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Abstract: The IrrigaSys decision support system (DSS) has supported farmers’ decision-making
regarding irrigation scheduling in the Sorraia Valley irrigation district in Southern Portugal over a
span of six years (2017–2022). This study aims to conduct a postevaluation of farmers’ adherence to
the DSS, employing a multicriteria analysis (MCA) approach with data from the 2019 (driest year)
and 2020 (average year) growing seasons. Two distinct scenarios were taken into consideration:
the first focused on water conservation, and the second centered on farmers’ economic returns.
The outcomes of the first scenario revealed that farmers exhibited a reasonable level of expertise,
particularly during the driest season. They achieved water-saving indicators comparable to those
obtained when adhering to optimized irrigation schedules generated weekly by the DSS. In the
wetter season, discrepancies emerged between farmers’ and model indicators, primarily attributed to
challenges in integrating reliable information from precipitation forecasts into the decision-making
process. In the second scenario, both farmers’ and model results exhibited close economic indicators
throughout both seasons. While IrrigaSys requires further developments, these results show that the
DSS has effectively contributed to supporting irrigation water management in the study region.

Keywords: water scarcity; irrigation scheduling; precipitation forecast; water productivity; economic
indicators

1. Introduction

In water-scarce regions, irrigation is essential for meeting crop water requirements,
enhancing food production with higher yields, addressing the growing demand for food,
ensuring food stability, and promoting the prosperity of rural areas [1]. On the other hand,
irrigation is also responsible for building-up the pressure on water resources, representing
70% of all freshwater withdrawals in the world and 90% in the least developed regions [2].
Irrigation is also associated with land degradation, primarily through its contribution to
the contamination or depletion of water resources, the promotion of soil erosion and soil
salinization, as well as biodiversity loss [3]. Therefore, the imperative need to ensure the
sustainability of agricultural systems has driven the development of decision support
systems (DSSs) focused on improving irrigation water management at both the field and
irrigation district scales.

DSSs are interactive software-based tools employed to gather valuable information
from various raw data sources (e.g., soil moisture sensors, proximal and remote sensing
platforms, soil water balance models) and deliver optimized solutions (e.g., irrigation
scheduling), aiding farmers in the decision-making process [4]. DSSs are now widespread
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throughout the most important agricultural regions in the world as reviewed by Pereira
et al. [5] and Pôças et al. [6]. These systems benefit from the advancing field of information
and communication technology (ICT), including the Internet of things (IoT), satellites,
drones, robotics, and artificial intelligence, providing limitless possibilities to improve
farming operations and the management of soil and water resources. Examples of web-
based irrigation DSSs are CIMIS [7], AIS [8], and TOPS-SIMS [9] in use in the United States;
IrriSatSMS [10] in Australia; IRRINET-IRRIFRAME [11,12] and IRRISAT [13] in Italy; and
SPIDER [14] in Spain. All of these DSSs employ tipping-based approaches for computing
the soil water balance, relying on FAO 56 procedures [15] for estimating crop irrigation
needs. Those incorporating remote sensing data further make use of preestablished rela-
tionships between canopy reflectance and crop transpiration for the accurate assessment of
crop water requirements.

The IrrigaSys [16], in use in Portugal, exhibits important differences from the afore-
mentioned systems due to its increased complexity. The core engine of this system, the
MOHID-Land model [17], adopts a mechanistic approach wherein the Richards’ equation
is used for computing soil water storage and fluxes in the root zone, meaning that a full
description of soil hydraulic functions is required, i.e., the soil water retention and soil
hydraulic conductivity curves from saturation to oven dryness. Moreover, the model
includes the simulation of crop growth, considering factors such as intercepted light, the
conversion of intercepted light into biomass, crop stress, and the number of heat units
defining the crop season [18,19]. The model further includes a system-dependent boundary
condition based on soil pressure heads for irrigation scheduling [17].

Despite the complexity of the model, the DSS requires only a limited set of inputs
from farmers, which include the location of the agricultural field, crop type, sowing and
harvest dates, soil texture, and characteristics of the irrigation system [16]. As the DSS
is not remotely connected to sensors, data regarding daily or weekly applied irrigation
depths are collected through weekly surveys conducted by the technical staff of the local
water board, which oversees the system. This information is critical for the reliability of
outputs. Furthermore, a series of demonstrative case studies have been implemented over
the years to gain farmers’ confidence in the DSS outputs [17,20–22]. However, there is still
uncertainty regarding the willingness of farmers to adhere to the recommended irrigation
schedules generated by IrrigaSys. A multicriteria analysis (MCA) may provide insights
into the extent to which farmers follow the IrrigaSys recommendations by comparing their
performance with irrigation schedules generated by the DSS using a range of environmental
and economic indicators.

