Plant Biostimulants as an Effective Tool for Increasing Physiological Activity and Productivity of Different Sugar Beet Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Design
2.2. Biostimulants and Plant Material
2.3. Analysis of Leaf Area Index and Physiological Parameters
2.4. Harvest and Quality Analysis of Sugar Beet
2.5. Statistical Analysis
3. Results
3.1. Biostimulant Impact on Physiological Parameters and Leaf Area Index of Sugar Beet
3.2. Biostimulant Impact on Production Parameters of Sugar Beet
3.3. Evaluation of Interactions between Monitored Factors
3.3.1. Year × Treatment Interactions
3.3.2. Variety × Treatment Interactions
3.4. Analysis of Relationships between Production and Physiological Parameters of Sugar Beet
4. Discussion
4.1. Biostimulants Impact on Physiological Activity of Sugar Beet
4.2. Biostimulants Impact on Production Parameters of Sugar Beet
4.3. Interactions between the Experimental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Füssel, H.-M.; Heinke, J.; Popp, A.; Gerten, D. Food security in a changing climate. In Climate Change, Justice and Sustainability: Linking Climate and Development Policy; Edenhofer, O., Wallacher, J., Campen, H.L., Reder, M., Knopf, B., Müller, J., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 33–43. [Google Scholar]
- IPCC. Summary for Policymakers, Global Warming of 1.5 °C. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018; 32p. [Google Scholar]
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Ringler, C.; Msangi, S.; Palazzo, A.; Batka, M.; et al. Climate Change Impact on Agriculture and Costs of Adaptation; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- Straffelini, E.; Tarolli, P. Climate change-induced aridity is affecting agriculture in Northeast Italy. Agric. Syst. 2023, 208, 103647. [Google Scholar] [CrossRef]
- OECD; FAO. OECD-FAO Agricultural Outlook 2019–2028; OECD Publishing: Paris, France, 2019; 326p, ISBN 978-92-64-31246-3. [Google Scholar]
- Leilah, A.; Badawi, M.; Said, E.; Ghonema, M.; Abdou, M.A. Effect of Planting Dates, Plant Population and Nitrogen Fertilization on Sugar Beet Productivity Under the Newly Reclaimed Sandy Soils in Egypt. Sci. J. King Faisal Univ. 2005, 6, 95–110. [Google Scholar]
- Zhang, Y.; Nan, J.; Yu, B. OMICS Technologies and Applications in Sugar Beet. OMICS Technologies and Applications in Sugar Beet. Front. Plant Sci. 2016, 7, 900. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAOSTAT Database. Food and Agriculture Organization of the United Nations. [Online]. 2023. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 17 May 2023).
- Tomaszewska, J.; Bielinski, D.; Binczarski, M.; Berlowska, J.; Dziugan, P.; Piotrowski, J.; Stanishevsky, A.; Witońska, I.A. Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Adv. 2018, 8, 3161. [Google Scholar] [CrossRef] [PubMed]
- Mikolajczyk-Bator, K.; Blaszczyk, A.; Czyzniejewski, M.; Kachlicki, P. Identification of saponins from sugar beet (Beta vulgaris) by low andhigh-resolution HPLC–MS/MS. J. Chromatogr. B 2016, 1029–1030, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Erdal, G.; Esengun, K.; Erdal, H.; Gunduz, O. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy 2007, 32, 35–41. [Google Scholar] [CrossRef]
- Panella, L. Sugar Beet as an Energy Crop. Sugar Tech 2010, 12, 288–293. [Google Scholar] [CrossRef]
- Monreal, J.A.; Jiménez, E.T.; Remesal, E.; Morillo-Velarde, R.; García-Maurino, S.; Echevarría, C. Proline content of sugar beet 447 storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environ. Expr. Bot. 2006, 448, 257–267. [Google Scholar]
- Nause, N.; Meier, T.; Hoffmann, C. Tissue composition and arrangement in sugar beet genotypes of different tissue strength 450 with regard to damage and pathogen infestation. Sugarindustry 2020, 145, 114–123. [Google Scholar]
