Assessing the Impact of IrrigaSys Decision Support System on Farmers’ Irrigation Practices in Southern Portugal: A Post Evaluation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Computation of Soil Water Balance and Crop Yields
2.3. Data Selection
2.4. Multicriteria Analysis
- Irrigation water use (IWU, m3 ha−1), representing the total or gross irrigation applied each season.
- Water-use efficiency (WUE, dimensionless), calculated as the ratio of ETa to the sum of IWU and precipitation (P).
- Crop water productivity (WPc, kg m−3), given by the ratio of the actual marketable yield (Y) to ETa.
- Irrigation water productivity (WPi, kg m−3), calculated as the ratio of Y to IWU.
- Land productivity (LP, kg ha−1), corresponding to Y.
- Economic land productivity (ELP, EUR ha−1), representing the value of Y in current prices. In this study, maize yield was 0.26 EUR kg−1 following market prices in 2022.
- Economic crop water productivity (EWPc, EUR m−3), given by the ratio of ELP and Eta.
- Economic irrigation water productivity (EWPi, EUR m−3), calculated by the ratio between the ELP and IWU.
3. Results and Discussion
3.1. Environmental and Economic Indicators
3.2. Ranking Farmers’ Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pereira, L.S.; Cordery, I.; Iacovides, I. Coping with Water Scarcity. Addressing the Challenges; Springer: Dordrecht, The Netherlands; Berlin, Germany, 2009; p. 382. [Google Scholar]
- UNESCO. United Nations World Water Development Report 2020. Water and Climate Change; United Nations: Paris, France, 2020; p. 234. [Google Scholar]
- FAO. Status of the World’s Soil Resources; Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015; p. 650. [Google Scholar]
- Rinaldi, M.; He, Z. Decision Support Systems to manage irrigation in agriculture. Adv. Agron. 2014, 123, 229–279. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Jovanovic, N. Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agric. Water Manag. 2020, 241, 106357. [Google Scholar] [CrossRef]
- Pôças, I.; Calera, A.; Campos, I.; Cunha, M. Remote sensing for estimating and mapping single and basal crop coefficients: A review on spectral vegetation indices approaches. Agric. Water Manag. 2020, 233, 106081. [Google Scholar] [CrossRef]
- Eching, S. Role of technology in irrigation advisory services: The CIMIS experience. In Proceedings of the Workshop “Irrigation Advisory Services and Participatory Extension in Irrigation Management”, Montreal, QC, Canada, 24 July 2002. [Google Scholar]
- Vories, E.; Tacker, P.; Hall, S. The Arkansas irrigation scheduler. In Proceedings of the World Environmental and Water Resources Congress 2009: Great Rivers, Kansas City, MO, USA, 17–21 May 2009. [Google Scholar] [CrossRef]
- Johnson, L.F.; Trout, T.J. Satellite NDVI Assisted Monitoring of Vegetable Crop Evapotranspiration in California’s San Joaquin Valley. Remote Sens. 2012, 4, 439–455. [Google Scholar] [CrossRef]
- Hornbuckle, J.W.; Car, N.J.; Christen, E.W.; Stein, T.M.; Williamson, B. IrriSatSMS—Irrigation Water Management by Satellite and SMS—A Utilisation Framework; CRC for Irrigation Futures Technical Report No. 01/09; CSIRO Land and Water Science Report No. 04/09; CSIRO: Canberra, Australia, 2009. [Google Scholar]
- Giannerini, G.; Genovesi, R. The water saving with Irriframe platform for thousands of Italian farms. J. Agric. Inform. 2015, 6, 49–55. [Google Scholar] [CrossRef]
- Mannini, P.; Genovesi, R.; Letterio, T. IRRINET: Large scale DSS application for on farm irrigation scheduling. Procedia Environ. Sci. 2013, 19, 823–829. [Google Scholar] [CrossRef]
