Marker–Trait Association for Protein Content among Maize Wild Accessions and Coix Using SSR Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Protein Quantification of Maize and Wild Accessions
2.3. Genotyping of Maize and Wild Accessions
2.4. Statistical Analysis
2.4.1. Protein Analysis
2.4.2. Population Structure Analysis
2.4.3. Marker–Trait Association Analysis
3. Results
3.1. Inter- and Intra-Species Protein Content Variation
3.1.1. Inter-Species Variation
3.1.2. Intra-Species Variation
3.2. Population Structure of Maize and Wild Accessions
3.3. Population Marker Protein Content Association Using Maize and Wild Accessions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strable, J.; Scanlon, M.J. Maize (Zea mays): A Model Organism for Basic and Applied Research in Plant Biology. Cold Spring Harb. Protoc. 2009, 10, pdb-emo132. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Stevens, N.M.; Buckler, E.S., IV. Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc. Natl. Acad. Sci. USA 2009, 106, 9979–9986. [Google Scholar] [CrossRef] [PubMed]
- Gaut, B.S.; Doebley, J.F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 1997, 94, 6809–6814. [Google Scholar] [CrossRef]
- Wei, F.; Coe, E.D.; Nelson, W.; Bharti, A.K.; Engler, F.; Butler, E.; Kim, H.; Goicoechea, J.L.; Chen, M.; Lee, S.; et al. Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet. 2007, 3, e123. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, Y.; Vigouroux, Y.; Goodman, M.M.; Sanchez, G.J.; Buckler, E.; Doebley, J. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. USA 2002, 99, 6080–6084. [Google Scholar] [CrossRef]
- Mammadov, J.; Buyyarapu, R.; Guttikonda, S.K.; Parliament, K.; Abdurakhmonov, I.Y.; Kumpatla, S.P. Wild relatives of maize, rice, cotton, and soybean: Treasure troves for tolerance to biotic and abiotic stresses. Front. Plant Sci. 2018, 9, 886. [Google Scholar] [CrossRef]
- Flint-Garcia, S.A.; Bodnar, A.L.; Scott, M.P. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theor. Appl. Genet. 2009, 119, 1129–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulis, J.W.; Wall, J.S. Comparison of the protein compositions of selected corns and their wild relatives, teosinte and Tripsacum. J. Agric. Food Chem. 1977, 25, 265–270. [Google Scholar] [CrossRef]
- Wang, L.; Xu, C.; Qu, M.; Zhang, J. Kernel amino acid composition and protein content of introgression lines from Zea mays ssp. mexicana into cultivated maize. J. Cereal Sci. 2008, 48, 387–393. [Google Scholar] [CrossRef]
- Arora, R.K. Job’s-tears (Coix lacryma-jobi)-a minor food and fodder crop of northeastern India. Econ. Bot. 1977, 31, 358–366. [Google Scholar] [CrossRef]
- Wester, P.S. Notes on Adlay. Philip. Agric. Rev. 1920, 13, 217–222. [Google Scholar]
- Schaffhausen, R.V. Adlay or Job’s tears—A cereal of potentially greater economic importance. Econ. Bot. 1952, 6, 216–227. [Google Scholar] [CrossRef]
