Long-Term Effects of No-Tillage on Arthropod Biodiversity in Rainfed and Irrigated Annual Crops
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoate, C.; Báldi, A.; Beja, P.; Boatman, N.D.; Herzon, I.; Van Doorn, A.; Ramwell, C. Ecological impacts of early 21st century agricultural change in Europe—A review. J. Environ. Manag. 2009, 91, 22–46. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, P.; Sayr, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.P.; Bengtsson, J. Temporal and spatial variability in soil food web structure. Oikos 2007, 116, 1789–1804. [Google Scholar] [CrossRef]
- Dale, V.H.; Polasky, S. Measures of the effects of agricultural practices on ecosystem services. Ecol. Econ. 2007, 64, 286–296. [Google Scholar] [CrossRef]
- Pérez-Bote, J.L.; Romero, A.J. Epigeic soil arthropod abundance under different agricultural land uses. Span. J. Agric. Res. 2012, 10, 55–61. [Google Scholar] [CrossRef]
- Stout, J.; Finn, J.A. Recognizing the value of insects in providing ecosystem services. Ecol. Entomol. 2015, 40, 1–2. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- González-Sánchez, E.J.; Veroz-González, O.; Blanco-Roldan, G.L.; Márquez-García, F.; Carbonell-Bojollo, R. A renewed view of conservation agriculture and its evolution over the last decade in Spain. Soil Tillage Res. 2015, 146, 204–212. [Google Scholar] [CrossRef]
- Ordóñez-Fernández, R.; González Fernández, P.; Giráldez Cervera, J.V.; Perea Torres, F. Soil properties and crop yields after 21 years of direct drilling trials in southern Spain. Soil Tillage Res. 2007, 94, 47–54. [Google Scholar] [CrossRef]
- FAO Conservation Agriculture. Available online: https://www.fao.org/conservation-agriculture/en/ (accessed on 23 July 2024).
- Brown, G.G.; Benito, N.P.; Pasini, A.; Sautter, K.D.; Guimaraes, M.F.; Torres, E. No-tillage greatly increases earthworm populations in Parana state, Brazil. Pedobiologia 2002, 47, 764–771. [Google Scholar] [CrossRef]
- Cantero, C. La biodiversidad bajo sistemas de Agricultura de Conservación. In Proceedings of the Congreso Internacional Sobre Agricultura de Conservación, Córdoba, Spain, 9–11 November 2005. [Google Scholar]
- Rodríguez, E.; Fernández-Anero, F.J.; Ruiz, P.; Campos, M. Soil arthropod abundance under conventional and no tillage in a Mediterranean climate. Soil Tillage Res. 2006, 85, 229–233. [Google Scholar] [CrossRef]
- Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions. Agron. J. 2002, 94, 38–47. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Mazzoncini, M.; Bàrberi, P.; Antichi, D.; Silvestri, N. Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agron. Sustain. Dev. 2012, 32, 853–863. [Google Scholar] [CrossRef]
- Moreno-García, M.; Repullo-Ruibérriz de Torres, M.A.; González-Sánchez, E.J.; Ordóñez-Fernández, R.; Veroz-González, Ó.; Carbonell-Bojollo, R.M. Methodology for estimating the impact of no tillage on the 4perMille initiative: The case of annual crops in Spain. Geoderma 2020, 371, 114381. [Google Scholar] [CrossRef]
- Carbonell-Bojollo, R.; Veroz-Gonzalez, O.; Ordoñez-Fernandez, R.; Moreno-Garcia, M.; Basch, G.; Kassam, A.; Repullo-Ruibérriz de Torres, M.A.; Gonzalez-Sanchez, E.J. The effect of conservation agriculture and environmental factors on CO2 emissions in a rainfed crop rotation. Sustainability 2019, 11, 3955. [Google Scholar] [CrossRef]
- Da Rocha, D.; Krolow, V.; Krolow, I.R.C.; dos Santos, D.R.; Morselli, T.B.G.A.; Calegari, A. Alteration in soil fauna due to soil management and crop rotation in a long-term experiment. Sci. Agrar. 2017, 18, 50–63. [Google Scholar]
