Effects of Pre-Germinative Treatments and Temperatures on Tassel Hyacinth [Muscari comosum (L.) Mill.] Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Description and Research Design
2.2. Germination Indexes
2.3. Statistical Analysis
3. Results
3.1. Effects of the Pre-Germinative Treatments on Seeds Germination
3.2. Effects of the Germination Temperature on Seed Germination
3.3. Interactive Effects of Pre-Germination Treatments and Seeds’ Germination Temperatures
3.4. Correlation Matrix
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Candido, V.; Castronuovo, D.; Fascetti, S.; Rosati, L.; Potenza, G. Seed-propagated Muscari comosum (L.) Mill.: Effects of sowing date and growing conditions. Plant Biosyst. 2017, 151, 484–492. [Google Scholar] [CrossRef]
- Borgonovo, G.; Caimi, S.; Morini, G.; Scaglioni, L.; Bassoli, A. Taste-active compounds in a traditional Italian food: ‘Lampascioni’. Chem. Biodivers. 2008, 5, 1184–1194. [Google Scholar] [CrossRef] [PubMed]
- Pieroni, A.; Nebel, S.; Santoro, R.F.; Heinrich, M. Food for two seasons: Culinary uses of non-cultivated local vegetables and mushrooms in a south Italian village. Int. J. Food Sci. Nutr. 2005, 56, 245–272. [Google Scholar] [CrossRef] [PubMed]
- Kiran, Y.; Pınar, S.M.; Dogan, G.; Eroğlu, H. A karyomorphological study on the subgenus Leopoldia of the genus Muscari growing in Turkey. Cytologia 2020, 85, 79–83. [Google Scholar] [CrossRef]
- Satta, C. Piante Officinali Spontanee di Sardegna; Zonza Editori: Cagliari, Italy, 2016. [Google Scholar]
- Lentini, F.; Venza, F. Wild food plants of popular use in Sicily. J. Ethnobiol. Ethnomed. 2007, 3, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Guarrera, P.M.; Salerno, G.; Caneva, G. Folk phytotherapeutical plants from Maratea area (Basilicata, Italy). J. Ethnopharmacol. 2005, 99, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Bianco, V.; Mariani, M.; Santamaria, P. Piante Spontanee nella Cucina Tradizionale Molese; Edizioni Levante: Mola di Bari, Italy, 2009. [Google Scholar]
- Casacchia, T.; Sofo, A.; Casaburi, I.; Marrelli, M.; Conforti, F.; Statti, G.A. Antioxidant, Enzyme-Inhibitory and Antitumor Activity of the Wild Dietary Plant Muscari comosum (L.) Mill. Int. J. Plant Biol. 2017, 8, 6895. [Google Scholar] [CrossRef]
- Giglio, F.; Castiglione Morelli, M.A.; Matera, I.; Sinisgalli, C.; Rossano, R.; Ostuni, A. Muscari comosum L. Bulb Extracts Modulate Oxidative Stress and Redox Signaling in HepG2 Cells. Molecules 2021, 26, 416. [Google Scholar] [CrossRef]
- Larocca, M.; Di Marsico, M.; Riccio, P.; Rossano, R. The in vitro antioxidant properties of Muscari comosum bulbs and their inhibitory activity on enzymes involved in inflammation, post-prandial hyperglycemia, and cognitive/neuromuscular functions. J. Food Biochem. 2018, 42, 12580. [Google Scholar] [CrossRef]
- Doussi, M.A.; Thanos, C.A. Ecophysiology of seed germination in Mediterranean geophytes. 1. Muscari ssp. Seed Sci. Res. 2002, 12, 193–201. [Google Scholar] [CrossRef]
- Ministero dell’Agricoltura e della Sovranità Alimentare, Ventitreesima Revisione dei Prodotti Agroalimentari Tradizionali. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/19693 (accessed on 12 December 2023).