- Bloch, D.; Ch Hoffman, M.; Märländer, B. Solute Accumulation as a Cause for Quality Losses in Sugar Beet Submitted to Con-452 tinuous and Temporary Drought Stress. J. Agron. Crop Sci. 2006, 192, 17–24. [Google Scholar] [CrossRef]
- Trimpler, K.; Stockfish, N.; Märländer, B. Efficiency in sugar beet cultivation related to field history. Eur. J. Agron. 2017, 91, 1–9. [Google Scholar] [CrossRef]
- Hoffmann, C.M.; Kenter, C. Yield Potential of Sugar Beet–Have We Hit the Ceiling? Front. Plant Sci. 2018, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sastre, L.F.; Martín-Ramos, P.; Navas-Gracia, L.M.; Hernández-Navarro, S.; Martín-Gil, J. Impact of Climatic Variables on Carbon Content in Sugar Beet Root. Agronomy 2018, 8, 147. [Google Scholar] [CrossRef]
- Chang, L.; Peng-Sen, S.; Shi-Rong, L. A review of plant spectral reflectance response to water physiological changes. Chin. J. Plant Ecol. 2016, 40, 80–91. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, J.; Zhao, C.; Liu, S.; Tong, X. The spatial continuity study of NDVI based on Kriging and BPNN algorithm. Math. Comput. Model. 2011, 54, 1138–1144. [Google Scholar] [CrossRef]
- Din, M.; Zheng, W.; Rashid, M.; Wang, S.; Shi, Z. Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Oryza sativa L. at Diverse Phenological Stages. Front. Plant Sci. 2017, 8, 820. [Google Scholar] [CrossRef]
- Gamon, J.A.; Penuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Sarlikioti, V.; Driever, S.M.; Marcelis, L.F.M. Photochemical reflectance index as a mean of monitoring early water stress. Ann. Appl. Biol. 2010, 157, 81–89. [Google Scholar] [CrossRef]
- Bernář, M.; Šarapatka, B.; Netopil, P.; Zeidler, M.; Hanousek, T.; Homolová, L. The Use of Spectral Indices to Recognize Waterlogged Agricultural Land in South Moravia, Czech Republic. Agriculture 2023, 13, 287. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef]
- FBIR. Biostimulants Market Size, Share & COVID-19 Impact Analysis, by Source (Microbial and Non-Microbial), Active Ingredients (Seaweed Extracts, Humic Substances, Vitamins & Amino Acids, Microbial Amendments, and Others), Application (Foliar Application, Soil Treatment, and Seed Treatment), Crop, and Regional Forecast, 2020–2027. 2020. Available online: https://www.fortunebusinessinsights.com/industry-reports/biostimulants-market-100414 (accessed on 19 May 2023).
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Plant biostimulants: Physiological responses induced by protein hydrolysed-based products and humic substances in plant metabolism. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed]
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Goñi, O.; Quille, P.; O´Connell, S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol. Biochem. 2018, 12, 63–73. [Google Scholar] [CrossRef]
- Trevisan, S.; Francioso, O.; Quaggioti, S.; Nardi, S. Humic substances biological activity at the plant-soil interface. Plant Signal. Behav. 2010, 5, 635–643. [Google Scholar] [CrossRef]
- De Hita, D.; Fuentes, M.; García, A.C.; Olaetxea, M.; Baigorri, R.; Zamarreno, A.M.; Berbara, R.; Garcia-Mina, J.M. Humic substances: A valuable agronomic tool for improving crop adaptation to saline water irrigation. Water Supply 2019, 19, 1735–1740. [Google Scholar] [CrossRef]
- Ali, A.Y.A.; Ibrahim, M.E.H.; Zhou, G.; Nimir, N.E.A.; Jiao, X.; Zhu, G.; Elsiddig, A.M.I.; Suliman, M.S.E.; Elradi, S.B.M.; Yue, W. Exogenous jasmonic acid and humic acid increased salinity tolerance of sorghum. Agron. J. 2020, 112, 871–884. [Google Scholar] [CrossRef]
- Pidgeon, J.D.; Ober, E.S.; Qi, A.; Clark, C.J.A.; Royal, A.; Jaggard, K.W. Using multi-environment sugar beet variety trials 459 to screen for drought tolerance. Field Crops Res. 2005, 95, 268–279. [Google Scholar] [CrossRef]