- Massaccesi, L.; Rondoni, G.; Tosti, G.; Conti, E.; Guiducci, M.; Agnelli, A. Data on soil physicochemical properties and biodiversity from conventional, organic and organic mulch-based cropping systems. Data Brief 2020, 31, 105718. [Google Scholar] [CrossRef]
- Quintanilla-Tornel, M.A.; Wang, K.H.; Tavares, J.; Hooks, C.R. Effects of mulching on above and below ground pests and beneficials in a green onion agroecosystem. Agric. Ecosyst. Environ. 2016, 224, 75–85. [Google Scholar] [CrossRef]
- Adams, P.R.; Orr, D.B.; Arellano, C.; Cardoza, Y.J. Soil and foliar arthropod abundance and diversity in five cropping systems in the coastal plains of North Carolina. Environ. Entomol. 2017, 46, 771–783. [Google Scholar] [CrossRef]
- Rakotomanga, D.; Blanchart, É.; Rabary, B.; Randriamanantsoa, R.; Razafindrakoto, M.; Autfray, P. Crop management and soil macrofauna diversity in the Highlands of Madagascar. Biotechnol. Agron. Société Environ. 2016, 20, 495–507. [Google Scholar] [CrossRef]
- Santos, D.P.; Santos, G.G.; Santos, I.L.D.; Schossler, T.R.; Niva, C.C.; Marchão, R.L. Characterization of soil macrofauna in grain production systems in the Southeastern State of Piauí, Brazil. Pesqui. Agropecuária Bras. 2016, 51, 1466–1475. [Google Scholar] [CrossRef]
- Shearin, A.F.; Reberg-Horton, S.C.; Gallandt, E.R. Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators. Env. Entomol. 2007, 36, 1140–1146. [Google Scholar] [CrossRef]
- Marasas, M.E.; Sarandón, S.J.; Cicchino, A.C. Changes in soil arthropod functional group in a wheat crop under conventional and no tillage systems in Argentina. Appl. Soil Ecol. 2001, 18, 61–68. [Google Scholar] [CrossRef]
- Holland, J.M.; Luff, M.L. The effects of agricultural practices on Carabidae in temperate agroecosystems. Integr. Pest Manag. Rev. 2000, 5, 109–129. [Google Scholar] [CrossRef]
- Trichard, A.; Alignier, A.; Biju-Duval, L.; Petit, S. The relative effects of local management and landscape context on weed seed predation and carabid functional groups. Basic Appl. Ecol. 2013, 14, 235–245. [Google Scholar] [CrossRef]
- Jacobsen, S.K.; Sigsgaard, L.; Johansen, A.B.; Thorup-Kristensen, K.; Jensen, P.M. The impact of reduced tillage and distance to field margin on predator functional diversity. J. Insect Conserv. 2023, 26, 491–501. [Google Scholar] [CrossRef]
- Xin, X.L.; Yang, W.L.; Zhu, Q.G.; Zhang, X.F.; Zhu, A.N.; Zhang, J.B. Abundance and depth stratification of soil arthropods as influenced by tillage regimes in a sandy loam soil. Soil Use Manag. 2018, 34, 286–296. [Google Scholar] [CrossRef]
- Henneron, L.; Bernard, L.; Hedde, M.; Pelosi, C.; Villenave, C.; Chenu, C.; Bertrand, M.; Girardin, C.; Blanchart, E. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agron. Sustain. Dev. 2015, 35, 169–181. [Google Scholar] [CrossRef]
- Puliga, G.A.; Thiele, J.; Ahnemann, H.; Dauber, J. Effects of Temporal Crop Diversification of a Cereal-Based Cropping System on Generalist Predators and Their Biocontrol Potential. Front. Agron. 2021, 3, 704979. [Google Scholar] [CrossRef]
- Redlich, S.; Martin, E.A.; Steffan-Dewenter, I. Sustainable landscape, soil and crop management practices enhance biodiversity and yield in conventional cereal systems. J. Appl. Ecol. 2021, 58, 507–517. [Google Scholar] [CrossRef]
- Hakeem, A.; Parajulee, M.; Ismail, M.; Hussain, T.; Lewis, K. Influence of Cover Crops on Ground-Dwelling Arthropod Population Abundance and Diversity in Texas Cotton. Southwest. Entomol. 2021, 46, 305–316. [Google Scholar] [CrossRef]
