaptive Measures in the Olifants Catchment, South Africa. Climate 2021, 9, 6. [Google Scholar] [CrossRef]
- Shen, D.; Wang, K.; Zhou, L.; Fang, L.; Wang, Z.; Fu, J.; Zhang, T.; Liang, Z.; Xie, B.; Ming, B.; et al. Increasing Planting Density and Optimizing Irrigation to Improve Maize Yield and Water-Use Efficiency in Northeast China. Agronomy 2024, 14, 400. [Google Scholar] [CrossRef]
- Durodola, O.S.; Mourad, K.A. Modelling Maize Yield and Water Requirements under Different Climate Change Scenarios. Climate 2020, 8, 127. [Google Scholar] [CrossRef]
- Hasegawa, T.; Wakatsuki, H.; Ju, H.; Vyas, S.; Nelson, G.C.; Farrell, A.; Deryng, D.; Meza, F.; Makowski, D.A. Global dataset for the projected impacts of climate change on four major crops. Sci. Data 2022, 9, 58. [Google Scholar] [CrossRef]
- Qin, M.; Zheng, E.; Hou, D.; Meng, X.; Meng, F.; Gao, Y.; Chen, P.; Qi, Z.; Xu, T. Response of Wheat, Maize, and Rice to Changes in Temperature, Precipitation, CO2 Concentration, and Uncertainty Based on Crop Simulation Approaches. Plants 2023, 12, 2709. [Google Scholar] [CrossRef]
- Raza, M.H.; Abid, M.; Faisal, M.; Yan, T.; Akhtar, S.; Adnan, K.M. Environmental and Health Impacts of Crop Residue Burning: Scope of Sustainable Crop Residue Management Practices. Int. J. Environ. Res. Public Health 2022, 19, 4753. [Google Scholar] [CrossRef]
- Ollier, M.; Jayet, P.A.; Humblot, P. An assessment of the distributional impacts of autonomous adaptation to climate change from European agriculture. Ecol. Econ. 2024, 222, 108221. [Google Scholar] [CrossRef]
- Ansari, M.A.; Choudhury, B.U.; Layek, J.; Das, A.; Lal, R.; Mishra, V.K. Green Manuring and Crop Residue Management: Effect on Soil Organic Carbon Stock, Aggregation, and System Productivity in the Foothills of Eastern Himalaya (India). Soil Tillage Res. 2022, 218, 105318. [Google Scholar] [CrossRef]
- Kmeťová, M.; Kováčik, P. The impact of vermicompost application on the yield parameters of maize (Zea mays L.) observed in selected phenological growth stages (BBCH-SCALE). Acta Fytotech. Zootech. 2014, 17, 100–108. [Google Scholar] [CrossRef]
- Degani, E.; Leigh, S.G.; Barber, H.M.; Jones, H.E.; Lukac, M.; Sutton, P.; Potts, S.G. Crop rotations in a climate change scenario: Short-term effects of crop diversity on resilience and ecosystem service provision under drought. Agric. Ecosyst. Environ. 2019, 285, 106625. [Google Scholar] [CrossRef]
- Jaskulski, D.; Jaskulska, I.; Różniak, E.; Radziemska, M.; Brtnický, M. Cultivation of Crops in Strip-Till Technology and Microgranulated Fertilisers Containing a Gelling Agent as a Farming Response to Climate Change. Agriculture 2023, 13, 1981. [Google Scholar] [CrossRef]
- Jiang, Q.; Madramootoo, C.A.; Qi, Z. Soil Carbon and Nitrous Oxide Dynamics in Corn (Zea mays L.) Production under Different Nitrogen, Tillage, and Residue Management Practices. Field Crops Res. 2022, 277, 108421. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, H.; Zhang, W.; Li, W.; Su, H.; Wu, S.; Xu, Q.; Li, Y.; Yao, H. Straw Return Enhances Grain Yield and Quality of Three Main Crops: Evidence from a Meta-Analysis. Front. Plant Sci. 2024, 15, 1433220. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Lin, N.; Fang, Y.; Dong, Q.; Zhang, T.; Siddique, K.H.M.; Wang, N.; Feng, H. Ammoniated straw returning: A win-win strategy for increasing crop production and soil carbon sequestration. Agric. Ecosyst. Env. 2024, 363, 108879. [Google Scholar] [CrossRef]