- Curcic, Z.; Ciric, M.; Nagl, N.; Taski-Ajdukovic, K. Effect of Sugar Beet Genotype, Planting and Harvesting Dates and Their Interaction on Sugar Yield. Front. Plant Sci. 2018, 9, 1041. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Sorgoná, A.; Lupini, A.; Araniti, F.; Stevanato, P.; Cacco, G.; Abenavoli, M.R. Morpho-physiological responses of sugar beet (Beta vulgaris L.) genotypes to drought stress. Acta Physiol. Plant. 2013, 35, 853–865. [Google Scholar] [CrossRef]
- Koch, F.C.; McMeekin, T.L. A new direct nesslerization Micro-Kjeldahl method and a modification of the Nessler-folin reagent for ammonia. J. Am. Chem. Soc. 1924, 46, 2066–2069. [Google Scholar] [CrossRef]
- Pačuta, V.; Rašovský, M.; Michalska-Klimczak, B.; Wyszyńsky, Z. Impact of Superabsorbent Polymers and Variety on Yield, Quality and Physiological Parameters of the Sugar Beet (Beta vulgaris prov. Altissima Doell). Plants 2021, 10, 757. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Kabala, C.; Musztyfaga, E.; Galka, B.; Labuńska, D.; Mańczyńska, P. Conversion of Soil pH 1,2.5 KCl and 1,2.5 H2O to 1,5 H2O: Conclusions for Soil Management, Environmental Monitoring, and International Soil Databases. Pol. J. Environ. Stud. 2016, 25, 647–653. [Google Scholar] [CrossRef]
- Kononova, M.M. Humus of Virgin and Cultivated Soils. In Soil Components; Gieseking, J.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar] [CrossRef]
- Salkind, N.J. Encyclopedia of Research Design; SAGE Publications: Thousand Oaks, CA, USA, 2010; pp. 1399–1432. ISBN 978-1-4129-6127-1. [Google Scholar]
- Ariza-Carricondo, C.; Di Mauro, F.; Op de Beeck, M.; Roland, M.; Gielen, B.; Vitale, D.; Ceulemans, R.; Papale, D. A comparison of different methods for assessing leaf area index in four canopy types. Cent. Eur. For. J. 2019, 65, 67–80. [Google Scholar] [CrossRef]
- Barlog, P.; Szczepaniak, W.; Grzebisz, W.; Poglodzinski, R. Sugar beet response to different K, Na and Mg ratios in applied fertilizers. Plant Soil Environ. 2018, 64, 173–179. [Google Scholar] [CrossRef]
- Reinefeld, E.; Emmerich, A.; Baumgarten, G.; Winner, C.; Beiss, U. Zur Voraussage des Melassezuckers aus Rübenanalysen. Zucker 1974, 27, 2–15. [Google Scholar]
- Bajči, P.; Pačuta, V.; Černý, I. Cukrová Repa; ÚVTIP-NOI: Nitra, Slovak, 1993; pp. 99–100. ISBN 80-85330-35-0. [Google Scholar]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, J. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef] [PubMed]
- Leng, G.; Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2018, 654, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.H.; Filella, I.; Liu, D.; Ogaya, R.; Llusiá, J.; Asensio, D.; Penuelas, J. Photochemical Reflectance Index (PRI) for Detecting Responses of Diurnal and Seasonal Photosynthetic Activity to Experimental Drought and Warming in a Mediterranean Shrubland. Remote Sens. 2017, 9, 1189. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Krupa, M.; Witkowicz, R. Biostimulants as a Response to the Negative Impact of Agricultural Chemicals on Vegetation Indices and Yield of Common Buckwheat (Fagopyrum esculentum Moench). Agriculture 2023, 13, 825. [Google Scholar] [CrossRef]
- Campobenedetto, C.; Mannino, G.; Beekwilder, J.; Contartese, V.; Karlova, R.; Bertea, C.M. The application of a biostimulant based on tannins affects root architecture and improves tolerance to salinity in tomato plants. Sci. Rep. 2021, 11, 354. [Google Scholar] [CrossRef]
- Guillard, K.; Inguagiato, J.C. Normalized Difference Vegetative Index Response of Nonirrigated Kentucky Bluegrass and Tall Fescue Lawn Turf Receiving Seaweed Extracts. HortScience 2017, 11, 1615–1620. [Google Scholar] [CrossRef]
- Nagler, P.L.; Daughtry, C.S.T.; Goward, S.N. Plant Litter and Soil Reflectance. Remote Sens. Environ. 2000, 71, 207–215. [Google Scholar] [CrossRef]
