Improving Early Detection of Bud Rot in Oil Palm Through Digital Field Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. RGB Image Acquisition Device
2.2. Location of the Monitoring Plot and Evaluation of Detection Methods
2.2.1. Computer-Assisted Detection
2.2.2. Automatic Detection Using AI
2.3. Performance of Detection
3. Results
3.1. Evaluation of Detection Methods: Automatic Detection Using AI
3.2. Evaluation of Detection Methods: Computer-Assisted Detection
3.2.1. Temporal Tracking of Detections with and Without the Use of the Device
3.2.2. Spatial Distribution of Detections with and Without the Use of the Device
3.3. Performance of Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rojas, E.; Ruiz, E. Investigaciones Sobre La Enfermedad Pudriciones de Cogollo-Pudrición de Flecha de La Palma Africana En La Plantación La Arenosa de Coldesa S.A.; Instituto Geográfico Agustín Codazzi: Bogotá, Colombia, 1972. [Google Scholar]
- Romero, H.M. En Qué va El Mejoramiento de Cara a Las Problemáticas de La Palmicultura. Palmas 2022, 43, 102–107. [Google Scholar]
- Mosquera, M.; Fontanilla, C.; Zuñiga, E.; Escobar, G.; Cadena, Y.; León, N.; Velasco, C. Una Experiencia de Coordinación de Acciones Para Enfretar La Pudrición Del Cogollo: Costos Asociados a Su Manejo Curativo. Palmas 2017, 38, 51–62. [Google Scholar]
- Fedepalma. Anuario Estadístico 2012. La Agroindustria de La Palma de Aceite En Colombia y En El Mundo; Fedepalma: Bogotá, Colombia, 2013. [Google Scholar]
- Butler, E.J. Report of the Imperial Mycologist, 1918–1919; Science Report Institute Pusa: Calcutta, India, 1919; 82p. [Google Scholar]
- Martinez, G.; Torres, G. Presencia de La Pudrición de Cogollo de La Palma de Aceite (PC) En Plantas de Vivero. Palmas 2007, 28, 13–20. [Google Scholar]
- Martínez, G. Identificación Temprana y Manejo Integrado de La Enfermedad Pudrición Del Cogollo. Palmas 2009, 30, 63–77. [Google Scholar]
- Sarria, G.; Martínez, G.; Varón, F.; Drenth, A.; Guest, D. Nuevas Evidencias Del Cumplimiento de Los Postulados de Koch En El Estudio de Las Relaciones Phytophthora Palmivora y La Pudrición Del Cogollo de La Palma de Aceite. Palmas 2013, 34, 73–83. [Google Scholar]
- Torres, G.; Sarria, G.; Martínez, G.; Varón, F.; Drenth, A.; Guest, D. Bud Rot Caused by Phytophthora Palmivora: A Destructive Emerging Disease of Oil Palm. Phytopathology 2016, 106, 320–329. [Google Scholar] [CrossRef]
- Romero, H.M. Hacia La Obtención de Materiales Más Productivos, Resistentes a Enfermedades y Adaptados a Las Condiciones Colombianas. Palmas 2017, 38, 158–165. [Google Scholar]
- Avila-Diazgranados, R.; Daza, E.; Navia, E.; Romero, H. Response of Various Oil Palm Materials (Elaeis Guineensis and Elaeis Oleifera × Elaeis Guineensis Interspecific Hybrids) to Bud Rot Disease in the Southwestern Oil Palm-Growing Area of Colombia. Agron. Colomb. 2016, 34, 74–81. [Google Scholar] [CrossRef]
- Sispa Áreas En Desarrollo y En Producción. Available online: https://sispaplus.fedepalma.org/ (accessed on 29 March 2024).
- Ayala, I.M.; Romero, H.M. Cultivares Híbridos OxG y La Reactivación Productiva de Zonas Problema Con PC. In Proceedings of the XV Reunión Técnica Nacional de Palma de Aceite; Cenipalma: Bucaramanga, Colombia, 2019; p. 39. [Google Scholar]
- Arias, N.; Beltrán, J.A.; Guerrero, J.M.; Sánchez, C. Tecnologías Para El Manejo de La Pudrición Del Cogollo (PC) de La Palma de Aceite Validadas En Las Zonas Palmeras de Colombia. Palmas 2014, 35, 39–52. [Google Scholar]
- Mosquera, M.; Evans, E.; Grogan, K.; Fontanilla, C. Un Modelo de Simulación Discreto Para Determinar La Edad Óptima de Replantación En Presencia de La Pudrición Del Cogollo. Palmas 2014, 35, 19–32. [Google Scholar]
- Martínez, G.; Arias, N.; Sarria, G.; Torres, G.; Varón, F.; Noreña, C.; Salcedo, S.; Aya, H.; Ariza, J.; Aldana, R.; et al. Manejo Integrado de La Pudrición Del Cogollo (PC) de La Palma de Aceite; Cenipalma; Fedepalma: Bogotá, Colombia, 2009. [Google Scholar]
- Sarria, G.; Mestizo, Y.; Padilla, J.; Zúñiga, F.; Castillo, S.; López-Vásquez, J.M.; Vélez, D.; González, D.; Esquivel, L.; Charris, J.; et al. Guía de Bolsillo: Monitoreo y Manejo Curativo de La Pudrición Del Cogollo En Elaeis Guineensis e Híbrido Interespecífico O×G En Colombia; Corporación Centro de Investigación en Palma de Aceite, Cenipalma: Bogotá, Colombia, 2024. [Google Scholar]