The MCA emerged in the 1960s as a decision-making tool, facilitating a comparative
evaluation of diverse alternatives or heterogeneous scenarios, considering multiple criteria
simultaneously within complex situations. Its structure is designed to yield conclusions
based on the preferences and priorities of multiple decision-makers, or to generate single
synthetic conclusions at the end of the evaluation [23]. This method aids the integration
of various options, incorporating the perspectives of involved decision-makers within a
prospective or retrospective framework. Additionally, the MCA aims to organize and merge
diverse evaluations considered by decision-makers to find conclusions based on multiple
choices. Ultimately, this process provides operational suggestions or recommendations
for future activities [24,25]. The MCA finds applications across various fields such as
hydrology, the environment, and agronomy. In irrigation agriculture, the MCA improves
the understanding of impacts, allowing for a satisfactory compromise between conflicting
decision-maker objectives [26–29]. The MCA is further considered as a valuable tool for
addressing water management issues, highlighting social, economic, environmental, and
water-related aspects that require careful consideration to meet sustainability objectives
in the irrigated agriculture sector. As such, the MCA has been extensively applied in
irrigation scheduling, design, and management, aiding in finding suitable solutions for
specific environmental conditions [30–34].
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Therefore, the primary objective of this study is to gain insights into farmers’ adherence
to IrrigaSys recommendations using the MCA. The specific aim is to compare different sets
of farmers’ and model applications from both water-saving and economic perspectives.
The ultimate goal is to assess how closely farmers’ performance aligns with an optimized
irrigation schedule provided by IrrigaSys.

2. Materials and Methods
2.1. Description of the Study Area

From 2017 to 2022, IrrigaSys annually supported 30 farmers in managing about
103 plots, varying in size from 0.03 to 75 hectares, covering a total area of 2080 ha. These
plots were situated within the Sorraia Valley irrigation district (Figure 1), in southern
Portugal. The district is overseen by a local water board, the Associação de Regantes
e Beneficiários do Vale do Sorraia (ARBVS). Water access is on demand. The region ex-
periences a semiarid to dry subhumid climate characterized by hot, dry summers and
mild winters with irregular rainfall. The mean annual rainfall is around 500 mm, vary-
ing from 200 to 900 mm over the years. Annual surface air temperature averages 15 ◦C,
ranging from approximately 9 ◦C in January to around 22 ◦C in July. The mean annual
reference evapotranspiration (ETo), calculated using the FAO56 Penman–Monteith (PM)
equation [15], is close to 900 mm. The most representative soil types include Fluvisols,
Planosols, Cambisols, Luvisols, and Regosols [35]. Rice (Oryza sativa L.) and maize (Zea
mays L.) were the main crops in the region, constituting approximately 33.4–36.0% and
23.2–20.2%, respectively, of the total irrigated area (16,661–19,173 ha) during the operational
period of IrrigaSys (2017–2022). Olive (Olea europaea L.), tomato (Solanum lycopersicum L.),
and other vegetable crops were also grown in the region. Surface irrigation and center
pivots were used in 36.7–39.9% and 30.0–36.1% of the total irrigated area during the same
period (2017–2022). IrrigaSys only supported irrigation management of plots equipped
with pressurized systems.
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Figure 1. Location of the study area.

2.2. Computation of Soil Water Balance and Crop Yields

The MOHID-Land model [17] was used as the core in IrrigaSys to compute the soil
water balance and crop yields. The soil water balance equation was solved in a vertical soil
column using a finite-volume approach, as follows:

ETa + RO + DP − I − P − CR − ∆S = 0 (1)

where ∆S is the change in soil water storage (mm), ETa is the actual evapotranspiration
(mm), RO is the surface runoff (mm), DP is the deep percolation (mm), I is the irrigation
depth (mm), P is the precipitation amount (mm), and CR is the capillary rise (mm), all
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computed between time steps. Because the model is solved using a one-dimensional
domain, RO was neglected. CR was also not considered due to difficulties in considering
the upward fluxes from the groundwater using such simplified approach. As explained
later, this is one major limitation of IrrigaSys.

In the grid domain, a variable saturated flow was computed using the Richards
equation. The unsaturated soil hydraulic properties were described using the Mualem–van
Genuchten functional relationships [36,37]. The sink term in the Richards equation was
computed following the macroscopic approach proposed by Feddes et al. [38]. In this
approach, the potential transpiration (Tp, L T−1) is linearly distributed over the root zone,
resulting in the function Tp(z), which is diminished as a function of the soil pressure head.
The piecewise linear model proposed by Feddes et al. [38] was adopted for computing
actual transpiration rates (Ta, L T−1). The water uptake was assumed to be equal to the
potential rate when the pressure head was between h2 and h3, to drop off linearly when
h > h2 or h < h3, and to become zero when h < h4 or h > h1 (subscripts 1 to 4 denote different
threshold pressure heads). Actual soil evaporation (Ea, L T−1) was obtained by limiting Ep
values using a threshold pressure head [39].

