Time Series from Sentinel-2 for Organic Durum Wheat Yield Prediction Using Functional Data Analysis and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Workflow in Brief
2.2. Study Area and Field Measurement
2.3. Funcional Data Analysis
2.4. Image Representation of Multi-Spectral Time Series for Regression Task
3. Results
3.1. PLS Regression on Functional Time Series
3.2. Image Based Regression Using Deep Learning
4. Discussion
4.1. Availability of Yield-Calibrated Data on Different Varieties
4.2. Factors Influencing/Impacting the Accuracy of the Regression Models
4.3. Crop Yield Distribution Map and Future Development
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cappelli, A.; Cini, E. Challenges and Opportunities in Wheat Flour, Pasta, Bread, and Bakery Product Production Chains: A Systematic Review of Innovations and Improvement Strategies to Increase Sustainability, Productivity, and Product Quality. Sustainability 2021, 13, 2608. [Google Scholar] [CrossRef]
- Altamore, L.; Ingrassia, M.; Columba, P.; Chironi, S.; Bacarella, S. Italian Consumers’ Preferences for Pasta and Consumption Trends: Tradition or Innovation? J. Int. Food Agribus. Mark. 2020, 32, 337–360. [Google Scholar] [CrossRef]
- Beres, B.L.; Rahmani, E.; Clarke, J.M.; Grassini, P.; Pozniak, C.J.; Geddes, C.M.; Porker, K.D.; May, W.E.; Ransom, J.K. A Systematic Review of Durum Wheat: Enhancing Production Systems by Exploring Genotype, Environment, and Management (G × E × M) Synergies. Front. Plant Sci. 2020, 11, 568657. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tanaka, T. Determinants of International Price Volatility Transmissions: The Role of Self-Sufficiency Rates in Wheat-Importing Countries. Palgrave Commun. 2019, 5, 124. [Google Scholar] [CrossRef]
- Cinar, G. Price Volatility Transmission among Cereal Markets. The Evidences for Turkey. New Medit. 2018, 17, 93–104. [Google Scholar] [CrossRef]
- Nyéki, A.; Neményi, M. Crop Yield Prediction in Precision Agriculture. Agronomy 2022, 12, 2460. [Google Scholar] [CrossRef]
- van der Velde, M.; Biavetti, I.; El-Aydam, M.; Niemeyer, S.; Santini, F.; van den Berg, M. Use and Relevance of European Union Crop Monitoring and Yield Forecasts. Agric. Syst. 2019, 168, 224–230. [Google Scholar] [CrossRef]
- Reynolds, M.P.; Braun, H.-J. Wheat Improvement; Springer Nature: Berlin/Heidelberg, Germany, 2022; ISBN 9783030906726. [Google Scholar]
- Wilcox, J.; Makowski, D. A Meta-Analysis of the Predicted Effects of Climate Change on Wheat Yields Using Simulation Studies. Field Crops Res. 2014, 156, 180–190. [Google Scholar] [CrossRef]
- Maestrini, B.; Basso, B. Predicting Spatial Patterns of Within-Field Crop Yield Variability. Field Crops Res. 2018, 219, 106–112. [Google Scholar] [CrossRef]
- Coviello, L.; Martini, F.M.; Cesaretti, L.; Pesaresi, S.; Solfanelli, F.; Mancini, A. Clustering of Remotely Sensed Time Series Using Functional Principal Component Analysis to Monitor Crops. In Proceedings of the 2022 IEEE Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 2022–Proceedings, Perugia, Italy, 3–5 November 2022; pp. 141–145. [Google Scholar] [CrossRef]