- Panek, E.; Gozdowski, D. Analysis of relationship between cereal yield and NDVI for selected regions of Central Europe based on MODIS satellite data. Remote Sens. Appl. Soc. Environ. 2020, 17, 100286. [Google Scholar] [CrossRef]
- Chandel, N.S.; Tiwari, P.S.; Singh, K.P.; Jat, D.; Gailwad, B.; Tripathi, H.; Golhani, K. Yield Prediction in Wheat (Triticum aestivum L.) using Spectral Reflectance Indices. Curr. Sci. 2019, 116, 272–278. [Google Scholar] [CrossRef]
- Cordon, G.; Lagorio, M.G.; Paruelo, J.M. Chlorophyll fluorescence, photochemical reflective index andnormalized difference vegetative index during plant senescence. J. Plant Physiol. 2016, 199, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Mänd, P.; Hallik, L.; Penuelas, J.; Nilson, T.; Duce, P.; Emmett, B.A.; Beier, C.; Estiarte, M.; Garadnai, J.; Kalapos, T.; et al. Responses of the reflectance indices PRI and NDVI to experimental warming and drought in European shrublands along a north–south climatic gradient. Remote Sens. Environ. 2010, 114, 626–636. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Chen, D.; Huang, Y.; Kong, W.; Yuan, L.; Ye, H.; Huang, W. Assessment of Leaf Chlorophyll Content Models for Winter Wheat Using Landsat-8 Multispectral Remote Sensing Data. Remote Sens. 2020, 2, 2574. [Google Scholar] [CrossRef]
- Cao, Y.; Li, G.L.; Luo, Y.K.; Pan, Q.; Zhang, S.Y. Monitoring of sugar beet growth indicators using wide-dynamic-range vegetation index (WDRVI) derived from UAV multispectral images. Comput. Electron. Agric. 2020, 171, 105331. [Google Scholar] [CrossRef]
- Casa, R.; Varella, H.; Buis, S.; Guérif, M.; De Solan, B.; Baret, F. Forcing a wheat crop model with LAI data to access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach. Eur. J. Agron. 2012, 37, 1–10. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Wadas, W.; Dziugiel, T. Changes in Assimilation Area and Chlorophyll Content of Very Early Potato (Solanum tuberosum L.) Cultivars as Influenced by Biostimulants. Agronomy 2020, 10, 387. [Google Scholar] [CrossRef]
- Kim, K.; Wang, M.; Ranjitkar, S.; Liu, S.; Xu, J.; Zomer, R.J. Using leaf area index (LAI) to assess vegetation response to drought in Yunnan province of China. J. Mt. Sci. 2017, 14, 1863–1872. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-Based Biostimulants Influence the Agronomical, Physiological, and Qualitative Responses of Baby Rocket Leaves under Diverse Nitrogen Conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [PubMed]
- Przybysz, A.; Gawrónska, H.; Gajc-Wolska, J. Biological mode of action of a nitrophenolates-based biostimulant: Case study. Front. Plant Sci. 2014, 5, 713. [Google Scholar] [CrossRef] [PubMed]
- Gartland, J.S.; Fowler, M.R.; Slater, A.; Scott, N.W.; Gartland, K.M.A.; Elliott, M.C. Enhancement of Sugar Yield: A Molecular Biological Approach. In Progress in Plant Cellular and Molecular Biology: Proceedings of the VIIth International Congress on Plant Tissue and Cell Culture, Amsterdam, The Netherlands, 24–29 June 1990; Springer: Dordrecht, The Netherlands, 1990; pp. 50–55. [Google Scholar] [CrossRef]
- Lee, J.; O´Connor, L.J. Sugar-Beet Yields in Ireland with Special Reference to Spatial Patterns. Ir. J. Agric. Res. 1976, 15, 25–37. [Google Scholar]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Drobek, M.; Frac, M.; Cybulska, J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef]
- Artyszak, A.; Gozdowski, D. Influence of Various Forms of Foliar Application on Root Yield and Technological Quality of Sugar Beet. Agriculture 2021, 11, 693. [Google Scholar] [CrossRef]
- Hoffmann, C.M. Sucrose Accumulation in Sugar Beet Under Drought Stress. J. Agron. Crop Sci. 2010, 196, 243–252. [Google Scholar] [CrossRef]