- Woo, J.H.; Li, D.; Wilsbach, K.; Orita, H.; Coulter, J.; Tully, E.; Kwon, T.K.; Xu, S.; Gabrielson, E. Coix seed extract, a commonly used treatment for cancer in China, inhibits NFκB and protein kinase C signaling. Cancer Biol. Ther. 2007, 6, 2005–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.O.; Yun, S.J.; Jung, B.; Lee, E.H.; Hahm, D.H.; Shim, I.; Lee, H.J. Hypolipidemic effects of crude extract of adlay seed (Coix lachrymajobi var. mayuen) in obesity rat fed high fat diet: Relations of TNF-α and leptin mRNA expressions and serum lipid levels. Life Sci. 2004, 75, 1391–1404. [Google Scholar] [CrossRef]
- Kellogg, E.A.; Watson, L. Phylogenetic studies of a large data set. I. Bambusoideae, Andropogonodae, and Pooideae (Gramineae). Bot. Rev. 1993, 59, 273–343. [Google Scholar] [CrossRef]
- Venkateswarlu, J.; Chaganti, R.S.K. Job’s tears (Coix lacryma-jobi L.). ICAR Tech. Bull. 1973, 44, 54–59. [Google Scholar]
- Ottoboni, L.M.; Leite, A.; Targon, M.L.; Crozier, A.; Arruda, P. Characterization of the storage protein in seed of Coix lacryma-jobi var. Adlay. J. Agric. Food Chem. 1990, 38, 631–635. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Ball, T.; Yu, L.; Li, Y.; Xing, F. Revealing a 5,000-y-old beer recipe in China. Proc. Natl. Acad. Sci. USA 2016, 113, 6444–6448. [Google Scholar] [CrossRef]
- Fu, Y.H.; Yang, C.; Meng, Q.; Liu, F.; Shen, G.; Zhou, M.; Ao, M. Genetic diversity and structure of Coix lacryma-jobi L. from its world secondary diversity center, Southwest China. Int. J. Genom. 2019, 2019, 9815697. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Shi, J.; Cai, Z.; Huang, Y.; Lv, M.; Du, H.; Gao, Q.; Zuo, Y.; Dong, Z.; Huang, W.; et al. Evolution and domestication footprints uncovered from the genomes of Coix. Mol. Plant 2020, 13, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.L. Molecular markers and marker-assisted breeding in plants. Plant Breed. Lab. Fields 2013, 3, 45–83. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Suresh, S.; Piao, X.M.; Cho, G.T.; Lee, S.Y.; Baek, H.J.; Lee, C.W.; Chung, J.W. Application of simple sequence repeat (SSR) markers for the discrimination of Korean and Chinese sesame (Sesamum indicum L.) accessions. Plant Breed. Biotech. 2014, 2, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.; Choudhary, M.; Kumar, P.; Kumar, K.; Kumar, S.; Singh, B.K.; Lahkar, C.; Kumar, P.; Dar, Z.A.; Devlash, R.; et al. Population Structure Analysis and Association Mapping for Turcicum Leaf Blight Resistance in Tropical Maize Using SSR Markers. Genes 2022, 13, 618. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.W.; Dijkhuizen, A.; Paul, C.; Coates, S.T.; Rocheford, T.R. Effects of random mating on marker–QTL associations in the cross of the Illinois high protein × Illinois low protein maize strains. Crop Sci. 2004, 44, 1419–1428. [Google Scholar] [CrossRef]