- Bregaglio, S.; Ginaldi, F.; Raparelli, E.; Fila, G.; Bajocco, S. Improving Crop Yield Prediction Accuracy by Embedding Phenological Heterogeneity into Model Parameter Sets. Agric. Syst. 2023, 209, 103666. [Google Scholar] [CrossRef]
- Engen, M.; Sandø, E.; Sjølander, B.L.O.; Arenberg, S.; Gupta, R.; Goodwin, M. Farm-Scale Crop Yield Prediction from Multi-Temporal Data Using Deep Hybrid Neural Networks. Agronomy 2021, 11, 2576. [Google Scholar] [CrossRef]
- Filippi, P.; Jones, E.J.; Wimalathunge, N.S.; Somarathna, P.D.S.N.; Pozza, L.E.; Ugbaje, S.U.; Jephcott, T.G.; Paterson, S.E.; Whelan, B.M.; Bishop, T.F.A. An Approach to Forecast Grain Crop Yield Using Multi-Layered, Multi-Farm Data Sets and Machine Learning. Precis. Agric. 2019, 20, 1015–1029. [Google Scholar] [CrossRef]
- Segarra, J.; Araus, J.L.; Kefauver, S.C. Farming and Earth Observation: Sentinel-2 Data to Estimate within-Field Wheat Grain Yield. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102697. [Google Scholar] [CrossRef]
- Saravia, D.; Valqui-Valqui, L.; Salazar, W.; Quille-Mamani, J.; Barboza, E.; Porras-Jorge, R.; Injante, P.; Arbizu, C.I. Yield Prediction of Four Bean (Phaseolus vulgaris) Cultivars Using Vegetation Indices Based on Multispectral Images from UAV in an Arid Zone of Peru. Drones 2023, 7, 325. [Google Scholar] [CrossRef]
- Marino, S. Understanding the Spatio-Temporal Behavior of Crop Yield, Yield Components and Weed Pressure Using Time Series Sentinel-2-Data in an Organic Farming System. Eur. J. Agron. 2023, 145, 126785. [Google Scholar] [CrossRef]
- Marino, S.; Alvino, A. Detection of Homogeneous Wheat Areas Using Multi-Temporal UAS Images and Ground Truth Data Analyzed by Cluster Analysis. Eur. J. Remote Sens. 2018, 51, 266–275. [Google Scholar] [CrossRef]
- Fraisse, C.; Ampatzidis, Y.; Guzmán, S.; Lee, W.; Martinez, C.; Shukla, S.; Singh, A.; Yu, Z. Artificial Intelligence (AI) for Crop Yield Forecasting. Edis 2022, 2022. [Google Scholar] [CrossRef]
- Iizumi, T.; Shin, Y.; Kim, W.; Kim, M.; Choi, J. Global Crop Yield Forecasting Using Seasonal Climate Information from a Multi-Model Ensemble. Clim. Serv. 2018, 11, 13–23. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A Review of Social Science on Digital Agriculture, Smart Farming and Agriculture 4.0: New Contributions and a Future Research Agenda. NJAS-Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Ghazaryan, G.; Skakun, S.; Konig, S.; Rezaei, E.E.; Siebert, S.; Dubovyk, O. Crop Yield Estimation Using Multi-Source Satellite Image Series and Deep Learning. Int. Geosci. Remote Sens. Symp. (IGARSS) 2020, 5163–5166. [Google Scholar] [CrossRef]
- Mahore, P.S.; Bardekar, A.A. A Review on Forecasting Agricultural Demand and Supply with Crop Price Estimation Using Machine Learning Methodologies. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2021, 3307, 570–575. [Google Scholar] [CrossRef]
- Bacco, M.; Barsocchi, P.; Ferro, E.; Gotta, A.; Ruggeri, M. The Digitisation of Agriculture: A Survey of Research Activities on Smart Farming. Array 2019, 3–4, 100009. [Google Scholar] [CrossRef]
