Long-Term Effects of No-Tillage on Arthropod Biodiversity in Rainfed and Irrigated Annual Crops
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoate, C.; Báldi, A.; Beja, P.; Boatman, N.D.; Herzon, I.; Van Doorn, A.; Ramwell, C. Ecological impacts of early 21st century agricultural change in Europe—A review. J. Environ. Manag. 2009, 91, 22–46. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, P.; Sayr, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.P.; Bengtsson, J. Temporal and spatial variability in soil food web structure. Oikos 2007, 116, 1789–1804. [Google Scholar] [CrossRef]
- Dale, V.H.; Polasky, S. Measures of the effects of agricultural practices on ecosystem services. Ecol. Econ. 2007, 64, 286–296. [Google Scholar] [CrossRef]
- Pérez-Bote, J.L.; Romero, A.J. Epigeic soil arthropod abundance under different agricultural land uses. Span. J. Agric. Res. 2012, 10, 55–61. [Google Scholar] [CrossRef]
- Stout, J.; Finn, J.A. Recognizing the value of insects in providing ecosystem services. Ecol. Entomol. 2015, 40, 1–2. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- González-Sánchez, E.J.; Veroz-González, O.; Blanco-Roldan, G.L.; Márquez-García, F.; Carbonell-Bojollo, R. A renewed view of conservation agriculture and its evolution over the last decade in Spain. Soil Tillage Res. 2015, 146, 204–212. [Google Scholar] [CrossRef]
- Ordóñez-Fernández, R.; González Fernández, P.; Giráldez Cervera, J.V.; Perea Torres, F. Soil properties and crop yields after 21 years of direct drilling trials in southern Spain. Soil Tillage Res. 2007, 94, 47–54. [Google Scholar] [CrossRef]
- FAO Conservation Agriculture. Available online: https://www.fao.org/conservation-agriculture/en/ (accessed on 23 July 2024).
- Brown, G.G.; Benito, N.P.; Pasini, A.; Sautter, K.D.; Guimaraes, M.F.; Torres, E. No-tillage greatly increases earthworm populations in Parana state, Brazil. Pedobiologia 2002, 47, 764–771. [Google Scholar] [CrossRef]
- Cantero, C. La biodiversidad bajo sistemas de Agricultura de Conservación. In Proceedings of the Congreso Internacional Sobre Agricultura de Conservación, Córdoba, Spain, 9–11 November 2005. [Google Scholar]
- Rodríguez, E.; Fernández-Anero, F.J.; Ruiz, P.; Campos, M. Soil arthropod abundance under conventional and no tillage in a Mediterranean climate. Soil Tillage Res. 2006, 85, 229–233. [Google Scholar] [CrossRef]
- Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions. Agron. J. 2002, 94, 38–47. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Mazzoncini, M.; Bàrberi, P.; Antichi, D.; Silvestri, N. Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agron. Sustain. Dev. 2012, 32, 853–863. [Google Scholar] [CrossRef]
- Moreno-García, M.; Repullo-Ruibérriz de Torres, M.A.; González-Sánchez, E.J.; Ordóñez-Fernández, R.; Veroz-González, Ó.; Carbonell-Bojollo, R.M. Methodology for estimating the impact of no tillage on the 4perMille initiative: The case of annual crops in Spain. Geoderma 2020, 371, 114381. [Google Scholar] [CrossRef]
- Carbonell-Bojollo, R.; Veroz-Gonzalez, O.; Ordoñez-Fernandez, R.; Moreno-Garcia, M.; Basch, G.; Kassam, A.; Repullo-Ruibérriz de Torres, M.A.; Gonzalez-Sanchez, E.J. The effect of conservation agriculture and environmental factors on CO2 emissions in a rainfed crop rotation. Sustainability 2019, 11, 3955. [Google Scholar] [CrossRef]
- Da Rocha, D.; Krolow, V.; Krolow, I.R.C.; dos Santos, D.R.; Morselli, T.B.G.A.; Calegari, A. Alteration in soil fauna due to soil management and crop rotation in a long-term experiment. Sci. Agrar. 2017, 18, 50–63. [Google Scholar]