- Zheng, Y.; Yuan, F.; Huang, Y.; Zhao, Y.; Jia, X.; Zhu, L.; Guo, J. Genome-wide association studies of grain quality traits in maize. Sci. Rep. 2021, 11, 9797. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Y.; Niu, S.; Cui, D.; Wang, Y.; Wei, M.; Li, X.; Fu, J.; Zhang, Z.; Chen, H.; et al. QTL identification of kernel composition traits with popcorn using both F2: 3 and BC2F2 populations developed from the same cross. J. Cereal Sci. 2008, 48, 625–631. [Google Scholar] [CrossRef]
- Wang, G.; Wang, F.; Wang, G.; Wang, F.; Zhang, X.; Zhong, M.; Zhang, J.; Lin, D.; Tang, Y.; Xu, Z.; et al. Opaque1 encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm. Plant Cell 2012, 24, 3447–3462. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Qi, W.; Wu, Q.; Yao, D.; Zhang, J.; Zhu, J.; Wang, G.; Wang, G.; Tang, Y.; Song, R. Identification and characterization of maize floury4 as a novel semidominant opaque mutant that disrupts protein body assembly. Plant Physiol. 2014, 165, 582–594. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Gibbon, B.C.; Gillikin, J.W.; Larkins, B.A.; Boston, R.S.; Jung, R. The maize Mucronate mutation is a deletion in the 16-kDa γ-zein gene that induces the unfolded protein response 1. Plant J. 2006, 48, 440–451. [Google Scholar] [CrossRef]
- Karn, A.; Gillman, J.D.; Flint-Garcia, S.A. Genetic analysis of teosinte alleles for kernel composition traits in maize. G3 Genes Genomes Genet. 2017, 7, 1157–1164. [Google Scholar] [CrossRef] [Green Version]
- Sood, S.; Flint-Garcia, S.; Willcox, M.C.; Holland, J.B. Mining natural variation for maize improvement: Selection on phenotypes and genes. In Genomics of Plant Genetic Resources; Springer: Dordrecht, The Netherlands, 2014; Volume 1, pp. 615–649. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, Y.; Wang, H.; Zhu, Y.; Huang, X.; Li, S.; Wu, X.; Zhao, Y.; Bao, Z.; Qin, L.; et al. Teosinte high protein 9 enhances the seed protein content and nitrogen utilization efficiency in maize. Nature 2022, 612, 292–300. [Google Scholar] [CrossRef]
- Weber, A.; Clark, R.M.; Vaughn, L.; de Jesus Sánchez-Gonzalez, J.; Yu, J.; Yandell, B.S.; Bradbury, P.; Doebley, J. Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays ssp. parviglumis). Genetics 2007, 177, 2349–2359. [Google Scholar] [CrossRef] [Green Version]
- Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.; Chhonkar, P.K.; Pande, R.N. Soil reaction in soil, plant, water analysis method: Manual. IARI ICAR New Delhi 1999, 1, 11–13. [Google Scholar]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Anandan, A.; Nagireddy, R.; Sabarinathan, S.; Bhatta, B.B.; Mahender, A.; Vinothkumar, M.; Parameswaran, C.; Panneerselvam, P.; Subudhi, H.; Meher, J.; et al. Multi-trait association study identifies loci associated with tolerance of low phosphorus in Oryza sativa and its wild relatives. Sci. Rep. 2022, 12, 4089. [Google Scholar] [CrossRef]