The atmosphere and irrigation data provided the necessary data for imposing surface
boundary conditions. Crop evapotranspiration rates (ETc, L T−1) were also given as the
product of the single crop coefficient (Kc) and the reference evapotranspiration (ETo, L T−1)
computed by the FAO PM equation [15]. ETc values were then partitioned into potential Ep
and Tp as a function of simulated leaf area index (LAI, m2 m−2) following Ritchie [40]. The
LAI, as well as other crop growth state variables (total biomass, root depth, crop height,
crop yield), were simulated using a modified version of the EPIC model [18,19]. This model
is based on the heat unit theory, which assumes that all heat above the base temperature
accelerates crop growth and development.

2.3. Data Selection

For each plot, IrrigaSys generated weekly reports with the irrigation schedule for
the upcoming week. During its operation, the system retrieved daily weather data from
the closest weather station in the local network and a weather forecast model, which was
subsequently used to compute the ETo using the FAO-PM equation. ETc rates were then de-
termined following the single Kc approach [15] and were used for defining the atmospheric
boundary conditions in MOHID-Land. Following this, the model calculated the soil water
balance for both the preceding and forthcoming week using irrigation data provided by
farmers through ARBVS technicians. In some instances where irrigation data from farmers
were not input promptly, the system incorporated a set of procedures, as elaborated in
Simionesei et al. [16]. Most of these procedures assumed that farmers had adhered to the
irrigation schedule outlined in the previous report. Upon receiving the delayed data, the
system proceeded to update the soil water balance, incorporating all information from the
time of sowing up to the provided date using farmers’ data. When providing recommen-
dations, a full irrigation strategy was adopted with the goal of maximizing crop yields by
aligning actual evapotranspiration (ETa) rates with their potential values. IrrigaSys solely
provided recommendations, allowing farmers to decide whether to follow the irrigation
advice. Consequently, farmers’ schedules naturally exhibited varying degrees of deviation
from the optimized model outputs, which this study aimed to analyze.

Twenty plots were selected for conducting the MCA based on the following criteria:
(i) maize was chosen as the most representative crop in the region (excluding rice) and
in IrrigaSys, and (ii) the center pivot was selected as the most represented pressurized
irrigation system in the region. The selected plots included the same crop grown in
both the driest year (2019) and the average year (2022) served by IrrigaSys for seasonal
comparison. For each plot, data extracted included the seasonal gross irrigation amount
(IWU), the seasonal ETa, and crop yield (Y). The data from farmers were compared to the
corresponding optimized values generated by the MOHID-Land model. Model estimates
of gross irrigation amounts assumed an application efficiency of the center pivot of 85% [41].
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Farmers’ data on ETa and crop yields were estimated using farmers’ irrigation data as
model input instead of the optimized schedules. In both scenarios (farmers vs. model), ETa
values were computed from the soil water balance by summing Ea and Ta rates. Yields
were obtained as the product of the aboveground biomass and a harvest index [17]. This
procedure can be found in many different modeling applications [42–44].

2.4. Multicriteria Analysis

The MCA was organized into five phases, as depicted in Figure 2. Phase 1 involved
defining the study objectives, specifically comparing farmers’ performance in each plot
against irrigation schedules recommended by the model using a set of water-saving and
economic indicators.
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Phase 2 involved a sequence of steps. The first step referred to the definition of the
criteria attributes, which were applicable to two scenarios: Scenario 1 (S1), focusing on
environmental and water-saving assessment in relation to irrigation performance, and
Scenario 2 (S2), addressing the benefit and economic assessment associated with farmers’
economic perspectives. For S1, the following criteria attributes were considered [45,46]:

• Irrigation water use (IWU, m3 ha−1), representing the total or gross irrigation applied
each season.

• Water-use efficiency (WUE, dimensionless), calculated as the ratio of ETa to the sum of
IWU and precipitation (P).

• Crop water productivity (WPc, kg m−3), given by the ratio of the actual marketable
yield (Y) to ETa.

• Irrigation water productivity (WPi, kg m−3), calculated as the ratio of Y to IWU.
• For S2, the criteria attributes were the following [45,46]:
• Land productivity (LP, kg ha−1), corresponding to Y.
• Economic land productivity (ELP, EUR ha−1), representing the value of Y in current

prices. In this study, maize yield was 0.26 EUR kg−1 following market prices in 2022.
• Economic crop water productivity (EWPc, EUR m−3), given by the ratio of ELP

and Eta.
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• Economic irrigation water productivity (EWPi, EUR m−3), calculated by the ratio
between the ELP and IWU.