- Didonna, A.; Renna, M.; Santamaria, P. Traditional Italian Agri-Food Products: A Unique Tool with Untapped Potential. Agriculture 2023, 13, 1313. [Google Scholar] [CrossRef]
- Renna, M.; Signore, A.; Santamaria, P. I Prodotti Agroalimentari Tradizionali (PAT), Espressione Del Territorio e Del Patrimonio Culturale Italiano. Italus Hortus 2018, 25, 1–13. [Google Scholar] [CrossRef]
- Candido, V.; Matteo, D.; Lacarpia, F.; Castronuovo, D.; Miccolis, V. La propagazione per seme di Muscari comosum (L.) Mill. Italus Hortus 2010, 17 (Suppl. S2), 30. [Google Scholar]
- Bonasia, A.; Conversa, G.; Lazzizera, C.; La Rotonda, P.; Elia, A. Weed control in lampascione-Muscari comosum (L.) Mill. Crop Prot. 2012, 36, 65–72. [Google Scholar] [CrossRef]
- Adhikari, B.; Dhital, P.R.; Ranabhat, S.; Poudel, H. Effect of seed hydro-priming durations on germination and seedling growth of bitter gourd (Momordica charantia). PLoS ONE 2021, 16, e0255258. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Bagavathiannan, M.; Wang, H.; Sharpe, S.M.; Meng, W.; Yu, J. Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review. Agronomy 2021, 11, 2194. [Google Scholar] [CrossRef]
- Labbaf, N.; Rohollahi, I.; Naji, A.M. Muscari seed germination enhancement by using sulfuric acid, and stratification priming. Ornam. Hortic. 2023, 29, 171–180. [Google Scholar] [CrossRef]
- Kırmızı, S. Effects of Pre-Treatments on Seed Dormancy and Germination of Endemic Muscari bourgaei Baker. Agronomy 2023, 13, 2438. [Google Scholar] [CrossRef]
- Ruttanaruangboworn, A.; Chanprasert, W.; Tobunluepop, P.; Onwimol, D. Effect of seed priming with different concentrations of potassium nitrate on the pattern of seed imbibition and germination of rice (Oryza sativa L.). J. Integr. Agric. 2017, 16, 605–613. [Google Scholar] [CrossRef]
- Di Girolamo, G.; Barbanti, L. Treatment conditions and biochemical processes influencing seed priming effectiveness. Ital. J. Agron. 2012, 7, 25. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Rehman, H.; Ahmad, N.; Saleem, B.A. Osmopriming improves the germination and early seedling growth of melons (Cucumis melo L.). Pak. J. Agri. Sci. 2007, 44, 529–536. [Google Scholar]
- Kumar, S.; Basu, S.; Anand, A.; Kumar Lal, S.; Tomar, B.S. Identification of the Best Germination Indices Represents Seed Quality Status in Unaged and Aged Onion Seeds. Int. J. Curr. Microbiol. App. Sci. 2021, 10, 76–85. [Google Scholar] [CrossRef]
- Coolbear, P.; Francis, A.; Grierson, D. The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. J. Exp. Bot. 1984, 35, 1609–1617. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Hafeez, K.; Ahmad, N. Thermal hardening: A new seed vigour enhancement tool in rice. J. Integ. Plant Biol. 2005, 47, 187–193. [Google Scholar] [CrossRef]
- Czabator, F.J. Germination Value: An Index Combining Speed and Completeness of Pine Seed Germination. For. Sci. 1962, 8, 386–396. [Google Scholar]
- Ellis, R.A.; Roberts, E.H. The quantification of aging and survival in orthodox seeds. Seed Sci. Technol. 1981, 9, 373–409. [Google Scholar]