- Massaccesi, L.; Rondoni, G.; Tosti, G.; Conti, E.; Guiducci, M.; Agnelli, A. Data on soil physicochemical properties and biodiversity from conventional, organic and organic mulch-based cropping systems. Data Brief 2020, 31, 105718. [Google Scholar] [CrossRef]
- Quintanilla-Tornel, M.A.; Wang, K.H.; Tavares, J.; Hooks, C.R. Effects of mulching on above and below ground pests and beneficials in a green onion agroecosystem. Agric. Ecosyst. Environ. 2016, 224, 75–85. [Google Scholar] [CrossRef]
- Adams, P.R.; Orr, D.B.; Arellano, C.; Cardoza, Y.J. Soil and foliar arthropod abundance and diversity in five cropping systems in the coastal plains of North Carolina. Environ. Entomol. 2017, 46, 771–783. [Google Scholar] [CrossRef]
- Rakotomanga, D.; Blanchart, É.; Rabary, B.; Randriamanantsoa, R.; Razafindrakoto, M.; Autfray, P. Crop management and soil macrofauna diversity in the Highlands of Madagascar. Biotechnol. Agron. Société Environ. 2016, 20, 495–507. [Google Scholar] [CrossRef]
- Santos, D.P.; Santos, G.G.; Santos, I.L.D.; Schossler, T.R.; Niva, C.C.; Marchão, R.L. Characterization of soil macrofauna in grain production systems in the Southeastern State of Piauí, Brazil. Pesqui. Agropecuária Bras. 2016, 51, 1466–1475. [Google Scholar] [CrossRef]
- Shearin, A.F.; Reberg-Horton, S.C.; Gallandt, E.R. Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators. Env. Entomol. 2007, 36, 1140–1146. [Google Scholar] [CrossRef]
- Marasas, M.E.; Sarandón, S.J.; Cicchino, A.C. Changes in soil arthropod functional group in a wheat crop under conventional and no tillage systems in Argentina. Appl. Soil Ecol. 2001, 18, 61–68. [Google Scholar] [CrossRef]
- Holland, J.M.; Luff, M.L. The effects of agricultural practices on Carabidae in temperate agroecosystems. Integr. Pest Manag. Rev. 2000, 5, 109–129. [Google Scholar] [CrossRef]
- Trichard, A.; Alignier, A.; Biju-Duval, L.; Petit, S. The relative effects of local management and landscape context on weed seed predation and carabid functional groups. Basic Appl. Ecol. 2013, 14, 235–245. [Google Scholar] [CrossRef]
- Jacobsen, S.K.; Sigsgaard, L.; Johansen, A.B.; Thorup-Kristensen, K.; Jensen, P.M. The impact of reduced tillage and distance to field margin on predator functional diversity. J. Insect Conserv. 2023, 26, 491–501. [Google Scholar] [CrossRef]
- Xin, X.L.; Yang, W.L.; Zhu, Q.G.; Zhang, X.F.; Zhu, A.N.; Zhang, J.B. Abundance and depth stratification of soil arthropods as influenced by tillage regimes in a sandy loam soil. Soil Use Manag. 2018, 34, 286–296. [Google Scholar] [CrossRef]
- Henneron, L.; Bernard, L.; Hedde, M.; Pelosi, C.; Villenave, C.; Chenu, C.; Bertrand, M.; Girardin, C.; Blanchart, E. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agron. Sustain. Dev. 2015, 35, 169–181. [Google Scholar] [CrossRef]
- Puliga, G.A.; Thiele, J.; Ahnemann, H.; Dauber, J. Effects of Temporal Crop Diversification of a Cereal-Based Cropping System on Generalist Predators and Their Biocontrol Potential. Front. Agron. 2021, 3, 704979. [Google Scholar] [CrossRef]
- Redlich, S.; Martin, E.A.; Steffan-Dewenter, I. Sustainable landscape, soil and crop management practices enhance biodiversity and yield in conventional cereal systems. J. Appl. Ecol. 2021, 58, 507–517. [Google Scholar] [CrossRef]
- Hakeem, A.; Parajulee, M.; Ismail, M.; Hussain, T.; Lewis, K. Influence of Cover Crops on Ground-Dwelling Arthropod Population Abundance and Diversity in Texas Cotton. Southwest. Entomol. 2021, 46, 305–316. [Google Scholar] [CrossRef]