- Belfiore, O.R.; Castagna, A.; Longo-Minnolo, G.; Ippolito, M.; Bavieri, A.; Comegna, A.; D’Urso, G. Monitoring of irrigation water use in Italy by using IRRISAT methodology: The INCIPIT project. In AIIA 2002: Biosystems Engineering Towards the Green Deal, Lecture Notes in Civil Engineering; Ferro, V., Giordano, G., Orlando, S., Vallone, M., Cascone, G., Porto, S.M.C., Eds.; Springer: Berlin, Germany, 2023; Volume 337, pp. 41–49. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Irrigation & Drainage Paper 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Simionesei, L.; Ramos, T.B.; Palma, J.; Oliveira, A.R.; Neves, R. IrrigaSys: A web-based irrigation decision support system based on open source data and technology. Comput. Electron. Agric. 2020, 178, 105822. [Google Scholar] [CrossRef]
- Ramos, T.B.; Simionesei, L.; Jauch, E.; Almeida, C.; Neves, R. Modelling soil water and maize growth dynamics influenced by shallow groundwater conditions in the Sorraia Valley region, Portugal. Agric. Water Manag. 2017, 185, 27–42. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool; Theoretical Documentation; Version 2009; Texas Water Resources Institute; Technical Report No. 406; Texas A&M University System: College Station, TX, USA, 2011. [Google Scholar]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC crop growth model. Trans. Am. Soc. Agric. Biol. Eng. 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Ramos, T.B.; Simionesei, L.; Oliveira, A.R.; Darouich, H.; Neves, R. Assessing the Impact of LAI Data Assimilation on Simulations of the SoilWater Balance and Maize Development Using MOHID-Land. Water 2018, 10, 1367. [Google Scholar] [CrossRef]
- Ramos, T.B.; Simionesei, L.; Oliveira, A.R.; Neves, R.; Darouich, H. Exploring the Use of Vegetation Indices for Validating Crop Transpiration Fluxes Computed with the MOHID-Land Model. Application to Vineyard. Agronomy 2021, 11, 1228. [Google Scholar] [CrossRef]
- Simionesei, L.; Ramos, T.B.; Oliveira, A.R.; Jongen, M.; Darouich, H.; Weber, K.; Proença, V.; Domingos, T.; Neves, R. Modeling Soil Water Dynamics and Pasture Growth in the Montado Ecosystem Using MOHID Land. Water 2018, 10, 489. [Google Scholar] [CrossRef]
- Bana e Costa, C.A. Readings in Multiple Criteria Decision Aid; Springer: Berlin, Germany, 2012; p. 660. [Google Scholar]
- Linkov, I.; Satterstrom, F.K.; Kiker, G.; Batchelor, C.; Bridges, T.; Ferguson, E. From comparative risk assessment to multi-criteria decision analysis and adaptive management: Recent developments and applications. Environ. Int. 2006, 32, 1072–1093. [Google Scholar] [CrossRef] [PubMed]
- Keen, P.G.; Scott Morton, M.S. Decision Support Systems: An Organizational Perspective; Addison-Wesley Publishing Company: Boston, MA, USA, 1978. [Google Scholar]
- Hajkowicz, S.; Collins, K. A review of multiple criteria analysis for water resource planning and management. Water Resour. Manag. 2007, 21, 1553–1566. [Google Scholar] [CrossRef]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.C.; Chen, C.-H. Using the ELECTRE II method to apply and analyze the differentiation theory. Proc. East. Asia Soc. Transp. Stud. 2005, 5, 2237–2249. [Google Scholar]
- Ishizaka, A.; Nemery, P. Multi-Criteria Decision Analysis: Methods and Software; John Wiley & Sons: Hoboken, NJ, USA, 2013; p. 296. [Google Scholar]
- Gonçalves, J.M.; Pereira, L.S. Decision support system for surface irrigation design. J. Irrig. Drain. Eng. 2009, 135, 343–356. [Google Scholar] [CrossRef]
- Pedras, C.M.G.; Pereira, L.S. Multicriteria analysis for design of microirrigation systems. Application and sensitivity analysis. Agric. Water Manag. 2009, 96, 702–710. [Google Scholar] [CrossRef]
- Darouich, H.; Gonçalves, J.M.; Muga, A.; Pereira, L.S. Water saving vs. farm economics in cotton surface irrigation: An application of multicriteria analysis. Agric. Water Manag. 2012, 115, 223–231. [Google Scholar] [CrossRef]