- Mehta, C.R.; Patel, N.R. IBM SPSS Exact Tests; IBM Corporation: Armonk, NY, USA, 2011; Volume 17, pp. 23–24. Available online: https://www.sussex.ac.uk/its/pdfs/SPSS_Exact_Tests_19.pdf (accessed on 12 July 2023).
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.B. Understanding crop genetic diversity under modern plant breeding. Theor. Appl. Genet. 2015, 128, 2131–2142. [Google Scholar] [CrossRef] [Green Version]
- Van Tassel, D.L.; Tesdell, O.; Schlautman, B.; Rubin, M.J.; DeHaan, L.R.; Crews, T.E.; Streit Krug, A. New food crop domestication in the age of gene editing: Genetic, agronomic and cultural change remain co-evolutionarily entangled. Front. Plant Sci. 2020, 11, 789. [Google Scholar] [CrossRef]
- Wang, H.; Nussbaum-Wagler, T.; Li, B.; Zhao, Q.; Vigouroux, Y.; Faller, M.; Bomblies, K.; Lukens, L.; Doebley, J.F. The origin of the naked grains of maize. Nature 2005, 436, 714–719. [Google Scholar] [CrossRef] [Green Version]
- Dorweiler, J.; Stec, A.; Kermicle, J.; Doebley, J. Teosinte glume architecture 1: A genetic locus controlling a key step in maize evolution. Science 1993, 262, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhao, Y.; Zhang, Z.; Zhang, S.; Zhang, H.; Yu, M.; Ma, Y. The edible and medicinal value of Coix lacryma-jobi and key cultivation techniques for high and stable yield. Nat. Resour. 2020, 11, 569–575. [Google Scholar] [CrossRef]
- Doebley, J. Molecular evidence and the evolution of maize. Econ. Bot. 1990, 44, 6–27. [Google Scholar] [CrossRef]
- Evans, M.M.; Kermicle, J.L. Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize. Theor. Appl. Genet. 2001, 103, 259–265. [Google Scholar] [CrossRef]
- Sanz-Alferez, S.; San Miguel, P.; Jin, Y.K.; Springer, P.S.; Bennetzen, J.L. Structure and evolution of the Cinful retrotransposon family of maize. Genome 2003, 46, 745–752. [Google Scholar] [CrossRef]
- Nevo, E.; Chen, G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 2010, 33, 670–685. [Google Scholar] [CrossRef]
- Xu, Y.; Li, P.; Zou, C.; Lu, Y.; Xie, C.; Zhang, X.; Prasanna, B.M.; Olsen, M.S. Enhancing genetic gain in the era of molecular breeding. J. Exp. Bot. 2017, 68, 2641–2666. [Google Scholar] [CrossRef] [Green Version]
- Bohra, A.; Kilian, B.; Sivasankar, S.; Caccamo, M.; Mba, C.; McCouch, S.R.; Varshney, R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2022, 40, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, K.; Hill, J.; Vigouroux, Y.; Matsuoka, Y.; Sanchez, G.J.; Liu, K.; Buckler, E.S.; Doebley, J. Genetic diversity and population structure of teosinte. Genetics 2005, 169, 2241–2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, A.L.; Briggs, W.H.; Rucker, J.; Baltazar, B.M.; de Jesus Sánchez-Gonzalez, J.; Feng, P.; Buckler, E.S.; Doebley, J. The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis): New evidence from association mapping. Genetics 2008, 180, 1221–1232. [Google Scholar] [CrossRef] [Green Version]