- Muoni, T.; Mhlanga, B.; Forkman, J.; Sitali, M.; Thierfelder, C. Tillage and crop rotations enhance populations of earthworms, termites, dung beetles and centipedes: Evidence from a long-term trial in Zambia. J. Agric. Sci. 2019, 157, 504–514. [Google Scholar] [CrossRef]
- Kelly, C.; Fonte, S.J.; Shrestha, A.; Daane, K.M.; Mitchell, J.P. Winter cover crops and no-till promote soil macrofauna communities in irrigated, Mediterranean cropland in California, USA. Appl. Soil Ecol. 2021, 166, 104068. [Google Scholar] [CrossRef]
- Blanchart, E.; Bernoux, M.; Sarda, X.; Siqueira Neto, M.; Cerri, C.C.; Piccolo, M.; Douzet, J.M.; Scopel, E.; Feller, C. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric. Conspec. Sci. 2007, 72, 81–87. [Google Scholar]
- Fernandes, W.D.; Lange, D.; Pereira, J.M.; Raizer, J. Ant community in neotropical agrosystems: A four-year study in conventional and no-tillage systems. Sociobiology 2018, 65, 130–137. [Google Scholar] [CrossRef]
- Campos, M.; González, B.; Rodríguez, E.; Fernández, F.; Civantos, M. Influencia del manejo del suelo en las poblaciones de artrópodos en el cultivo del olivo. In Proceedings of the I Conferencia Internacional de IFOAM Sobre Olivar Ecológico, Puente de Génave, Spain, 22–25 May 2002. [Google Scholar]
- Pérez-Fuertes, O.; García-Tejero, S.; Pérez Hidalgo, N.; Mateo-Tomás, P.; Olea, P.P. Irrigation effects on arthropod communities in Mediterranean cereal agro-ecosystems. Ann. Appl. Biol. 2015, 167, 236–249. [Google Scholar] [CrossRef]
- Jaworski, C.C.; Thomine, E.; Rusch, A.; Lavoir, A.V.; Wang, S.; Desneux, N. Crop diversification to promote arthropod pest management: A review. Agric. Commun. 2023, 1, 100004. [Google Scholar] [CrossRef]
- Moreno-García, M.; Repullo-Ruibérriz de Torres, M.Á.; Carbonell-Bojollo, R.; López-Tirado, J.; Aguado-Martín, L.Ó.; Rodríguez-Lizana, A.; Ordóñez-Fernández, R. Effects of Multifunctional Margins Implementation on Biodiversity in Annual Crops. Agronomy 2021, 11, 2171. [Google Scholar] [CrossRef]
- Sparks, D.L.; Fendorf, S.E.; Toner, C.V.; Carski, T.H. Kinetic methods and measurements. In Methods of Soil Analysis: Part 3-Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America, Inc.: Madison, WI, USA, 2008; Volume 5, pp. 1275–1307. [Google Scholar]
- Lu, X.; Zhao, X.; Tachibana, T.; Uchida, K.; Sasaki, T.; Bai, Y. Plant quantity and quality regulate the diversity of arthropod communities in a semi-arid grassland. Funct. Ecol. 2021, 35, 601–613. [Google Scholar] [CrossRef]
- Martella, M.B.; Trumper, E.V.; Bellis, L.M.; Renison, D.; Giordano, P.F.; Bazzano, G.; Gleiser, R.M. Manual de Ecología. Poblaciones: Demografía, crecimiento e interacciones. Reduca 2012, 5. [Google Scholar]
- Follett, R.F.; Castellanos, J.Z.; Buenger, E.D. Carbon dynamics and sequestration in an irrigated Vertisol in Central Mexico. Soil Tillage Res. 2005, 83, 148–158. [Google Scholar] [CrossRef]
- Román-Vázquez, J.; Moreno-García, M.; Repullo-Ruibérriz de Torres, M.A.; Veroz-González, O.; Agüera-de Pablo Blanco, B.; Kassam, A.; Basch, G.; González-Sánchez, E.J. Conservation Agriculture: Moving towards the Preservation and Improvement of Biodiversity in Agricultural Ecosystems; European Conservation Agriculture Federation (ECAF): Brussels, Belgium, 2023. [Google Scholar]
RABANALES | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Depth | pH H2O | pH CaCl2 | P | K | OC | OM | CO32− | CEC | SAND | SILT | CLAY |