The second and third steps in Phase 2 involved creating a payoff matrix that put
together alternatives (a total of 40 results from both farmers and models for each season)
against attributes (water-saving and economic indicators). The last step in Phase 2 involved
defining the utility function (Uj) for each attribute value (xj) considered in criterion j using
a linear model [32,47,48], as follows:

Uj
(
xj
)
= αjxj + βj (2)

where α is the slope’s function, and β is the utility value of Uj(xj) for a null value of
the attribute. In this function, Uj is normalized from 0 to 1; 0 corresponds to the most
adverse condition, while 1 signifies the most advantageous result. As commonly observed
in irrigation studies [34,49], the slope α is negative (Figure 3B) for criteria associated
with water savings (IWU) and positive (Figure 3A) for the water productivity, WUE, and
economic criteria.
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In Phase 3, a pay-off matrix of the alternatives versus utilities of each criterion (nor-
malized water-saving and economic indicators) was established. Phase 4 started by pre-
analyzing all sets of alternatives to eliminate unsatisfactory results. The viable alternatives
were then subjected to outranking. Outranking methods are based on multiple comparisons
of the type: “does Measure A outrank Measure B from the point of view of the environmen-
tal or economic criterion?” [50–53]. Among various available methods [54–57], the linear
weighted sum (LWS) [58] was used. The LWS has the advantage of simplicity, facilitating a
clearer understanding of the procedures and results. However, a drawback lies in the full
compensatory assumption of the LWS method, meaning any criterion with lower results
can be compensated by another one with better results.

In this method, a global utility value (U) is computed for each alternative by integrating
the utilities of the different criteria attributes using weights that are assigned to reflect users’
priorities [32–34,47,48,59], as follows:

U = ∑n
j=1 λjUj

(
xj
)

(3)

where U is the global utility (scaled from 0 to 1), n is the number of criteria attributes
(n = 8), and λj is the corresponding attribute weight. In this study, criterion weights aimed
to emphasize the environmental and economic perspectives. Table 1 presents the weights
assigned to attributes for water-saving and economic result priorities. These were used
in Phase 5 to compare global utilities and rank alternatives by building the prioritization
scenarios. S1 assumed a 90% weight for water-saving results and 10% for farm economic
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results. S2 was the opposite, assuming 10% weight for water-saving results and 90% for
farm economic results.

Table 1. Criteria attributes, utility functions, and criteria weights.

Criteria Attributes (x) Units Utility Functions Weights (λ)
S1 S2

Water saving: 90 10
Irrigation water use (IWU) m3 ha−1 U(x) = 1 − (1.4 × 10−4 x − 0.42) 25 3
Water-use efficiency (WUE) - U(x) = 1.18 x − 0.29 25 3
Crop water productivity (WPc) kg m−3 U(x) = 0.263 x − 0.63 20 2
Irrigation water productivity (WPi) kg m−3 U(x) = 0.53 x − 0.89 20 2

Economic productivity: 10 90
Land productivity (LP) kg ha−1 U(x) =5.75 × 10−5 x − 0.46 3 30
Economic land productivity (ELP) EUR ha−1 U(x) = 1.1 × 10−4 x − 0.22 3 30
Economic crop water productivity (EWPc) EUR m−3 U(x) = 0.690 x − 0.41 2 15
Economic irrigation water productivity (EWPi) EUR m−3 U(x) = 0.769 x − 0.31 2 15

3. Results and Discussion
3.1. Environmental and Economic Indicators

Figure 4 presents the environmental and economic indicators computed for each
plot based on the outputs derived from the irrigation schedules adopted by farmers or
recommended by the MOHID-Land model for the 2019 and 2022 growing seasons. Plots
are designated from P1 to P20 to ensure anonymity, with the letters F and M representing
results from farmers and the model, respectively. The results inherently depict both
individual management practices and the spatial distribution of plots throughout the
Sorraia Valley district.