- Myles, S.; Peiffer, J.; Brown, P.J.; Ersoz, E.S.; Zhang, Z.; Costich, D.E.; Buckler, E.S. Association mapping: Critical considerations shift from genotyping to experimental design. Plant Cell 2009, 21, 2194–2202. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Warburton, M.; Crouch, J. Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci. 2011, 51, 433–449. [Google Scholar] [CrossRef]
- Jadhav, A.A.; Rayate, S.J.; Mhase, L.B.; Thudi, M.; Chitikineni, A.; Harer, P.N.; Jadhav, A.S.; Varshney, R.K.; Kulwal, P.L. Marker-trait association study for protein content in chickpea (Cicer arietinum L.). J. Genet. 2015, 94, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Hindu, V.; Palacios-Rojas, N.; Babu, R.; Suwarno, W.B.; Rashid, Z.; Usha, R.; Saykhedkar, G.R.; Nair, S.K. Identification and validation of genomic regions influencing kernel zinc and iron in maize. Theor. Appl. Genet. 2018, 131, 1443–1457. [Google Scholar] [CrossRef] [Green Version]
- Hwang, E.Y.; Song, Q.; Jia, G.; Specht, J.E.; Hyten, D.L.; Costa, J.; Cregan, P.B. A genome-wide association study of seed protein and oil content in soybean. BMC Genom. 2014, 15, 1. [Google Scholar] [CrossRef] [Green Version]
- Karaca, N.; Ates, D.; Nemli, S.; Ozkuru, E.; Yilmaz, H.; Yagmur, B.; Kartal, C.; Tosun, M.; Ozdestan, O.; Otles, S.; et al. Genome-Wide Association Studies of Protein, Lutein, Vitamin C, and Fructose Concentration in Wild and Cultivated Chickpea Seeds. Crop Sci. 2019, 59, 2652–2666. [Google Scholar] [CrossRef]
- Khazaei, H.; Podder, R.; Caron, C.T.; Kundu, S.S.; Diapari, M.; Vandenberg, A.; Bett, K.E. Marker–trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. TPG 2017, 10, plantgenome2017.02.0007. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Lu, Y.; Yang, X.; Huang, J.; Zhou, Y.; Ali, F.; Wen, W.; Liu, J.; Li, J.; Yan, J. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet. 2014, 10, e1004573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, B.R.; Fernandes, S.B.; Lipka, A.E. Multi-trait genome-wide association studies reveal loci associated with maize inflorescence and leaf architecture. Plant Cell Physiol. 2020, 61, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yang, X.; Chander, S.; Yan, J.; Zhang, J.; Song, T.; Li, J. Identification of unconditional and conditional QTL for oil, protein and starch content in maize. Crop J. 2013, 1, 34–42. [Google Scholar] [CrossRef] [Green Version]
S.N. | SSR Locus | Forward Sequence (5′–3′) | Reverse Sequence (5′–3′) | Chromosome Bin |
---|---|---|---|---|
1. | phi056 | ACTTGCTTGCCTGCCGTTAC | CGCACACCACTTCCCAGAA | 1.01 |
2. | bnlg1429 | CTCCTCGCAAGGATCTTCAC | AGCACCGTTTCTCGTGAGAT | 1.02 |
3. | bnlg1458 | GAAAGGCTCGCTAGTCGCTA | AATTCCTATCGATCCTGGCC | 1.03 |
4. | umc1472 | TTTTTCTTCTCACCATCACCTTCA | TGGCTTCAAAGAAGAGGAAACATC | 1.04 |