- Reichardt, M.; Jürgens, C.; Klöble, U.; Hüter, J.; Moser, K. Dissemination of Precision Farming in Germany: Acceptance, Adoption, Obstacles, Knowledge Transfer and Training Activities. Precis. Agric. 2009, 10, 525–545. [Google Scholar] [CrossRef]
- Xu, Z.; Cannon, S.B.; Beavis, W.D. Applying Spatial Statistical Analysis to Ordinal Data for Soybean Iron Deficiency Chlorosis. Agronomy 2022, 12, 2095. [Google Scholar] [CrossRef]
- Niedbała, G.; Wróbel, B.; Piekutowska, M.; Zielewicz, W.; Paszkiewicz-Jasińska, A.; Wojciechowski, T.; Niazian, M. Application of Artificial Neural Networks Sensitivity Analysis for the Pre-Identification of Highly Significant Factors Influencing the Yield and Digestibility of Grassland Sward in the Climatic Conditions of Central Poland. Agronomy 2022, 12, 1133. [Google Scholar] [CrossRef]
- Reinhardt, T. The Farm to Fork Strategy and the Digital Transformation of the Agrifood Sector—An Assessment from the Perspective of Innovation Systems. Appl. Econ. Perspect. Policy 2022, 45, 819–838. [Google Scholar] [CrossRef]
- Basso, B.; Antle, J. Digital Agriculture to Design Sustainable Agricultural Systems. Nat. Sustain. 2020, 3, 254–256. [Google Scholar] [CrossRef]
- Wesseler, J. The EU’s Farm-to-Fork Strategy: An Assessment from the Perspective of Agricultural Economics. Appl. Econ. Perspect. Policy 2022, 44, 1826–1843. [Google Scholar] [CrossRef]
- Rembold, F.; Meroni, M.; Urbano, F.; Royer, A.; Atzberger, C.; Lemoine, G.; Eerens, H.; Haesen, D. Remote Sensing Time Series Analysis for Crop Monitoring with the SPIRITS Software: New Functionalities and Use Examples. Front. Environ. Sci. 2015, 3, 46. [Google Scholar] [CrossRef]
- Sedighkia, M.; Fathi, Z.; Abdoli, A. Minimizing Environmental Impacts of Apple Production by Linking Yield Prediction Model and Water–Energy Resources’ Optimization. Model. Earth Syst. Environ. 2023, 9, 1233–1249. [Google Scholar] [CrossRef]
- Panek, E.; Gozdowski, D. Analysis of Relationship between Cereal Yield and NDVI for Selected Regions of Central Europe Based on MODIS Satellite Data. Remote Sens. Appl. 2020, 17, 100286. [Google Scholar] [CrossRef]
- Romano, E.; Bergonzoli, S.; Pecorella, I.; Bisaglia, C.; De Vita, P. Methodology for the Definition of Durum Wheat Yield Homogeneous Zones by Using Satellite Spectral Indices. Remote Sens. 2021, 13, 2036. [Google Scholar] [CrossRef]
- Dey, S.; Bhogapurapu, N.; Homayouni, S.; Bhattacharya, A.; McNairn, H. Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data. Remote Sens. 2021, 13, 4412. [Google Scholar] [CrossRef]
- Bajocco, S.; Vanino, S.; Bascietto, M.; Napoli, R. Exploring the Drivers of Sentinel-2-Derived Crop Phenology: The Joint Role of Climate, Soil, and Land Use. Land 2021, 10, 656. [Google Scholar] [CrossRef]
- Yli-Heikkila, M.; Wittke, S.; Luotamo, M.; Puttonen, E.; Sulkava, M.; Pellikka, P.; Heiskanen, J.; Klami, A. Scalable Crop Yield Prediction with Sentinel-2 Time Series and Temporal Convolutional Network. Remote Sens. 2022, 14, 4193. [Google Scholar] [CrossRef]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model. Sensors 2019, 19, 4363. [Google Scholar] [CrossRef]
- Kiran Kumar, V.; Ramesh, K.V.; Rakesh, V. Optimizing LSTM and Bi-LSTM Models for Crop Yield Prediction and Comparison of Their Performance with Traditional Machine Learning Techniques. Appl. Intell. 2023, 53, 28291–28309. [Google Scholar] [CrossRef]