Figure 4A,B show model alternatives for WUE, calculated as the ratio of ETa to the
sum of IWU and P, ranging from 0.60 to 0.73 in 2019 and 0.53 to 0.74 in 2022. The variation
in P values among plots can be attributed to the spatial variability of precipitation, as well
as temporal differences in sowing date and the duration of the crop season throughout
the year. Correspondingly, WUE results from farmers showed a wider dispersion in both
seasons, varying from 0.46 to 0.84 in 2019 and 0.42 to 0.86 in 2022. Moreover, except for a few
plots (F_P2, F_P3, and F_P17), WUE values computed from farmers’ results were generally
lower during the average (wetter) season of 2022 than the drier season of 2019. They were
also generally lower than the WUE values computed from model results. Therefore, despite
relatively high and comparable WUE values during the dry season, Figure 4A highlights
some challenges farmers faced in incorporating precipitation forecasts, whether provided
by IrrigaSys or other sources, into their irrigation scheduling during the wetter season.

Figure 4C,D indicate that IWU values from both farmers and the model were relatively
close, averaging 7800 and 8650 m3 ha−1 in 2019 and 7940 and 7800 m3 ha−1 in 2022,
respectively. IWU values from farmers being higher than those recommended by the
model during the average (wetter) season align with the earlier observation regarding the
challenges of assimilating weather forecasts into irrigation schedules. Larger differences
between IWU values from farmers’ schedules and those recommended by the model were
noticed in F_P2, F_P3 and F_P16 in 2019 and F_P2 and F_P3 in 2022. Because WUE values in
these plots are comparable to others, these differences may be explained by the contribution
of upward water fluxes from a shallow groundwater table to the soil water balance. As
reported in Cameira et al. [60] and Ramos et al. [17], capillary fluxes may constitute a
significant component of the soil water balance in certain locations of the Vale Sorraia
irrigation district, contributing up to 45% of crop evapotranspiration. However, IrrigaSys
does not consider such fluxes because modelling the groundwater table requires a regional
approach, while the service uses a one-dimensional plot-scale model for computation of
the soil water balance. Therefore, farmers’ performance, for example in plots F_P2 and
F_P16, appear to outperform the IrrigaSys service.



Agronomy 2024, 14, 66 8 of 14Agronomy 2024, 14, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 4. Farmers (F) versus model (M) alternatives during the growing seasons of 2019 and 2022 
relative to: (A,B) water-use efficiency (WUE, ratio); (C,D) gross irrigation water use (IWU, m3 ha−1) 
and crop and irrigation water productivities (WPc, WPi, kg m−3); and (E,F) land productivity (LP, 
EUR·ha−1), economic crop, and irrigation water productivities (EWPc, EWPi, EUR m−3). 

Figure 4C,D indicate that IWU values from both farmers and the model were 
relatively close, averaging 7800 and 8650 m3 ha−1 in 2019 and 7940 and 7800 m3 ha−1 in 2022, 
respectively. IWU values from farmers being higher than those recommended by the 
model during the average (wetter) season align with the earlier observation regarding the 
challenges of assimilating weather forecasts into irrigation schedules. Larger differences 
between IWU values from farmers’ schedules and those recommended by the model were 
noticed in F_P2, F_P3 and F_P16 in 2019 and F_P2 and F_P3 in 2022. Because WUE values 
in these plots are comparable to others, these differences may be explained by the 
contribution of upward water fluxes from a shallow groundwater table to the soil water 
balance. As reported in Cameira et al. [60] and Ramos et al. [17], capillary fluxes may 
constitute a significant component of the soil water balance in certain locations of the Vale 
Sorraia irrigation district, contributing up to 45% of crop evapotranspiration. However, 
IrrigaSys does not consider such fluxes because modelling the groundwater table requires 
a regional approach, while the service uses a one-dimensional plot-scale model for 

Figure 4. Farmers (F) versus model (M) alternatives during the growing seasons of 2019 and 2022
relative to: (A,B) water-use efficiency (WUE, ratio); (C,D) gross irrigation water use (IWU, m3 ha−1)
and crop and irrigation water productivities (WPc, WPi, kg m−3); and (E,F) land productivity (LP,
EUR·ha−1), economic crop, and irrigation water productivities (EWPc, EWPi, EUR m−3).

Figure 4C,D further show the WPc and WPi values computed from farmers and model
results. It should be noted that yields were estimated in both cases using the MOHID-Land
model while assuming the irrigation schedules defined by farmers or those recommended
by the model. Therefore, farmers’ results reflect solely the impact of irrigation scheduling
on crop yields and do not account for the effect of pests and diseases that eventually
occurred during the two studied seasons. Farmers’ consumptive WPc values ranged from
2.75 to 4.08 kg m−3 in 2019 and 2.47 to 4.22 kg m−3 in 2022. These values are comparable to
those reported in Ramos et al. [17] for maize grown in the same region (2.71–2.73 kg m−3).
The model’s optimized schedules returned similar values, ranging from 2.71 to 4.08 kg m−3