- Muoni, T.; Mhlanga, B.; Forkman, J.; Sitali, M.; Thierfelder, C. Tillage and crop rotations enhance populations of earthworms, termites, dung beetles and centipedes: Evidence from a long-term trial in Zambia. J. Agric. Sci. 2019, 157, 504–514. [Google Scholar] [CrossRef]
- Kelly, C.; Fonte, S.J.; Shrestha, A.; Daane, K.M.; Mitchell, J.P. Winter cover crops and no-till promote soil macrofauna communities in irrigated, Mediterranean cropland in California, USA. Appl. Soil Ecol. 2021, 166, 104068. [Google Scholar] [CrossRef]
- Blanchart, E.; Bernoux, M.; Sarda, X.; Siqueira Neto, M.; Cerri, C.C.; Piccolo, M.; Douzet, J.M.; Scopel, E.; Feller, C. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric. Conspec. Sci. 2007, 72, 81–87. [Google Scholar]
- Fernandes, W.D.; Lange, D.; Pereira, J.M.; Raizer, J. Ant community in neotropical agrosystems: A four-year study in conventional and no-tillage systems. Sociobiology 2018, 65, 130–137. [Google Scholar] [CrossRef]
- Campos, M.; González, B.; Rodríguez, E.; Fernández, F.; Civantos, M. Influencia del manejo del suelo en las poblaciones de artrópodos en el cultivo del olivo. In Proceedings of the I Conferencia Internacional de IFOAM Sobre Olivar Ecológico, Puente de Génave, Spain, 22–25 May 2002. [Google Scholar]
- Pérez-Fuertes, O.; García-Tejero, S.; Pérez Hidalgo, N.; Mateo-Tomás, P.; Olea, P.P. Irrigation effects on arthropod communities in Mediterranean cereal agro-ecosystems. Ann. Appl. Biol. 2015, 167, 236–249. [Google Scholar] [CrossRef]
- Jaworski, C.C.; Thomine, E.; Rusch, A.; Lavoir, A.V.; Wang, S.; Desneux, N. Crop diversification to promote arthropod pest management: A review. Agric. Commun. 2023, 1, 100004. [Google Scholar] [CrossRef]
- Moreno-García, M.; Repullo-Ruibérriz de Torres, M.Á.; Carbonell-Bojollo, R.; López-Tirado, J.; Aguado-Martín, L.Ó.; Rodríguez-Lizana, A.; Ordóñez-Fernández, R. Effects of Multifunctional Margins Implementation on Biodiversity in Annual Crops. Agronomy 2021, 11, 2171. [Google Scholar] [CrossRef]
- Sparks, D.L.; Fendorf, S.E.; Toner, C.V.; Carski, T.H. Kinetic methods and measurements. In Methods of Soil Analysis: Part 3-Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America, Inc.: Madison, WI, USA, 2008; Volume 5, pp. 1275–1307. [Google Scholar]
- Lu, X.; Zhao, X.; Tachibana, T.; Uchida, K.; Sasaki, T.; Bai, Y. Plant quantity and quality regulate the diversity of arthropod communities in a semi-arid grassland. Funct. Ecol. 2021, 35, 601–613. [Google Scholar] [CrossRef]
- Martella, M.B.; Trumper, E.V.; Bellis, L.M.; Renison, D.; Giordano, P.F.; Bazzano, G.; Gleiser, R.M. Manual de Ecología. Poblaciones: Demografía, crecimiento e interacciones. Reduca 2012, 5. [Google Scholar]
- Follett, R.F.; Castellanos, J.Z.; Buenger, E.D. Carbon dynamics and sequestration in an irrigated Vertisol in Central Mexico. Soil Tillage Res. 2005, 83, 148–158. [Google Scholar] [CrossRef]
- Román-Vázquez, J.; Moreno-García, M.; Repullo-Ruibérriz de Torres, M.A.; Veroz-González, O.; Agüera-de Pablo Blanco, B.; Kassam, A.; Basch, G.; González-Sánchez, E.J. Conservation Agriculture: Moving towards the Preservation and Improvement of Biodiversity in Agricultural Ecosystems; European Conservation Agriculture Federation (ECAF): Brussels, Belgium, 2023. [Google Scholar]
RABANALES | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Depth | pH H2O | pH CaCl2 | P | K | OC | OM | CO32− | CEC | SAND | SILT | CLAY |