- Darouich, H.; Pedras, C.M.G.; Gonçalves, J.M.; Pereira, L.S. Drip vs. surface irrigation: A comparison focusing water saving and economic returns using multicriteria analysis applied to cotton. Biosyst. Eng. 2014, 122, 74–90. [Google Scholar] [CrossRef]
- Darouich, H.; Cameira, R.M.; Gonçalves, J.M.; Paredes, P.; Pereira, L.S. Comparing sprinkler and surface irrigation for wheat using multi-criteria analysis: Water saving vs. economic returns. Water 2017, 9, 50. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of Field Water Use and Crop Yield; Simulation Monographs Pudoc: Wageningen, The Netherlands, 1978. [Google Scholar]
- American Society of Civil Engineers (ASCE). Hydrology Handbook Task Committee on Hydrology Handbook; II Series, GB 661.2. H93; ASCE: Reston, VA, USA, 1996; pp. 96–104. [Google Scholar]
- Ritchie, J.T. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef]
- Keller, J.; Bliesner, R.D. Sprinkle and Trickle Irrigation; Van Nostrand Reinhold: New York, NY, USA, 1990. [Google Scholar]
- Ren, D.; Xu, X.; Hao, Y.; Huang, G. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon. J. Hydrol. 2016, 532, 122–139. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Vila, M.G.; Moreno, P.M. AquaCrop: FAO’s crop water productivity and yield assessment model. Environ. Model. Softw. 2014, 62, 351–360. [Google Scholar] [CrossRef]
- Han, M.; Zhao, C.; Šimůnek, J.; Feng, G. Evaluating the impact of groundwater on cotton growth and root zone water balance using HYDRUS-1D coupled with a crop growth model. Agric. Water Manag. 2015, 160, 64–75. [Google Scholar] [CrossRef]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric. Water Manag. 2012, 108, 39–51. [Google Scholar] [CrossRef]
- Fernández, J.E.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M.V. Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard. Agric. Water Manag. 2020, 237, 106074. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Muga, A.P.; Horst, M.G.; Pereira, L.S. Furrow irrigation design with multicriteria analysis. Biosyst. Eng. 2011, 109, 266–275. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Miao, Q.; Shi, H.; Gonçalves, J.M.; Pereira, L.S. Basin irrigation design with multi-criteria analysis focusing on water saving and economic returns: Application to wheat in Hetao, Yellow River Basin. Water 2018, 10, 67. [Google Scholar] [CrossRef]
- Roy, B.; Vincke, P. Multicriteria analysis: Survey and new directions. Eur. J. Oper. Res. 1981, 8, 207–218. [Google Scholar] [CrossRef]
- Vetschera, R. Sensitivity analysis for the ELECTRE multicriteria method. Zeitschrift für Oper. Res. 1986, 30, B99–B117. [Google Scholar] [CrossRef]
- Vincke, P. Multicriteria Ddecision-Aid; John Wiley & Sons: Hoboken, NJ, USA, 1992; p. 174. [Google Scholar]
- Simpson, L. Do decision makers know what they prefer? MAVT and ELECTRE II. J. Oper. Res. Soc. 1996, 47, 919–929. [Google Scholar] [CrossRef]
- Sapkota, M.; Arora, M.; Malano, H.; Sharma, A.; Moglia, M. Integrated Evaluation of Hybrid Water Supply Systems Using a PROMETHEE–GAIA Approach. Water 2018, 10, 610. [Google Scholar] [CrossRef]
- Montazar, A.; Gheidari, O.N.; Snyder, R. A fuzzy analytical hierarchy methodology for the performance assessment of irrigation projects. Agric. Water Manag. 2013, 121, 113–123. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Hao, X. An Improved Analytic Hierarchy Process Method for the evaluation of agricultural water management in irrigation districts of north China. Agric. Water Manag. 2017, 179, 324–337. [Google Scholar] [CrossRef]
- Karleuša, B.; Hajdinger, A.; Tadić, L. The application of multi-criteria analysis methods for the determination of priorities in the implementation of irrigation plans. Water 2019, 11, 501. [Google Scholar] [CrossRef]
- Pomerol, J.C.; Romero, S.B. Multicriterion Decision in Management: Principles and Practice; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 2000; Volume 25. [Google Scholar]