- Ullah, S.; Finch, C.F. Applications of Functional Data Analysis: A Systematic Review. BMC Med. Res. Methodol. 2013, 13, 43. [Google Scholar] [CrossRef]
- Pesaresi, S.; Mancini, A.; Quattrini, G.; Casavecchia, S. Mapping Mediterranean Forest Plant Associations and Habitats with Functional Principal Component Analysis Using Landsat 8 NDVI Time Series. Remote Sens. 2020, 12, 1132. [Google Scholar] [CrossRef]
- Han, K.; Hadjipantelis, P.Z.; Wang, J.L.; Kramer, M.S.; Yang, S.; Martin, R.M.; Müller, H.G. Functional Principal Component Analysis for Identifying Multivariate Patterns and Archetypes of Growth, and Their Association with Long-Term Cognitive Development. PLoS ONE 2018, 13, e0207073. [Google Scholar] [CrossRef] [PubMed]
- Karuppusami, R.; Antonisamy, B.; Premkumar, P.S. Functional Principal Component Analysis for Identifying the Child Growth Pattern Using Longitudinal Birth Cohort Data. BMC Med. Res. Methodol. 2022, 22, 76. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.P.; Zhou, X.X.; Wang, Z.X.; Mao, W.; Li, W.X.; Yun, F.; Guo, W.S.; Tan, C.W. Using HJ-CCD Image and PLS Algorithm to Estimate the Yield of Field-Grown Winter Wheat. Sci. Rep. 2020, 10, 5173. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Fornieles, E.; Brunel, G.; Rancon, F.; Gaci, B.; Metz, M.; Devaux, N.; Taylor, J.; Tisseyre, B.; Roger, J.M. Potential of Multiway PLS (N-PLS) Regression Method to Analyse Time-Series of Multispectral Images: A Case Study in Agriculture. Remote Sens. 2022, 14, 216. [Google Scholar] [CrossRef]
- Scuderi, A.; La Via, G.; Timpanaro, G.; Sturiale, L. The Digital Applications of “Agriculture 4.0”: Strategic Opportunity for the Development of the Italian Citrus Chain. Agriculture 2022, 12, 400. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the Adoption and Diffusion of Technological Innovations for Climate-Smart Agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. J. Clean. Prod. 2016, 112, 9–21. [Google Scholar] [CrossRef]
- Osservatorio Smart AgriFood L’agricoltura 4.0 Italiana Sfonda Il Muro Dei 2 Miliardi Di Euro Nel 2022, +31%. Available online: https://www.osservatori.net/it/ricerche/comunicati-stampa/agricoltura-4-0-mercato (accessed on 10 November 2023).
- Ali, A.M.; Abouelghar, M.; Belal, A.A.; Saleh, N.; Yones, M.; Selim, A.I.; Amin, M.E.S.; Elwesemy, A.; Kucher, D.E.; Maginan, S.; et al. Crop Yield Prediction Using Multi Sensors Remote Sensing (Review Article). Egypt. J. Remote Sens. Space Sci. 2022, 25, 711–716. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, R.; Zhang, M.; Li, M.; Zhang, Z.; Li, H. Design of Feed Rate Monitoring System and Estimation Method for Yield Distribution Information on Combine Harvester. Comput. Electron. Agric. 2022, 201, 107322. [Google Scholar] [CrossRef]
- Ping, J.L.; Dobermann, A. Processing of Yield Map Data. Precis. Agric. 2005, 6, 193–212. [Google Scholar] [CrossRef]
- Farmonov, N.; Amankulova, K.; Szatmári, J.; Urinov, J.; Narmanov, Z.; Nosirov, J.; Mucsi, L. Combining PlanetScope and Sentinel-2 Images with Environmental Data for Improved Wheat Yield Estimation. Int. J. Digit. Earth 2023, 16, 847–867. [Google Scholar] [CrossRef]