cm | - | mg/kg | % | meq/100 gr | % | ||||||
0–20 | 7.72 | 7.16 | 13.22 | 262.68 | 1.66 | 2.85 | 11.04 | 24.04 | 30.68 | 32.13 | 37.19 |
20–40 | 7.79 | 7.17 | 10.88 | 188.96 | 1.34 | 2.26 | 12.61 | 27.13 | 30.95 | 30.84 | 38.21 |
40–60 | 7.96 | 7.28 | 8.07 | 164.04 | 1.06 | 1.79 | 15.18 | 27.18 | 28.34 | 30.85 | 40.81 |
ALAMEDA DEL OBISPO | |||||||||||
Depth | pH H2O | pH CaCl2 | P | K | OC | OM | CO32− | CEC | SAND | SILT | CLAY |
cm | - | mg/kg | % | meq/100 gr | % | ||||||
0–20 | 8.60 | 7.74 | 7.90 | 186.62 | 0.42 | 0.71 | 19.18 | 11.73 | 49.23 | 34.89 | 15.88 |
20–40 | 8.68 | 7.84 | 4.55 | 97.28 | 0.29 | 0.49 | 21.07 | 11.37 | 49.39 | 34.65 | 15.96 |
40–60 | 8.72 | 7.83 | 4.11 | 103.20 | 0.25 | 0.42 | 20.13 | 10.79 | 51.56 | 34.23 | 14.22 |
OC (0–5) | OC (10–20) | OC (5–10) | Individuals | Management System | Morphospecies | |
---|---|---|---|---|---|---|
OC (10–20) (p-value) | 0.8136 0.0000 | |||||
OC (5–10) (p-value) | 0.8568 0.0000 | 0.8322 0.0000 | ||||
Nº individuals (p-value) | 0.4511 0.5591 | 0.3383 0.7726 | 0.4024 0.6900 | |||
Management (p-value) | 0.3655 0.0000 | 0.1885 0.0003 | 0.1430 0.0066 | 0.5319 0.5473 | ||
Morphospecies (p-value) | 0.1011 0.0218 | 0.0983 0.0150 | 0.0824 0.0204 | 0.6485 0.0000 | 0.6370 0.2284 | |
Irrigation-No irrigation (p-value) | 0.8016 0.0000 | 0.8363 0.0000 | 0.8952 0.0000 | 0.4348 0.5113 | 0.0028 0.9579 | 0.4389 0.0243 |
Eigenvalues | Percent of Variance | Cumulative Percent of Variance | ||||
---|---|---|---|---|---|---|
1 component | 3.56677 | 59.4 | 59.4 | |||
2 component | 1.05777 | 17.6 | 77.1 | |||
3 component | 0.97562 | 16.3 | 93.3 | |||
4 component | 0.18696 | 3.1 | 96.5 | |||
5 component | 0.12229 | 2.0 | 98.5 | |||
6 component | 0.09059 | 1.5 | 100.0 | |||
Factor | Vector 1 | Vector 2 | Vector 3 | Vector 4 | Vector 5 | Vector 6 |
OC (0–5) | −0.4963 | −0.1287 | −0.0910 | −0.3383 | 0.7694 | 0.1495 |
OC (10–20) | −0.4905 | 0.0302 | 0.0432 | 0.8534 | 0.0959 | −0.1383 |
OC (5–10) | −0.5036 | 0.0825 | 0.0714 | −0.3720 | −0.3305 | −0.6978 |
Shannon biodiversity index | 0.0180 | −0.5395 | 0.8415 | −0.0131 | 0.0132 | 0.0100 |
Soil management system | −0.1351 | −0.7989 | −0.5054 | 0.0206 | −0.2862 | 0.0759 |
Irrigation | −0.4908 | 0.2154 | 0.1455 | −0.1353 | −0.4555 | 0.6825 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-García, M.; Repullo-Ruibérriz de Torres, M.A.; Ordóñez-Fernández, R.; González-Sánchez, E.J.; Carbonell-Bojollo, R.M. Long-Term Effects of No-Tillage on Arthropod Biodiversity in Rainfed and Irrigated Annual Crops. Agronomy 2024, 14, 2192. https://doi.org/10.3390/agronomy14102192
Moreno-García M, Repullo-Ruibérriz de Torres MA, Ordóñez-Fernández R, González-Sánchez EJ, Carbonell-Bojollo RM. Long-Term Effects of No-Tillage on Arthropod Biodiversity in Rainfed and Irrigated Annual Crops. Agronomy. 2024; 14(10):2192. https://doi.org/10.3390/agronomy14102192
Chicago/Turabian StyleMoreno-García, Manuel, Miguel A. Repullo-Ruibérriz de Torres, Rafaela Ordóñez-Fernández, Emilio J. González-Sánchez, and Rosa M. Carbonell-Bojollo. 2024. "Long-Term Effects of No-Tillage on Arthropod Biodiversity in Rainfed and Irrigated Annual Crops" Agronomy 14, no. 10: 2192. https://doi.org/10.3390/agronomy14102192
APA StyleMoreno-García, M., Repullo-Ruibérriz de Torres, M. A., Ordóñez-Fernández, R., González-Sánchez, E. J., & Carbonell-Bojollo, R. M. (2024). Long-Term Effects of No-Tillage on Arthropod Biodiversity in Rainfed and Irrigated Annual Crops. Agronomy, 14(10), 2192. https://doi.org/10.3390/agronomy14102192