- Gonçalves, J.M.; Muga, A.P.; Pereira, L.S. A Web-based decision support system for surface irrigation design. Efficient Decision Support Systems-Practice and Challenges in Multidisciplinary Domains. In Proceedings of the 7th World Congress on Computers in Agriculture Conference, Reno, NV, USA, 22–24 June 2009. [Google Scholar]
- Cameira, M.R.; Fernando, R.M.; Pereira, L.S. Monitoring water and NO3-N in irrigated maize fields in the Sorraia Watershed, Portugal. Agric. Water Manag. 2003, 60, 199–216. [Google Scholar] [CrossRef]
- Paredes, P.; Rodrigues, G.C.; Alves, I.; Pereira, L.S. Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agric. Water Manag. 2014, 135, 27–39. [Google Scholar] [CrossRef]
- Linker, R.; Sylaios, G.; Tsakmakis, I.; Ramos, T.B.; Simionesei, L.; Plauborg, F.; Battilani, A. Sub-optimal model-based deficit irrigation scheduling with realistic weather forecasts. Irrig. Sci. 2018, 36, 349–362. [Google Scholar] [CrossRef]
Criteria Attributes (x) | Units | Utility Functions | Weights (λ) | |
---|---|---|---|---|
S1 | S2 | |||
Water saving: | 90 | 10 | ||
Irrigation water use (IWU) | m3 ha−1 | U(x) = 1 − (1.4 × 10−4 x − 0.42) | 25 | 3 |
Water-use efficiency (WUE) | - | U(x) = 1.18 x − 0.29 | 25 | 3 |
Crop water productivity (WPc) | kg m−3 | U(x) = 0.263 x − 0.63 | 20 | 2 |
Irrigation water productivity (WPi) | kg m−3 | U(x) = 0.53 x − 0.89 | 20 | 2 |
Economic productivity: | 10 | 90 | ||
Land productivity (LP) | kg ha−1 | U(x) =5.75 × 10−5 x − 0.46 | 3 | 30 |
Economic land productivity (ELP) | EUR ha−1 | U(x) = 1.1 × 10−4 x − 0.22 | 3 | 30 |
Economic crop water productivity (EWPc) | EUR m−3 | U(x) = 0.690 x − 0.41 | 2 | 15 |
Economic irrigation water productivity (EWPi) | EUR m−3 | U(x) = 0.769 x − 0.31 | 2 | 15 |
2019 | 2022 | |||
---|---|---|---|---|
Alternatives | Water Priority (S1) | Economic Priority (S2) | Water Priority (S1) | Economic Priority (S2) |
1 | F_P2 | F_P5 | M_P7 | M_P12 |
2 | F_P16 | F_P17 | M_P8 | M_P11 |
3 | F_P17 | M_P14 | M_P11 | M_P1 |
4 | F_P3 | M_P5 | M_P12 | M_P7 |
5 | F_P5 | M_P15 | M_P1 | M_P8 |
6 | M_P9 | F_P15 | F_P9 | M_P5 |
7 | F_P6 | F_P6 | F_P17 | F_P9 |
8 | M_P8 | M_P6 | F_P2 | M_P18 |
9 | M_P15 | M_P8 | F_P3 | M_P17 |
10 | F_P7 | F_P14 | F_P7 | F_P5 |
11 | M_P6 | M_P17 | M_P17 | M_P6 |
12 | F_P12 | F_P8 | M_P15 | M_P15 |
13 | F_P19 | F_P7 | M_P6 | M_P16 |
14 | M_P17 | F_P19 | M_P13 | M_P9 |
15 | M_P16 | M_P7 | M_P5 | F_P7 |
16 | M_P1 | M_P1 | M_P16 | M_P13 |
17 | M_P5 | M_P19 | M_P9 | F_P6 |
18 | M_P14 | F_P1 | M_P19 | F_P18 |
19 | M_P19 | M_P16 | F_P10 | M_P19 |
20 | M_P7 | F_P2 | M_P18 | F_P15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darouich, H.; Simionesei, L.; Oliveira, A.R.; Neves, R.; Ramos, T.B. Assessing the Impact of IrrigaSys Decision Support System on Farmers’ Irrigation Practices in Southern Portugal: A Post Evaluation Study. Agronomy 2024, 14, 66. https://doi.org/10.3390/agronomy14010066
Darouich H, Simionesei L, Oliveira AR, Neves R, Ramos TB. Assessing the Impact of IrrigaSys Decision Support System on Farmers’ Irrigation Practices in Southern Portugal: A Post Evaluation Study. Agronomy. 2024; 14(1):66. https://doi.org/10.3390/agronomy14010066
Chicago/Turabian StyleDarouich, Hanaa, Lucian Simionesei, Ana R. Oliveira, Ramiro Neves, and Tiago B. Ramos. 2024. "Assessing the Impact of IrrigaSys Decision Support System on Farmers’ Irrigation Practices in Southern Portugal: A Post Evaluation Study" Agronomy 14, no. 1: 66. https://doi.org/10.3390/agronomy14010066
APA StyleDarouich, H., Simionesei, L., Oliveira, A. R., Neves, R., & Ramos, T. B. (2024). Assessing the Impact of IrrigaSys Decision Support System on Farmers’ Irrigation Practices in Southern Portugal: A Post Evaluation Study. Agronomy, 14(1), 66. https://doi.org/10.3390/agronomy14010066