5. | umc2025 | CGCCGTAGTATTTGGTAGCAGAAG | TCTACCGCTCCTTCGTCCAGTA | 1.05 |
6. | umc1988 | CAGGTGGTACGCCATGAACC | GATGCTCAAGGAGCAGCGAC | 1.06 |
7. | umc1245 | TGGTTATGTGCATGATTTTTCCTG | CATGCGTCTGATCTTCAGAATGTT | 1.07 |
8. | umc1538 | AGAAACAACACATTCCCTCGAAAC | AGCAGCTTTTACCCCTGATTTTTC | 1.11 |
9. | umc1500 | TCTCTGACTATTCCACGAGCTCAA | CTGGTGCGTGCTACAACTGTG | 1.11 |
10. | umc1622 | CGCTACAAATCCTACTGGTGCTTT | CCTCGGATTTTCCAAAACATTTCT | 2.00 |
11. | umc1845 | TGGTTGAACTGTTAAATCTGTCCTGA | TGGTAACCAGATTCCCACAGATG | 2.03 |
12. | umc1024 | CCTTTTTCGCCTCGCTTTTTAT | TCGTCGTCTCCAATCATACGTG | 2.04 |
13. | umc1156 | GCTGTGACGTTTGCTACTACTCCA | TAGCTATGCCTATGGCCCTGATAA | 2.06 |
14. | bnlg1721 | ATTTCTTTTGCCACCTCAGC | ACGACTTTCATGCCTCGTCT | 2.08 |
15. | bnlg1662 | GCACCCACATGAAGTATCCC | TTGTTTTTGCAGTGCCTCAG | 2.08 |
16. | bnlg1940 | CCTTTTGTTTCAGGCCGTTA | CAGCAGCCTGATGATGAACA | 2.08 |
17. | umc1126 | CAACAGGGTGAACCCTCTGTACTT | AATATGGTGTTGTGATTTGCATCG | 2.08 |
18. | bnlg1520 | TCCTCTTGCTCTCCATGTCC | ACAGCTGCGTAGCTTCTTCC | 2.09 |
19. | umc1551 | CACCGGAACACCTTCTTACAGTTT | CGAAACCTTCTCGTGATGAGC | 2.09 |
20. | umc2118 | CGTCTCCGTCTGCAGTCACTATTA | TATGGTCCTCGGAGTTTGTTTGTT | 3.00 |
21. | phi104127 | CTTTGCTGCTGCTTCCTACG | AACCAGTGACGTACACAAAGCA | 3.01 |
22. | umc2255 | GCTACGCTTAAGTATCACGGCAAC | CTGCTGAGGAGAAGTGATCCTGTT | 3.01 |
23. | bnlg1144 | TACTCGTCGTGTGGCGTTAG | AGCCGAGGCTATCTAACGGT | 3.02 |
24. | umc1030 | TCCAGAGAATGAGATGACAAGACG | CAGAATAACAGGAGATGAGACGCA | 3.04 |
25. | umc2000 | CTGTTGTCAAGCCAAGCCAGT | AGGCTTGTGAGACTCAGCAGTTTT | 3.04 |
26. | bnlg197 | GCGAGAAGAAAGCGAGCAGA | CGCCAAGAAGAAACACATCACA | 3.06 |
27. | bnlg1108 | GGATTCCTTTATGACGGGGT | AGTAACAACCAAGGCATCGG | 3.08 |
28. | umc2008 | GTGGACTACTCTCGCTTCGCTTT | CGTGGACGTACTCGATTAGTTTGTT | 3.09 |
29. | umc2152 | TAGCTTCACCTGATGATCTTGCAC | CCTTTGTCTTCCGCTATCTTCCTT | 3.09 |
30. | umc1294 | GCCGTCAACGGGCTTAAACT | GCCTCCAGCTCTCTCGTCTCTT | 4.02 |
31. | umc1303 | CTTGGTAGCTTCGTATTCGACGAG | ATCCTAGGAAAGCAGGGAGGG | 4.05 |
32. | umc1662 | CCTTCTTCCTTCACGCCTCTTT | GACCACCTCATCTCTGACTCTGG | 4.05 |
33. | umc1299 | CTTGGGTTCTTCTCTCCTATGGGT | CGCTACAAACAAGTGGCGTTTAAT | 4.06 |
34. | umc1869 | CGAGCGCTCTAGACACGATTTT | GAACTGGAGGAGCGAGCATGTAT | 4.06 |
35. | umc1667 | AAACATACCCCACCACTGCAAG | CGAAGAACATGTAACACAGCAACC | 4.08 |
36. | umc1939 | CAAATACACCTCCAGCATCAGTTG | GATCCCATTTGTTGTTGCTGCT | 4.09 |
37. | umc1720 | TATTGCCGATTAATCTGTCCCATT | CAAGTTTGGGTACCTGAAGATTCG | 4.10 |
38. | phi113 | GCACTGCCGGAGTGCCTTCT | ATGCCGTGATCTGTGACATCTAACC | 5.01 |
39. | umc1692 | AGAGACGAACTGAAGCCTGAAGTG | GATGTCCACGTCCTGGTAGAAGTT | 5.03 |
40. | umc1171 | ACGTACTACAGATAATGGGCGACG | CGCCGTACCCATGAGTATAATGTAA | 5.04 |
41. | umc2164 | AGCACACAGACAAGAGAGACAACG | GACCGACAACAGAGATCGAGTACA | 5.05 |
42. | bnlg389 | GGTCACCCTCCCTTTGCAG | ATTGCCTACACAGTTTGATTGG | 5.09 |
43. | umc2307 | GTCGACATCGTCTTCCCCAAG | GTAGGAAGCCACGTACGGCTC | 5.09 |