- Kumar, N.; Chaudhary, A.; Ahlawat, O.P.; Naorem, A.; Upadhyay, G.; Chhokar, R.S.; Gill, S.C.; Khippal, A.; Tripathi, S.C.; Singh, G.P. Crop residue management challenges, opportunities and way forward for sustainable food-energy security in India: A review. Soil Tillage Res. 2023, 228, 105641. [Google Scholar] [CrossRef]
- Wu, G.; Yang, S.; Luan, C.; Wu, Q.; Lin, L.; Li, X.; Che, Z.; Zhou, D.; Dong, Z.; Song, H. Partial organic substitution for synthetic fertilizer improves soil fertility and crop yields while mitigating N2O emissions in wheat-maize rotation system. Eur. J. Agron. 2024, 154, 127077. [Google Scholar] [CrossRef]
- Wang, Z.; Sui, P.; Lian, H.; Li, Y.; Liu, X.; Xu, H.; Zhang, H.; Xu, Y.; Gong, X.; Qi, H.; et al. Tillage with straw incorporation reduces the optimal nitrogen rate for maize production by affecting crop uptake, utility efficiency, and the soil balance of nitrogen. Land Degrad. Dev. 2023, 34, 2825–2837. [Google Scholar] [CrossRef]
- Moukanni, N.; Brewer, K.M.; Gaudin, A.C.M.; O’Geen, A.T. Optimizing Carbon Sequestration Through Cover Cropping in Mediterranean Agroecosystems: Synthesis of Mechanisms and Implications for Management. Front. Agron. 2022, 4, 844166. [Google Scholar] [CrossRef]
- Beruski, G.C.; Schiebelbein, L.M.; Pereira, A.B. Maize Yield Components as Affected by Plant Population, Planting Date, and Soil Coverings in Brazil. Agriculture 2020, 10, 579. [Google Scholar] [CrossRef]
- Faye, B.; Webber, H.; Gaiser, T.; Müller, C.; Zhang, Y.; Stella, T.; Latka, K.; Reckling, M.; Heckelei, T.; Helming, K.; et al. Climate Change Impacts on European Arable Crop Yields: Sensitivity to Assumptions about Rotations and Residue Management. Eur. J. Agron. 2023, 142, 126670. [Google Scholar] [CrossRef]
- Milander, J.J. Maize Yield and Components as Influenced by Environment and Agronomic Management. Master Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2015; p. 86. Available online: http://digitalcommons.unl.edu/agronhortdiss/86 (accessed on 5 September 2024).
- Wang, Y.; Zhang, G.; Li, R.; Wang, K.; Ming, B.; Hou, P.; Xie, R.; Xue, J.; Li, S. Pathways to Increase Maize Yield in Northwest China: A Multi-Year, Multi-Variety Analysis. Eur. J. Agron. 2023, 149, 126892. [Google Scholar] [CrossRef]
- WRB. IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; Available online: https://wrb.isric.org/files/WRB_fourth_edition_2022-12-18.pdf (accessed on 5 September 2024).
- Kožnárová, V.; Klabzuba, J. Recommendation of World Meteorological Organization to describing meteorological or climatological conditions. Plant Soil Environ. 2002, 48, 190–192. [Google Scholar] [CrossRef]
- Šimanský, V. Is the Period of 18 Years Sufficient for an Evaluation of Changes in Soil Organic Carbon under a Variety of Different Soil Management Practices? Commun. Soil Sci. Plant Anal. 2017, 48, 37–42. [Google Scholar] [CrossRef]
- Abramoff, R.Z.; Ciais, P.; Zhu, P.; Hasegawa, T.; Wakatsuki, H.; Makowski, D. Adaptation Strategies Strongly Reduce the Future Impacts of Climate Change on Simulated Crop Yields. Earth’s Future 2023, 11, e2022EF003190. [Google Scholar] [CrossRef]
- Sulewska, H.; Śmiatach, K.; Szymańska, G.; Panasiewicz, K.; Bandurska, H.; Głowicka-Wołoszyn, R. Seed Size Effect on Yield Quantity and Quality of Maize (Zea mays L.) Cultivated in the South East Baltic Region. Zemdirbyste-Agriculture 2014, 101, 47–54. [Google Scholar] [CrossRef]