in 2019 and 2.74 to 6.12 kg m−3 in 2022. However, average WPc values notably differed
in the average (wetter) season, with farmers’ results averaging 3.66 kg m−3, while the
model reached an average of 4.19 kg m−3. Similar findings were observed for WPi (1.71–
3.34 kg m−3), despite yielding smaller values than WPc. Nonetheless, values were within
the WPi range reported by Paredes et al. [61] for the same crop and region. While the
WPc and WPi values for both farmers and the model’s results exhibited relatively close
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ranges, notable disparities emerged in plots P1, P7, P8, P11, and P12 during the 2022 season.
Although IWU values were relatively close in these plots, it appears that farmers’ less
efficient irrigation schedules may have induced some stress (reflected in lower ETa) in the
plants, leading to diminished yields. In contrast, the model-generated irrigation schedules
resulted in optimal crop growth, translating into higher performance indicators.

Lastly, Figure 4E,F present the land productivity and economic indicators computed
for the study plots. In 2019, LP values in farmers’ results varied from 8 to 20 Mg ha−1.
However, only results from F_P16 stand out from the others, being abnormally low. As pre-
viously hypothesized, this low LP may have resulted from not considering the contribution
of groundwater flows to the root zone when computing the soil water balance, with actual
yield values being substantially higher than estimated here. In this case, model parametriza-
tion in this plot should be reevaluated. Alternatively, the lower LP value could reflect
some mismanagement of irrigation water during that season, as the same was not observed
in 2022. In that year, farmers’ LP values were found to be within the 16 to 20 Mg ha−1

range. The same was observed for the model’s LP values in both seasons, despite some
high values (>23.5 Mg ha−1) estimated in five plots for 2022. These higher yields can be
attributed to farmers choosing a longer crop cycle and more productive varieties of maize
in that year, which required making some adjustments to the model estimates.

EWPc and EWPi trends naturally aligned with the yield variations observed between
plots and seasons (Figure 4E,F). EWPc values computed from farmers’ results ranged
from 0.72 to 1.06 EUR m−3 in 2019 and 0.64 to 1.10 EUR m−3 in 2022. The corresponding
values computed from model results were similar for 2019, and again higher for 2022
(0.71–1.59 EUR m−3). Similar findings and interpretations can be applied to the EWPi
values, with farmers’ values ranging from 0.48 to 0.78 EUR m−3 in 2019 and 0.44 EUR m−3

to 0.71 in 2022. Nonetheless, all reported values were found to be higher than the EWPc
(0.29–0.51 EUR m−3) and EWPi (0.31–0.69 EUR m−3) values reported in Paredes et al. [61]
for the same crop and region, which can be explained by the lower commodity price of
maize (0.21 EUR m−3) at the time of that study compared to today’s prices (0.26 EUR m−3).

3.2. Ranking Farmers’ Performance

The global utilities (U) characterizing farmer and model alternatives when priorities
were assigned to water saving (S1) or farm economic returns (S2) during 2019 and 2022
are presented in Figure 5. In the water-saving S1 scenario, farmers’ U values varied
from 0.21 to 0.55 in 2019 and from 0.16 to 0.45 in 2022. The corresponding model U
values ranged from 0.23 to 0.38 in 2019 and from 0.26 to 0.55 in 2022. The results clearly
indicate that farmers’ performance during the dry season (2019) approached or even
surpassed model performance in most fields. This means that during the dry season, in
general, farmers adopted irrigation schedules deemed comparable to those optimized by
the physically based model. The reasons for surpassing model results in some plots were
previously discussed and refer to challenges associated with incorporating upward fluxes
from the groundwater table in the one-dimensional modeling of the soil water balance, as
implemented in IrrigaSys.

During the wetter season of 2022, farmers’ U values consistently fell below those
of the model, highlighting the difficulties in integrating dependable information from
precipitation forecasts into decision-making processes. Several cases were identified where
farmers’ irrigation schedules led to substantially lower water productivity values than
those computed from model recommendations. The relevance of precipitation forecast for
computing the soil water balance increased for the earlier sowing dates, which, depending
on the farmer and season, may vary in the region from April to July. Hence, it appears
that the most crucial factor for increasing the efficient use of water in the region is reliable
precipitation forecast information. Regarding other factors considered in this analysis, most
farmers demonstrated an acceptable level of knowledge in terms of irrigation scheduling
and irrigation water management. However, as demonstrated by Linker et al. [62], who
assessed the quality of current weather forecasts, including those for the Sorraia Valley
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region, precipitation forecasts exhibited significant shortcomings at the locations studied by
those authors. This inadequacy was observed not only in terms of predicting rain amounts
but also in predicting rain/no rain events.
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Figure 5. Global utilities, U, for farmers versus model alternatives when prioritizing water conserva-
tion (A,B) or economic returns (C,D) during the growing seasons of 2019 and 2022.