- Schneider, F.; Emmerich, A.; Reinefeld, E.; Walter, E.; Kelm, W. Auswirkung der Nichtzuckerstoffe der Rube, insbesondere auf die Melassebildung. Tech. Wert Zuckerrübe 1961, 14, 208–212. [Google Scholar]
- Rašovský, M.; Pačuta, V.; Ducsay, L.; Lenická, D. Quantity and Quality changes in Sugar Beet (Beta vulgaris provar. Altissima Doel) Induced by Different Sources of Biostimulants. Plants 2022, 11, 2222. [Google Scholar] [CrossRef]
- Ndhlela, T.; Herselman, L.; Magorokosho, C.; Setimela, P.; Mutimamba, C.; Labuschagne, M. Genotype × environment interaction of maize grain yield using AMMI biplots. Crop Sci. 2014, 54, 1992–1999. [Google Scholar] [CrossRef]
- Studnicki, M.; Lenartowicz, T.; Noras, K.; Wójcik-Gront, E.; Wyszyński, Z. Assessment of Stability and Adaptation Patterns of White Sugar Yield from Sugar Beet Cultivars in Temperate Climate Environments. Agronomy 2019, 9, 405. [Google Scholar] [CrossRef]
- Franzoni, G.; Cocetta, G.; Prinsi, B.; Ferrante, A.; Espen, L. Biostimulants on Crops: Their Impact under Abiotic Stress Conditions. Horticulturae 2022, 8, 189. [Google Scholar] [CrossRef]
Source of Variability | Vegetation Indices | |||
---|---|---|---|---|
NDVI | PRI | MCARI | LAI | |
F-Values | ||||
Year (Y) | 4211.28 ** | 1314.14 ** | 78.48 ** | 51.33 ** |
Variety (V) | 22.33 ** | 4.55 ** | 31.58 ** | 2.86 * |
Treatment (T) | 15.58 ** | 38.02 ** | 7.29 ** | 19.12 ** |
Y × V | 43.77 ** | 21.64 ** | 9.21 ** | 2.80 * |
Y × T | 0.36 NS | 16.38 ** | 12.45 ** | 0.72 NS |
V × T | 4.79 ** | 7.48 ** | 7.62 ** | 0.92 NS |
Y × V × T | 2.07 NS | 3.47 ** | 9.19 ** | 1.20 NS |
Parameter | B0 | B1 | B2 |
---|---|---|---|
Production parameters | |||
Root yield (t ha−1) | 67.26 ± 8.70 a | 70.90 ± 8.78 b | 74.02 ± 9.57 c |
Sugar content (%) | 18.38 ± 0.84 b | 18.53 ± 0.48 c | 17.91 ± 0.62 a |
Polarized sugar yield (t ha−1) | 12.39 ± 1.87 a | 13.14 ± 1.69 b | 13.28 ± 1.98 b |
White sugar content (%) | 16.37 ± 1.37 b | 16.51 ± 1.00 c | 15.95 ± 1.05 a |
White sugar yield (t ha−1) | 11.09 ± 2.15 a | 11.75 ± 1.96 b | 11.87 ± 2.13 b |
K+ content (mmol 100 g−1) | 2.99 ± 1.64 a | 3.06 ± 1.68 a | 3.00 ± 1.41 a |
Na+ content (mmol 100 g−1) | 1.05 ± 0.21 a | 1.21 ± 0.38 b | 1.11 ± 0.21 a |
α amino N content (mmol 100 g−1) | 3.53 ± 2.07 b | 2.76 ± 1.14 a | 2.70 ± 0.77 a |
Vegetation index | |||
LAI 1 (m2 m−2) | 2.19 ± 0.37 a | 2.44 ± 0.36 b | 2.64 ± 0.31 c |
Physiological parameters | |||
NDVI 2 | 0.5674 ± 0.0415 a | 0.5734 ± 0.0430 c | 0.5702 ± 0.0458 b |
PRI 3 | 0.0014 ± 0.0087 a | 0.0038 ± 0.0098 b | 0.0034 ± 0.0116 b |
MCARI 4 | 0.1477 ± 0.0397 b | 0.1434 ± 0.0341 a | 0.1446 ± 0.0353 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pačuta, V.; Rašovský, M.; Briediková, N.; Lenická, D.; Ducsay, L.; Zapletalová, A. Plant Biostimulants as an Effective Tool for Increasing Physiological Activity and Productivity of Different Sugar Beet Varieties. Agronomy 2024, 14, 62. https://doi.org/10.3390/agronomy14010062
Pačuta V, Rašovský M, Briediková N, Lenická D, Ducsay L, Zapletalová A. Plant Biostimulants as an Effective Tool for Increasing Physiological Activity and Productivity of Different Sugar Beet Varieties. Agronomy. 2024; 14(1):62. https://doi.org/10.3390/agronomy14010062
Chicago/Turabian StylePačuta, Vladimír, Marek Rašovský, Nika Briediková, Dominika Lenická, Ladislav Ducsay, and Alexandra Zapletalová. 2024. "Plant Biostimulants as an Effective Tool for Increasing Physiological Activity and Productivity of Different Sugar Beet Varieties" Agronomy 14, no. 1: 62. https://doi.org/10.3390/agronomy14010062
APA StylePačuta, V., Rašovský, M., Briediková, N., Lenická, D., Ducsay, L., & Zapletalová, A. (2024). Plant Biostimulants as an Effective Tool for Increasing Physiological Activity and Productivity of Different Sugar Beet Varieties. Agronomy, 14(1), 62. https://doi.org/10.3390/agronomy14010062