44. | phi075 | GGAGGAGCTCACCGGCGCATAA | AAAGGTTACTGGACAAATATGCGTAACTCA | 6.00 |
45. | bnlg1600 | CGATCAGTGCGTGGAGAGTA | TAGGCATGCATTGTCCATTG | 6.00 |
46. | y1SSR | CAAGAAGAGGAGAGGCCGGA | TTGAGCAGGGTGGAGCACTG | 6.01 |
47. | umc1444 | ACTAGCACACACCCCCTACCACTA | TGTGCTTGTGAGAAGGATTTGTTC | 6.01 |
48. | bnlg1371 | TTGCCGATAAGAACCAAACA | ACGACCGGTGTGGTTACATT | 6.01 |
49. | umc2313 | CCTCTAGTCACGGTTCAAAGGACA | AAGGAGGATGCAGTCTCGGTTT | 6.01 |
50. | umc1595 | CGCTTGAAATGGAAAGGTAGAAAG | GCTGCTGGTCTACAACCTCTTGTT | 6.02 |
51. | umc1818 | TCGGTCGAGGCATAACTAGCTC | CAGCTTCTTCCACTTCTTCAGCA | 6.02 |
52. | nc013 | AATGGTTTTGAGGATGCAGCGTGG | CCCCGTGATTCCCTTCAACTTTC | 6.05 |
53. | umc1296 | CTCTCCCGGCTCTGACCTAGC | GCTGGAGATAGGCATCCAGACAC | 6.06 |
54. | phi070 | GCTGAGCGATCAGTTCATCCAG | CCATGGCAGGGTCTCTCAAG | 6.07 |
55. | umc1127 | GGTCCAGTGACATCTCAAAATGAA | ATATTCCCCCTCCCTAATTTTGCT | 6.08 |
56. | phi089 | GAATTGGGAACCAGACCACCCAA | ATTTCCATGGACCATGCCTCGTG | 6.08 |
57. | umc1546 | CTGGTCTTGGCCTTGGACTTCT | GTCACAGCAAAGTCATCCTCCTCT | 7.00 |
58. | umc1216 | TTGGTTGTTGGCTCCATATTCA | GTTATATGCCCGTGCATTGCTA | 7.02 |
59. | umc1393 | CCTTCTTCTTATTGTCACCGAACG | GCCGATGAGATCTTTAACAACCTG | 7.02 |
60. | bmc1792 | CGGGAATGAATAAGCCAAGA | GCGCTCCTTCACCTTCTTTA | 7.02 |
61. | phi091 | ATCTTGCTTCCATAAGATGCACTGCTCT | CTCAGCTTCGGTTCCTACACAGT | 7.03 |
62. | phi328175 | GGGAAGTGCTCCTTGC | CGGTAGGTGAACGCGGTA | 7.04 |
63. | umc1154 | CCACCACAAGACAAGACAAGAATG | CCTGATCGATCTCATCGTCGT | 7.05 |
64. | phi069 | AGACACCGCCGTGGTCGTC | AGTCCGGCTCCACCTCCTTC | 7.05 |
65. | umc2635 | TGCATGCATTTGTCAAAATGAAAC | CCACCCACCCTGGATACCTATT | 7.06 |
66. | phi420701 | GATGTTTCAAAACCACCCAGA | ATGGCACGAATAGCAACAGG | 8.00 |
67. | umc1304 | CATGCAGCTCTCCAAATTAAATCC | GCCAACTAGAACTACTGCTGCTCC | 8.02 |
68. | phi115 | GCTCCGTGTTTCGCCTGAA | ACCATCACCTGAATCCATCACA | 8.03 |
69. | bnlg669 | GCACGCACCAGCAGTCGGCAGT | CGGCCTAGTGGGCATGGAGCCT | 8.03 |
70. | umc2182 | TTCTACCTCCTATCATCGTCCTCG | GAAGAGGAGGAAGTCGACGAGTG | 8.04 |
71. | bnlg1176 | ACTCCTCAAAACCTAGGTGACA | CACCGATGATGGTGAGTACG | 8.05 |
72. | bnlg162 | ACTAGCAGCAGTAAAACCTAATAAAGGGA | CAAGTAGCTAGCAGTCATTTGCAGTGT | 8.05 |
73. | bnlg1065 | TGATGCTCGTTGCTTACCTG | TTGCCTCTCGTCTTCCAACT | 8.07 |
74. | umc1673 | AAGCTCAAGCTCCTAGCTCTTCCT | GAGGAGCGTCTCCAGAAGGAC | 8.08 |
75. | umc1638 | AGGTGACCTCGACGTCCTACG | GAGGGGAACAAAGACTTGACGTT | 8.09 |
76. | umc1279 | GATGAGCTTGACGACGCCTG | CAATCCAATCCGTTGCAGGTC | 9.00 |
77. | phi067 | CTGCAAAGGTAAGCACTAGGATGCT | CATCATTGATCCGGGTGTCGCTTT | 9.01 |
78. | phi016 | TTCCATCATTGATCCGGGTGTCG | AAGGAGCAACATCCCATCCAGGAA | 9.04 |
79. | umc2341 | CTGAGCTCCTGATTTCTTGCTCTC | AAACATTTAATCCAACAGCCCAGA | 9.05 |
80. | bnlg292 | TGGTAGGACCTTACAATGGGA | CGGGAGTACTGCTACACACGA | 9.06 |
81. | umc2099 | AGGTCATCAAGATGCAGAGGGAG | TCAAGGTACGAAGCCTGACGAC | 9.07 |
82. | phi054 | AGAAAAGAGAGTGTGCAATTGTGATAGAG | AATGGGTGCCTCGCACCAAG | 10.03 |