Relative to farmers’ economic returns S2 scenario, farmers’ U values varied from 0.12
to 0.43 in 2019 and from 0.24 to 0.38 in 2022. The corresponding model U values ranged
from 0.26 to 0.41 in 2019 and from 0.24 to 0.65 in 2022. The results were highly consistent
in both years, indicating that farmers achieved economic returns comparable to those
obtained by following the model’s recommendations. It is crucial to reiterate that yield
estimates in farmers’ applications do not incorporate the impacts of pests, diseases, or other
transient stresses. These estimates solely reflect the effects of water stresses resulting from
nonoptimal irrigation schedules on crop transpiration rates and consequently, on yields.
The actual yield values undoubtedly varied from the estimates considered here, which are
contingent solely upon irrigation schedules. Economic indicators also did not account for
variable costs (e.g., operation, maintenance, labor, energy) that certainly differed from one
plot to the other. However, from a water management perspective, both farmers and the
model exhibited equivalent performance.

Lastly, Table 2 ranks the first 20 best alternatives based on water-saving and economic
returns priorities. The table confirms that in the dry year of 2019, farmers’ applications
proved to be feasible and effective solutions concerning water conservation and economic
considerations. Additionally, model solutions exhibited progress in ranking, securing
the sixth and third positions for S1 and S2, respectively. The top common applications
for farmers in both S1 and S2, ranked among the best 10, were F_P17, F_P5, and F_P6.
Conversely, for model applications, M_P15 emerged as the best common choice.

In 2022, model solutions took the lead in the rankings showing superiority in both
scenarios S1 and S2, having M_P1, M_P7, M_P8, M_P11, and M_P12 in the first top rank
order when the priority was assigned to water saving, while the set of plots of M_P1,
M_P5, M_P7, M_P8, M_P11, and M_P12 showed a high ranking order when the priority
was assigned to economic return. Some of these best common applications showed up as
good options for both S1 and S2. However, farmers also presented viable and satisfactory
solutions, such as F_P9, which was applicable in both scenarios. In general, in S2, without
including the unusual high values of yield (>23.5 Mg ha−1) simulated in five plots in
2022, farmers and models’ applications showed very similar results for both seasons
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and the differences in ranking were very small. In S1, the difference was larger, with
farmers’ solutions showing superiority compared to model applications in some plots.
However, as discussed earlier, these differences might stem from challenges in accurately
configuring the DSS in those specific plots rather than representing an actual enhancement
in farmers’ performance. Nevertheless, the farmers’ rankings in 2022 undeniably highlight
the challenges arising from inaccurate precipitation forecasts in the decision-making process.

Table 2. Ranking of the 20 best alternative solutions for water saving and economic priorities in 2019
and 2022.

2019 2022

Alternatives Water Priority
(S1)

Economic Priority
(S2)

Water Priority
(S1)

Economic Priority
(S2)

1 F_P2 F_P5 M_P7 M_P12
2 F_P16 F_P17 M_P8 M_P11
3 F_P17 M_P14 M_P11 M_P1
4 F_P3 M_P5 M_P12 M_P7
5 F_P5 M_P15 M_P1 M_P8
6 M_P9 F_P15 F_P9 M_P5
7 F_P6 F_P6 F_P17 F_P9
8 M_P8 M_P6 F_P2 M_P18
9 M_P15 M_P8 F_P3 M_P17
10 F_P7 F_P14 F_P7 F_P5
11 M_P6 M_P17 M_P17 M_P6
12 F_P12 F_P8 M_P15 M_P15
13 F_P19 F_P7 M_P6 M_P16
14 M_P17 F_P19 M_P13 M_P9
15 M_P16 M_P7 M_P5 F_P7
16 M_P1 M_P1 M_P16 M_P13
17 M_P5 M_P19 M_P9 F_P6
18 M_P14 F_P1 M_P19 F_P18
19 M_P19 M_P16 F_P10 M_P19
20 M_P7 F_P2 M_P18 F_P15

The results underscore the overall good performance of farmers in irrigation manage-
ment. It is important to note that farmer results cannot be expected to match the model
performance that simulates optimized conditions not present in the real world. While the
general performance of farmers was deemed satisfactory, several cases were identified
where their decisions on irrigation scheduling yielded significantly weaker indicators
compared to the model outputs. In light of these findings, technicians from ARBVS, the
local water board overseeing the Sorraia Valley district, can now pay closer attention to
supporting these farmers, especially during rainier seasons. Furthermore, the results have
shed light on system weaknesses that necessitate improvement in future developments.