- Kader, M.A. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J. Proc. R. Soc. New South Wales 2005, 138, 65–75. [Google Scholar] [CrossRef]
- AOSA. Seed Vigor Testing Handbook; Association of Official Seed Analysts: Washington, DC, USA, 1983. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Ali, A.S.; Elozeiri, A.A. Metabolic processes during seed germination. Adv. Seed Biol. 2017, 2017, 141–166. [Google Scholar] [CrossRef]
- Lemmens, E.; Deleu, L.J.; De Brier, N.; De Man, W.L.; De Proft, M.; Prinsen, E.; Delcour, J.A. The Impact of Hydro-Priming and Osmo-Priming on Seedling Characteristics, Plant Hormone Concentrations, Activity of Selected Hydrolytic Enzymes, and Cell Wall and Phytate Hydrolysis in Sprouted Wheat (Triticum aestivum L.). ACS Omega 2019, 4, 22089–22100. [Google Scholar] [CrossRef]
- Mouradi, M.; Bouizgaren, A.; Farissi, M.; Makoudi, B.; Kabbadj, A.; Very, A.A.; Sentenac, H.; Qaddoury, A.; Ghoulam, C. Osmopriming improves seeds germination, growth, antioxidant responses and membrane stability during early stage of Moroccan alfalfa populations under water deficit. Chil. J. Agric. Res. 2016, 76, 265–272. [Google Scholar] [CrossRef]
- Mirmazloum, I.; Kiss, A.; Erdélyi, É.; Ladányi, M.; Németh, É.Z.; Radácsi, P. The Effect of osmopriming on seed germination and early seedling characteristics of Carum carvi L. Agriculture 2020, 10, 94. [Google Scholar] [CrossRef]
- Jayesh, V.; Meeta, J. Influence of halopriming and hydropriming on seed germination and growth characteristics of Zea mays L. cv. GSF-2 under salt stress. Res. J. Chem. Environ. 2015, 19, 10. [Google Scholar]
- Jisha, K.C.; Puthur, J.T. Seed halopriming outdo hydropriming in enhancing seedling vigor and osmotic stress tolerance potential of rice varieties. J. Crop Sci. Biotechnol. 2014, 17, 209–219. [Google Scholar] [CrossRef]
- Singh, A.; Dahiru, R.; Musa, M. Osmopriming Duration Influence on Germination, Emergence and Seedling Growth of Sorghum. Seed Technol. 2012, 34, 111–118. [Google Scholar]
- Selvarani, K.; Umarani, R. Evaluation of seed priming methods to improve seed vigour of onion (Allium cepa cv. aggregatum) and carrot (Daucus carota). J. Agric. Sci. Technol. 2011, 7, 857–867. [Google Scholar]
- Damalas, C.A.; Koutroubas, S.D.; Fotiadis, S. Hydro-priming effects on seed germination and field performance of faba bean in spring sowing. Agriculture 2019, 9, 201. [Google Scholar] [CrossRef]
- Casoria, P.; Menale, B.; Muoio, R. Muscari comosum, Liliaceae, in the Food Habits of South Italy. Econ. Bot. 1999, 53, 113–115. [Google Scholar]
- Yi, F.; Wang, Z.; Baskin, C.C.; Baskin, J.M.; Ye, R.; Sun, H.; Zhang, Y.; Ye, X.; Liu, G.; Yang, X.; et al. Seed germination responses to seasonal temperature and drought stress are species-specific but not related to seed size in a desert steppe: Implications for effect of climate change on community structure. Ecol. Evol. 2019, 9, 2149–2159. [Google Scholar] [CrossRef]
- Pieroni, A.; Nebel, S.; Quave, C.; Münz, H.; Heinrich, M. Ethnopharmacology of liakra: Traditional weedy vegetables of the Arbëreshë of the Vulture area in southern Italy. J. Ethnopharmacol. 2002, 81, 165–185. [Google Scholar] [CrossRef]