- Fontanilla, C.; Mosquera, M.; Ruíz, E.; Sánchez, A.; Beltrán, J.; Arias, N. Estimación de Costos de Manejo de La Pudrición Del Cogollo (PC) de La Palma de Aceite. Palmas 2014, 35, 23–37. [Google Scholar]
- Mahlein, A.-K. Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Pati, N.; Gourisaria, M.K.; Bilgaiyan, S. Application of Advance Deep Learning Models For Plant Disease Detection. In Proceedings of the 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS), Raichur, India, 23–24 February 2024; pp. 1–6. [Google Scholar]
- Saranya, K.; Nasrin Begun, A.; Archana, A.; Kaviya, N.; Thamarai Selvan, M. Diagnostics System for Plant Leaf Diseases Using Convergence of Computer Vision and Deep Learning. Int. J. Sci. Res. Eng. Manag. 2024, 8, 1–5. [Google Scholar] [CrossRef]
- Ali, U.; Ismail, M.A.; Ariyaluran Habeeb, R.A.; Ali Shah, S.R. Performance Evaluation of YOLO Models in Plant Disease Detection. J. Inform. Web Eng. 2024, 3, 199–211. [Google Scholar] [CrossRef]
- Biswas, T.; Pati, S.K.; Sarangi, S. Plant Disease Detection. In Prospects of Science, Technology and Applications; CRC Press: London, UK, 2024; pp. 250–256. [Google Scholar]
- Hamed, B.S.; Hussein, M.M.; Mousa, A.M. Plant Disease Detection Using Deep Learning. Int. J. Intell. Syst. Appl. 2023, 15, 38–50. [Google Scholar] [CrossRef]
- Durga, P.; Gangishetty, D.; Godavarthi, D. Convolutional Neural Network (CNN) Based Identification of Crop Diseases Using ResNet-50. In Proceedings of the 2023 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 5–17 November 2023; pp. 1293–1301. [Google Scholar]
- Awad Bin, N.; Biswaranjan, S.; Abdelhamid, Z.; Maaliw, R.; Islam Sudman, S.; Das, D.; Almeida, F.; Sakr, H. Detecting Three Different Diseases of Plants by Using CNN Model and Image Processing. J. Electr. Syst. 2024, 20, 1519–1525. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 31 July 2024).
- Roboflow Everything You Need to Build and Deploy Computer Vision Models. Available online: https://roboflow.com/ (accessed on 30 April 2024).
- Montero, D.; Rueda, C. Detection of Palm Oil Bud Rot Employing Artificial Vision. IOP Conf. Ser. Mater. Sci. Eng. 2018, 437, 012004. [Google Scholar] [CrossRef]
- Viera-Torres, M.; Sinde-González, I.; Gil-Docampo, M.; Bravo-Yandún, V.; Toulkeridis, T. Generating the Baseline in the Early Detection of Bud Rot and Red Ring Disease in Oil Palms by Geospatial Technologies. Remote Sens. 2020, 12, 3229. [Google Scholar] [CrossRef]
- Alemán-Montes, B.; Henríquez-Henríquez, C.; Largaespada-Zelaya, K.; Ramírez-Rodríguez, T. Evaluación de Flecha Seca En Palma Aceitera (Elaeis Guineensis Jacq.) Mediante Imágenes Multiespectrales, Costa Rica. Agron. Mesoam. 2022, 33, 47557. [Google Scholar] [CrossRef]
- Kurihara, J.; Koo, V.-C.; Guey, C.W.; Lee, Y.P.; Abidin, H. Early Detection of Basal Stem Rot Disease in Oil Palm Tree Using Unmanned Aerial Vehicle-Based Hyperspectral Imaging. Remote Sens. 2022, 14, 799. [Google Scholar] [CrossRef]
- Sarria, G.; Martínez, G.; Varón, F.; Drenth, A.; Guest, D. Histopathological Studies of the Process of Phytophthora Palmivora Infection in Oil Palm. Eur. J. Plant Pathol. 2016, 145, 39–51. [Google Scholar] [CrossRef]
- Silva, Á.; Martinez, G. Plan Nacional de Manejo de La Pudrición Del Cogollo Fedepalma—Cenipalma. Palmas 2009, 30, 97–121. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Vásquez, J.M.; Cárdenas, D.A.G.; Bojacá-Aldana, C.; Sarria, G.A.; Morales-Rodríguez, A. Improving Early Detection of Bud Rot in Oil Palm Through Digital Field Monitoring. Agronomy 2024, 14, 2486. https://doi.org/10.3390/agronomy14112486
López-Vásquez JM, Cárdenas DAG, Bojacá-Aldana C, Sarria GA, Morales-Rodríguez A. Improving Early Detection of Bud Rot in Oil Palm Through Digital Field Monitoring. Agronomy. 2024; 14(11):2486. https://doi.org/10.3390/agronomy14112486
Chicago/Turabian StyleLópez-Vásquez, Juan Manuel, Diego Alejandro García Cárdenas, Carlos Bojacá-Aldana, Greicy Andrea Sarria, and Anuar Morales-Rodríguez. 2024. "Improving Early Detection of Bud Rot in Oil Palm Through Digital Field Monitoring" Agronomy 14, no. 11: 2486. https://doi.org/10.3390/agronomy14112486
APA StyleLópez-Vásquez, J. M., Cárdenas, D. A. G., Bojacá-Aldana, C., Sarria, G. A., & Morales-Rodríguez, A. (2024). Improving Early Detection of Bud Rot in Oil Palm Through Digital Field Monitoring. Agronomy, 14(11), 2486. https://doi.org/10.3390/agronomy14112486