- Sagan, V.; Maimaitijiang, M.; Bhadra, S.; Maimaitiyiming, M.; Brown, D.R.; Sidike, P.; Fritschi, F.B. Field-Scale Crop Yield Prediction Using Multi-Temporal WorldView-3 and PlanetScope Satellite Data and Deep Learning. ISPRS J. Photogramm. Remote Sens. 2021, 174, 265–281. [Google Scholar] [CrossRef]
- Darra, N.; Anastasiou, E.; Kriezi, O.; Lazarou, E.; Kalivas, D.; Fountas, S. Can Yield Prediction Be Fully Digitilized? A Systematic Review. Agronomy 2023, 13, 2441. [Google Scholar] [CrossRef]
- Letzgus, S.; Wagner, P.; Lederer, J.; Samek, W.; Muller, K.R.; Montavon, G. Toward Explainable Artificial Intelligence for Regression Models: A Methodological Perspective. IEEE Signal Process Mag. 2022, 39, 40–58. [Google Scholar] [CrossRef]
Model | Temporal Window | MAE | MAPE | MSE | RMSE | R2 |
---|---|---|---|---|---|---|
NDVI | T1 | 0.038 | 0.061 | 0.003 | 0.048 | 0.799 |
NDRE | T1 | 0.036 | 0.058 | 0.002 | 0.046 | 0.816 |
NDVI | T2 | 0.042 | 0.067 | 0.003 | 0.052 | 0.770 |
NDRE | T2 | 0.041 | 0.066 | 0.003 | 0.049 | 0.786 |
Model | Temporal Window | MAE | MAPE | MSE | RMSE | R2 |
---|---|---|---|---|---|---|
VGG-16L | T1 | 0.033 | 0.051 | 0.002 | 0.047 | 0.843 |
VGG-16N | T1 | 0.046 | 0.076 | 0.004 | 0.059 | 0.720 |
VGG-19L | T1 | 0.038 | 0.059 | 0.003 | 0.051 | 0.812 |
VGG-19N | T1 | 0.036 | 0.056 | 0.002 | 0.048 | 0.822 |
MNetv2L | T1 | 0.044 | 0.070 | 0.003 | 0.056 | 0.758 |
MNetv2N | T1 | 0.038 | 0.058 | 0.003 | 0.055 | 0.783 |
Custom | T1 | 0.040 | 0.058 | 0.003 | 0.050 | 0.822 |
VGG-16L | T2 | 0.042 | 0.065 | 0.003 | 0.053 | 0.783 |
VGG-16N | T2 | 0.043 | 0.071 | 0.003 | 0.057 | 0.743 |
VGG-19L | T2 | 0.034 | 0.055 | 0.002 | 0.048 | 0.821 |
VGG-19N | T2 | 0.040 | 0.062 | 0.003 | 0.052 | 0.790 |
MNetv2L | T2 | 0.033 | 0.052 | 0.002 | 0.045 | 0.838 |
MNetv2N | T2 | 0.040 | 0.060 | 0.002 | 0.050 | 0.805 |
Custom | T2 | 0.046 | 0.070 | 0.003 | 0.056 | 0.774 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancini, A.; Solfanelli, F.; Coviello, L.; Martini, F.M.; Mandolesi, S.; Zanoli, R. Time Series from Sentinel-2 for Organic Durum Wheat Yield Prediction Using Functional Data Analysis and Deep Learning. Agronomy 2024, 14, 109. https://doi.org/10.3390/agronomy14010109
Mancini A, Solfanelli F, Coviello L, Martini FM, Mandolesi S, Zanoli R. Time Series from Sentinel-2 for Organic Durum Wheat Yield Prediction Using Functional Data Analysis and Deep Learning. Agronomy. 2024; 14(1):109. https://doi.org/10.3390/agronomy14010109
Chicago/Turabian StyleMancini, Adriano, Francesco Solfanelli, Luca Coviello, Francesco Maria Martini, Serena Mandolesi, and Raffaele Zanoli. 2024. "Time Series from Sentinel-2 for Organic Durum Wheat Yield Prediction Using Functional Data Analysis and Deep Learning" Agronomy 14, no. 1: 109. https://doi.org/10.3390/agronomy14010109
APA StyleMancini, A., Solfanelli, F., Coviello, L., Martini, F. M., Mandolesi, S., & Zanoli, R. (2024). Time Series from Sentinel-2 for Organic Durum Wheat Yield Prediction Using Functional Data Analysis and Deep Learning. Agronomy, 14(1), 109. https://doi.org/10.3390/agronomy14010109