- Bonkoungou, T.O.; Badu-Apraku, B.; Adetimirin, V.O.; Nanema, K.R.; Adejumobi, I.I. Performance and Stability Analysis of Extra-Early Maturing Orange Maize Hybrids under Drought Stress and Well-Watered Conditions. Agronomy 2024, 14, 847. [Google Scholar] [CrossRef]
- Mandić, V.; Đorđević, S.; Brankov, M.; Živković, V.; Lazarević, M.; Keškić, T.; Krnjaja, V. Response of Yield Formation of Maize Hybrids to Different Planting Densities. Agriculture 2024, 14, 351. [Google Scholar] [CrossRef]
- Rossini, M.A.; Curin, F.; Otegui, M.E. Ear reproductive development components associated with kernel set in maize: Breeding effects under contrasting environments. Field Crops Res. 2023, 304, 109150. [Google Scholar] [CrossRef]
- Belay, M.; Adare, K. Response of growth, yield components, and yield of hybrid maize (Zea mays L.) varieties to newly introduced blended NPS and N fertilizer rates at Haramaya, Eastern Ethiopia. Cogent Food Agric. 2020, 6, 1771115. [Google Scholar] [CrossRef]
- Szulc, P.; Krauklis, D.; Ambroźy-Deregowska, K.; Wróbel, B.; Niedbała, G.; Niazian, M.; Selwet, M. Response of Maize Varieties (Zea mays L.) to the Application of Classic and Stabilized Nitrogen Fertilizers—Nitrogen as a Predictor of Generative Yield. Plants 2023, 12, 600. [Google Scholar] [CrossRef] [PubMed]
- Muellera, S.M.; Messina, C.D.; Vyn, T.J. The role of the exponential and linear phases of maize (Zea mays L.) ear growth for determination of kernel number and kernel weight. Eur. J. Agron. 2019, 111, 125939. [Google Scholar] [CrossRef]
- Shi, R.; Tong, L.; Ding, R.; Du, T.; Shukla, M.K. Modeling kernel weight of hybrid maize seed production with different water regimes. Agric. Water Manag. 2021, 250, 106851. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Yang, Z.; Fang, Y.; Li, C.; Shi, Y.; Lin, N.; Dong, Q.; Siddique, K.H.M.; Feng, H.; et al. Ammoniated straw incorporation increases maize grain yield while decreasing net greenhouse gas budget on the Loess Plateau, China. Agric. Ecosyst. Environ. 2023, 352, 108503. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Wolf, B.; Kiese, R.; Chen, D.; Butterbach-Bahl, K. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Glob. Chang. Biol. 2018, 24, 5919–5932. [Google Scholar] [CrossRef]
- Cheng, Z.; Bai, L.; Wang, Z.; Wang, F.; Wang, Y.; Liang, H.; Wang, Y.; Rong, M.; Wang, Z. Strip-Till Farming: Combining Controlled-Release Blended Fertilizer to Enhance Rainfed Maize Yield While Reducing Greenhouse Gas Emissions. Agronomy 2024, 14, 136. [Google Scholar] [CrossRef]
- Nafi, E.; Webber, H.; Danso, I.; Naab, J.B.; Frei, M.; Gaiser, T. Interactive Effects of Conservation Tillage, Residue Management, and Nitrogen Fertilizer Application on Soil Properties under Maize-Cotton Rotation System on Highly Weathered Soils of West Africa. Soil Tillage Res. 2020, 196, 104473. [Google Scholar] [CrossRef]
- Li, P.; Zhang, A.; Huang, S.; Han, J.; Jin, X.; Shen, X.; Hussain, Q.; Wang, X.; Zhou, J.; Chen, Z. Optimizing Management Practices under Straw Regimes for Global Sustainable Agricultural Production. Agronomy 2023, 13, 710. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, Y.; Dungait, J.A.J.; Kumar, A.; Wang, J.; Tiemann, L.K.; Zhang, F.; Kuzyakov, Y.; Tian, J. Microbial Necromass in Cropland Soils: A Global Meta-Analysis of Management Effects. Glob. Chang. Biol 2023, 29, 1998–2014. [Google Scholar] [CrossRef] [PubMed]