cm | - | mg/kg | % | meq/100 gr | % | ||||||
0–20 | 7.72 | 7.16 | 13.22 | 262.68 | 1.66 | 2.85 | 11.04 | 24.04 | 30.68 | 32.13 | 37.19 |
20–40 | 7.79 | 7.17 | 10.88 | 188.96 | 1.34 | 2.26 | 12.61 | 27.13 | 30.95 | 30.84 | 38.21 |
40–60 | 7.96 | 7.28 | 8.07 | 164.04 | 1.06 | 1.79 | 15.18 | 27.18 | 28.34 | 30.85 | 40.81 |
ALAMEDA DEL OBISPO | |||||||||||
Depth | pH H2O | pH CaCl2 | P | K | OC | OM | CO32− | CEC | SAND | SILT | CLAY |
cm | - | mg/kg | % | meq/100 gr | % | ||||||
0–20 | 8.60 | 7.74 | 7.90 | 186.62 | 0.42 | 0.71 | 19.18 | 11.73 | 49.23 | 34.89 | 15.88 |
20–40 | 8.68 | 7.84 | 4.55 | 97.28 | 0.29 | 0.49 | 21.07 | 11.37 | 49.39 | 34.65 | 15.96 |
40–60 | 8.72 | 7.83 | 4.11 | 103.20 | 0.25 | 0.42 | 20.13 | 10.79 | 51.56 | 34.23 | 14.22 |
OC (0–5) | OC (10–20) | OC (5–10) | Individuals | Management System | Morphospecies | |
---|---|---|---|---|---|---|
OC (10–20) (p-value) | 0.8136 0.0000 | |||||
OC (5–10) (p-value) | 0.8568 0.0000 | 0.8322 0.0000 | ||||
Nº individuals (p-value) | 0.4511 0.5591 | 0.3383 0.7726 | 0.4024 0.6900 | |||
Management (p-value) | 0.3655 0.0000 | 0.1885 0.0003 | 0.1430 0.0066 | 0.5319 0.5473 | ||
Morphospecies (p-value) | 0.1011 0.0218 | 0.0983 0.0150 | 0.0824 0.0204 | 0.6485 0.0000 | 0.6370 0.2284 | |
Irrigation-No irrigation (p-value) | 0.8016 0.0000 | 0.8363 0.0000 | 0.8952 0.0000 | 0.4348 0.5113 | 0.0028 0.9579 | 0.4389 0.0243 |
Eigenvalues | Percent of Variance | Cumulative Percent of Variance | ||||
---|---|---|---|---|---|---|
1 component | 3.56677 | 59.4 | 59.4 | |||
2 component | 1.05777 | 17.6 | 77.1 | |||
3 component | 0.97562 | 16.3 | 93.3 | |||
4 component | 0.18696 | 3.1 | 96.5 | |||
5 component | 0.12229 | 2.0 | 98.5 | |||
6 component | 0.09059 | 1.5 | 100.0 | |||
Factor | Vector 1 | Vector 2 | Vector 3 | Vector 4 | Vector 5 | Vector 6 |
OC (0–5) | −0.4963 | −0.1287 | −0.0910 | −0.3383 | 0.7694 | 0.1495 |
OC (10–20) | −0.4905 | 0.0302 | 0.0432 | 0.8534 | 0.0959 | −0.1383 |
OC (5–10) | −0.5036 | 0.0825 | 0.0714 | −0.3720 | −0.3305 | −0.6978 |
Shannon biodiversity index | 0.0180 | −0.5395 | 0.8415 | −0.0131 | 0.0132 | 0.0100 |
Soil management system | −0.1351 | −0.7989 | −0.5054 | 0.0206 | −0.2862 | 0.0759 |
Irrigation | −0.4908 | 0.2154 | 0.1455 | −0.1353 | −0.4555 | 0.6825 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-García, M.; Repullo-Ruibérriz de Torres, M.A.; Ordóñez-Fernández, R.; González-Sánchez, E.J.; Carbonell-Bojollo, R.M. Long-Term Effects of No-Tillage on Arthropod Biodiversity in Rainfed and Irrigated Annual Crops. Agronomy 2024, 14, 2192. https://doi.org/10.3390/agronomy14102192
Moreno-García M, Repullo-Ruibérriz de Torres MA, Ordóñez-Fernández R, González-Sánchez EJ, Carbonell-Bojollo RM. Long-Term Effects of No-Tillage on Arthropod Biodiversity in Rainfed and Irrigated Annual Crops. Agronomy. 2024; 14(10):2192. https://doi.org/10.3390/agronomy14102192
Chicago/Turabian StyleMoreno-García, Manuel, Miguel A. Repullo-Ruibérriz de Torres, Rafaela Ordóñez-Fernández, Emilio J. González-Sánchez, and Rosa M. Carbonell-Bojollo. 2024. "Long-Term Effects of No-Tillage on Arthropod Biodiversity in Rainfed and Irrigated Annual Crops" Agronomy 14, no. 10: 2192. https://doi.org/10.3390/agronomy14102192
APA StyleMoreno-García, M., Repullo-Ruibérriz de Torres, M. A., Ordóñez-Fernández, R., González-Sánchez, E. J., & Carbonell-Bojollo, R. M. (2024). Long-Term Effects of No-Tillage on Arthropod Biodiversity in Rainfed and Irrigated Annual Crops. Agronomy, 14(10), 2192. https://doi.org/10.3390/agronomy14102192