- Tuan, P.A.; Sun, M.; Nguyen, T.-N.; Park, S.; Ayele, B.T. Molecular Mechanisms of Seed Germination. In Sprouted Grains; Feng, H., Nemzer, B., DeVries, J.W., Eds.; AACC International Press: St. Paul, MN, USA, 2019; pp. 1–24. ISBN 978-0-12-811525-1. [Google Scholar] [CrossRef]
- Siri, B.; Vichitphan, K.; Kaewnaree, P.; Vichitphan, S.; Klanrit, P. Improvement of quality, membrane integrity and antioxidant systems in sweet pepper (‘Capsicum annuum’ Linn.) seeds affected by osmopriming. Aust. J. Crop Sci. 2013, 7, 2068–2073. [Google Scholar]
- Chen, K.; Arora, R. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Sci. 2011, 180, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Ma, W.; Shen, S.; Gu, A. Underlying Biochemical and Molecular Mechanisms for Seed Germination. Int. J. Mol. Sci. 2022, 23, 8502. [Google Scholar] [CrossRef] [PubMed]
Experimental Theses | Pre-Germinative Treatments | Seeds Germination Temperature (°C) |
---|---|---|
S-A | Hydro-priming | 20 |
S-O | Hydro-priming | 10 |
S-F | Hydro-priming | 4 |
K-A | KNO3 osmo-priming | 20 |
K-O | KNO3 osmo-priming | 10 |
K-F | KNO3 osmo-priming | 4 |
P-A | PEG 8000 osmo-priming | 20 |
P-O | PEG 8000 osmo-priming | 10 |
P-F | PEG 8000 osmo-priming | 4 |
C-A | Control | 20 |
C-O | Control | 10 |
C-F | Control | 4 |
Treatments 1 | T50 (Days) | MGT (Days) | GI (-) | Z (-) | GP (%) |
---|---|---|---|---|---|
Hydro-priming | 38.57 b | 39.33 b | 14.27 a | 0.116 a | 99.25 a |
KNO3 osmo-priming | 37.31 b | 38.11 b | 14.05 a | 0.122 a | 99.16 a |
PEG 8000 osmo-priming | 36.76 b | 37.57 b | 13.99 a | 0.123 a | 99.50 a |
Control | 44.85 a | 44.36 a | 9.26 b | 0.106 b | 95.92 b |
Significance 2 | * | * | * | * | * |
Germination Temperature 1 | T50 (Days) | MGT (Days) | GI (-) | Z (-) | GP (%) |
---|---|---|---|---|---|
4 °C | 42.33 a | 42.85 a | 12.83 | 0.130 a | 98.25 |
10 °C | 36.92 b | 37.84 b | 12.96 | 0.109 b | 97.83 |
Significance 2 | * | * | n.s. | * | n.s. |
T50 | MGT | GI | Z | GP | |
---|---|---|---|---|---|
T50 | 1.000 | ||||
MGT | 0.993 | 1.000 | |||
GI | −0.385 | −0.400 | 1.000 | ||
Z | 0.552 | 0.544 | 0.326 | 1.000 | |
GP | 0.403 | 0.446 | −0.002 | 0.463 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castronuovo, D.; Cardone, L.; Candido, V. Effects of Pre-Germinative Treatments and Temperatures on Tassel Hyacinth [Muscari comosum (L.) Mill.] Seeds. Agronomy 2024, 14, 225. https://doi.org/10.3390/agronomy14010225
Castronuovo D, Cardone L, Candido V. Effects of Pre-Germinative Treatments and Temperatures on Tassel Hyacinth [Muscari comosum (L.) Mill.] Seeds. Agronomy. 2024; 14(1):225. https://doi.org/10.3390/agronomy14010225
Chicago/Turabian StyleCastronuovo, Donato, Loriana Cardone, and Vincenzo Candido. 2024. "Effects of Pre-Germinative Treatments and Temperatures on Tassel Hyacinth [Muscari comosum (L.) Mill.] Seeds" Agronomy 14, no. 1: 225. https://doi.org/10.3390/agronomy14010225
APA StyleCastronuovo, D., Cardone, L., & Candido, V. (2024). Effects of Pre-Germinative Treatments and Temperatures on Tassel Hyacinth [Muscari comosum (L.) Mill.] Seeds. Agronomy, 14(1), 225. https://doi.org/10.3390/agronomy14010225