4. Conclusions

This study aimed to conduct a postevaluation of IrrigaSys, a DSS that facilitated
farmers’ decision-making regarding irrigation scheduling in the Sorraia Valley irrigation
district in Southern Portugal from 2017 to 2022. This postevaluation primarily focused on
comparing farmers’ performance with recommendations generated by the model running
the DSS. Periodic assessments of this nature are crucial for the continual enhancement of
the system. The comparison was conducted using a set of water-saving and economic
indicators, employing a multicriteria analysis approach.

In general, a more comprehensive characterization of the problem in multicriteria
analysis applications tends to yield better solutions. However, in this case, the MCA
approach employed was somewhat constrained by the available data provided by farmers
and the model. The analysis relied solely on irrigation scheduling data. Achieving a
more reliable solution could be possible by incorporating additional criteria dependent
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on various factors such as irrigation timing, energy costs, agricultural service costs, and
other relevant factors. It is also worth noting that various MCA methods could be explored
for analyzing the study area, although the primary focus of this paper was not to compare
different MCA methods. Nevertheless, although it cannot be directly concluded that
farmers strictly adhered to the system, the results of the MCA unequivocally demonstrate
that farmers demonstrated a commendable level of expertise in irrigation scheduling,
closely aligning with the water-saving and economic indicators derived from the model’s
recommendations, particularly during the dry season. However, in a wetter season, a
noticeable disparity emerged between farmers’ and model indicators, primarily due to the
difficulties associated with incorporating reliable information from precipitation forecasts
into the decision-making process. Addressing this challenge appears to be the key factor
for enhancing the future utilization of IrrigaSys and improving water-use efficiency in
the region.

IrrigaSys requires further developments for reimplementation in the Sorraia Valley
region, specifically targeting the resolution of the outdated requirement for acquiring
information on irrigation applications in various plots through surveys. This demanded
excessive effort from the water board technicians responsible for this task. Numerous
solutions, particularly those using remote sensing data, are today available for automatically
obtaining this information. The primary objective of subsequent developments should be
to test, validate, and incorporate data derived from these methods into the system.
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44. Han, M.; Zhao, C.; Šimůnek, J.; Feng, G. Evaluating the impact of groundwater on cotton growth and root zone water balance

using HYDRUS-1D coupled with a crop growth model. Agric. Water Manag. 2015, 160, 64–75. [CrossRef]
45. Pereira, L.S.; Cordery, I.; Iacovides, I. Improved indicators of water use performance and productivity for sustainable water

conservation and saving. Agric. Water Manag. 2012, 108, 39–51. [CrossRef]
46. Fernández, J.E.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M.V. Water use indicators and economic analysis

for on-farm irrigation decision: A case study of a super high density olive tree orchard. Agric. Water Manag. 2020, 237, 106074.
[CrossRef]

47. Gonçalves, J.M.; Muga, A.P.; Horst, M.G.; Pereira, L.S. Furrow irrigation design with multicriteria analysis. Biosyst. Eng. 2011, 109,
266–275. [CrossRef]

48. Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [CrossRef]
49. Miao, Q.; Shi, H.; Gonçalves, J.M.; Pereira, L.S. Basin irrigation design with multi-criteria analysis focusing on water saving and

economic returns: Application to wheat in Hetao, Yellow River Basin. Water 2018, 10, 67. [CrossRef]
50. Roy, B.; Vincke, P. Multicriteria analysis: Survey and new directions. Eur. J. Oper. Res. 1981, 8, 207–218. [CrossRef]
51. Vetschera, R. Sensitivity analysis for the ELECTRE multicriteria method. Zeitschrift für Oper. Res. 1986, 30, B99–B117. [CrossRef]
52. Vincke, P. Multicriteria Ddecision-Aid; John Wiley & Sons: Hoboken, NJ, USA, 1992; p. 174.
53. Simpson, L. Do decision makers know what they prefer? MAVT and ELECTRE II. J. Oper. Res. Soc. 1996, 47, 919–929. [CrossRef]
54. Sapkota, M.; Arora, M.; Malano, H.; Sharma, A.; Moglia, M. Integrated Evaluation of Hybrid Water Supply Systems Using a

PROMETHEE–GAIA Approach. Water 2018, 10, 610. [CrossRef]
55. Montazar, A.; Gheidari, O.N.; Snyder, R. A fuzzy analytical hierarchy methodology for the performance assessment of irrigation

projects. Agric. Water Manag. 2013, 121, 113–123. [CrossRef]
56. Sun, H.; Wang, S.; Hao, X. An Improved Analytic Hierarchy Process Method for the evaluation of agricultural water management

in irrigation districts of north China. Agric. Water Manag. 2017, 179, 324–337. [CrossRef]
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