- Mitova, I.; Vasileva, V. Growth and yield response of maize (Zea mays var. saccharata) to different nitrogen fertilization sources and rates. J. Cent. Eur. Agric. 2024, 25, 137–145. [Google Scholar] [CrossRef]
- Pazdera, J.; Varga, L.; Ducsay, L.; Sitkey, J.; Hejduk, S.; Doležal, P.; Zeman, L.; Neugschwandtner, R.W.; Mierzwa-Hersztek, M. Effect of different fertilizers and no-till versus strip-till on silage maize yield in a dual cropping system. Acta Fytotech. Zootech. 2023, 26, 438–444. [Google Scholar] [CrossRef]
- Liu, W.; Hou, P.; Liu, G.; Zhou, L.; Chen, Z.; Ding, Y.; Chen, J. Contribution of Total Dry Matter and Harvest Index to Maize Grain Yield—A Multisource Data Analysis. Food Energy Secur. 2020, 9, e256. [Google Scholar] [CrossRef]
- Hütsch, B.W.; Schubert, S. Chapter Two—Harvest Index of Maize (Zea mays L.): Are There Possibilities for Improvement? Adv. Agron. 2017, 146, 37–82. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, Z.; Luo, B.; Zhong, H.; Ma, P.; Zhang, H.; Hu, H.; Wang, Y.; Zhang, H.; Liu, D.; et al. Genetic architecture of maize yield traits dissected by QTL mapping and GWAS in maize. Crop J. 2022, 10, 436–446. [Google Scholar] [CrossRef]
Effect | SS | DF | MS | F-Value | p-Value |
---|---|---|---|---|---|
Grain yield | |||||
Treatment | 32.907 | 3 | 10.969 | 37.189 | 0.00000 |
Year | 15.514 | 2 | 7.757 | 26.299 | 0.00000 |
Stalk yield | |||||
Treatment | 24.850 | 3 | 8.283 | 5.377 | 0.00805 |
Year | 24.908 | 2 | 12.454 | 8.085 | 0.00312 |
Ears per hectare | |||||
Treatment | 1.642 | 3 | 5.471 | 1.663 | 0.21046 |
Year | 4.556 | 2 | 2.278 | 6.924 | 0.00588 |
Kernel number per ear | |||||
Treatment | 60627 | 3 | 20.209 | 25.851 | 0.00000 |
Year | 22493 | 2 | 11.246 | 14.386 | 0.00019 |
Thousand Seed Weight | |||||
Treatment | 5708 | 3 | 1.903 | 17.05 | 0.00002 |
Year | 402 | 2 | 201 | 1.80 | 0.19389 |
Harvest Index | |||||
Treatment | 299.01 | 3 | 99.67 | 11.975 | 0.00015 |
Year | 99.81 | 2 | 49.90 | 5.996 | 0.01011 |
Parameters | Means | GY | E | KNE | TSW | HI |
---|---|---|---|---|---|---|
Stalk yield | 11.05 ± 1.52 | 0.62 * | 0.51 * | 0.57 * | 0.24 ns | 0.13 ns |
Grain yield (GY) | 4.46 ± 1.18 | 0.61 * | 0.94 * | 0.61 * | 0.85 * | |
Ears per ha (E) | 68658 ± 6824 | 0.41 * | −0.01 ns | 0.42 * | ||
Kernel number per ear (KNE) | 303.03 ± 50.16 | 0.52 * | 0.80 * | |||
TSW (thousand seed weight) | 211.16 ± 17.07 | 0.66 * | ||||
Harvest index (HI) | 28.43 ± 4.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korczyk-Szabó, J.; Macák, M.; Jarecki, W.; Sterczyńska, M.; Jug, D.; Pużyńska, K.; Hromadová, Ľ.; Habán, M. Influence of Crop Residue Management on Maize Production Potential. Agronomy 2024, 14, 2610. https://doi.org/10.3390/agronomy14112610
Korczyk-Szabó J, Macák M, Jarecki W, Sterczyńska M, Jug D, Pużyńska K, Hromadová Ľ, Habán M. Influence of Crop Residue Management on Maize Production Potential. Agronomy. 2024; 14(11):2610. https://doi.org/10.3390/agronomy14112610
Chicago/Turabian StyleKorczyk-Szabó, Joanna, Milan Macák, Wacław Jarecki, Monika Sterczyńska, Daniel Jug, Katarzyna Pużyńska, Ľubomíra Hromadová, and Miroslav Habán. 2024. "Influence of Crop Residue Management on Maize Production Potential" Agronomy 14, no. 11: 2610. https://doi.org/10.3390/agronomy14112610
APA StyleKorczyk-Szabó, J., Macák, M., Jarecki, W., Sterczyńska, M., Jug, D., Pużyńska, K., Hromadová, Ľ., & Habán, M. (2024). Influence of Crop Residue Management on Maize Production Potential. Agronomy, 14(11), 2610. https://doi.org/10.3390/agronomy14112610