83. | umc1053 | CTTGTATCATCAGCTAGGGCATGT | TCAACTTATGTCAACTGCATGCTT | 10.04 |
84. | phi035 | CGTGCAAGCAGTCCTCCCAG | CTCCCTGATGATGAGCTAGAAAGG | 10.06 |
Accession | Code | Scientific Name | Protein Content (%) | |
---|---|---|---|---|
Without Seed Coat | With Seed Coat | |||
EC938022 | G1 | Z. nicaraguensis | 19.37 t ± 0.02 | 13.73 t ± 0.02 |
EC938023 | G2 | Z. diploperennis | 22.46 k ± 0.02 | 16.22 s ± 0.03 |
EC941070 | G3 | Z. mays subsp. Parviglumis | 19.58 s ± 0.04 | 16.29 r ± 0.02 |
EC941071 | G4 | Z. mays subsp. Parviglumis | 23.07 h ± 0.02 | 16.59 q ± 0.02 |
EC941072 | G5 | Z. mays subsp. Parviglumis | 21.38 o ± 0.02 | 18.19 k ± 0.02 |
EC941073 | G6 | Z. mays subsp. Parviglumis | 21.57 n ± 0.01 | 18.12 l ± 0.01 |
EC941074 | G7 | Z. mays subsp. Parviglumis | 22.76 i ± 0.03 | 18.23 j ± 0.03 |
EC941075 | G8 | Z. mays subsp. Parviglumis | 23.52 e ± 0.03 | 17.58 m ± 0.02 |
EC941076 | G9 | Z. diploperennis | 23.46 f ± 0.02 | 19.13 f ± 0.02 |
EC941077 | G10 | Z. diploperennis | 23.60 d ± 0.01 | 17.23 o ± 0.03 |
EC944138 | G11 | Z. nicaraguensis | 20.16 q ± 0.04 | 17.07 p ± 0.02 |
EC944139 | G12 | Z. mays subsp. Parviglumis | 25.78 b ± 0.03 | 17.30 n ± 0.02 |
EC944140 | G13 | Z. mays subsp. Parviglumis | 20.64 p ± 0.06 | 18.54 h ± 0.02 |
EC944141 | G14 | Z. mays subsp. Parviglumis | 22.14 l ± 0.02 | 18.50 i ± 0.01 |
EC944144 | G15 | Z. diploperennis | 18.5 w ± 0.01 | 16.55 g ± 0.03 |
EC944145 | G16 | Z. diploperennis | 22.65 j ± 0.03 | 16.46 q ± 0.04 |
EC944148 | G17 | Z. mays subsp. Mexicana | 19.65 r ± 0.01 | 18.30 j ± 0.02 |
EC944149 | G18 | Z. mays subsp. Mexicana | 21.72 m ± 0.03 | 19.80 c ± 0.03 |
EC944150 | G19 | Z. mays subsp. Mexicana | 25.10 c ± 0.02 | 19.37 d ± 0.03 |
EC944151 | G20 | Z. mays subsp. Mexicana | 23.37 g ± 0.02 | 20.92 a ± 0.03 |
EC944153 | G21 | Z. mays subsp. Mexicana | 23.07 h ± 0.01 | 19.24 e ± 0.03 |
EC944155 | G22 | Z. mays subsp. Mexicana | 26.29 a ± 0.01 | 20.40 b ± 0.02 |
EC944155 | G23 | Z. mays subsp. Mexicana | 18.62 u ± 0.01 | 16.49 q ± 0.02 |
CAL1444 | G24 | Z. mays subsp. Mays | 11.12 x ± 0.03 | - |
CML451 | G25 | Z. mays subsp. Mays | 9.02 y ± 0.06 | - |
CAL159 | G26 | Z. mays subsp. Mays | 8.48 z ± 0.03 | - |
Local collection | G27 | Coix lacryma-jobi | 18.26 v ± 0.01 | - |
Local collection | G28 | Z. mays subsp. Parviglumis | 19.67 r ± 0.01 | 16.49 q ± 0.04 |
SE (M) | - | - | 0.016 | 0.01 |
C.D. | - | - | 0.046 | 0.039 |
C.V. | - | - | 0.013 | 0.132 |
K | Reps | Mean LnP(K) | StdevLnP(K) | Ln’(K) | |Ln’’(K)| | Delta K |
---|---|---|---|---|---|---|
2 | 3 | −2944.6667 | 0.7638 | NA | NA | NA |
3 | 3 | −2923.0000 | 73.2885 | 21.666667 | 129.200000 | 1.762895 |
4 * | 3 | 2.4786 | −2772.1333 | 150.866667 | 182.500000 | 73.631022 |
5 | 3 | −2803.7667 | 95.3329 | −31.633333 | 190.766667 | 2.001058 |
6 | 3 | −3026.1667 | 151.5178 | −222.400000 | 2824.433333 | 18.640934 |
7 | 3 | −6073.0000 | 5332.0295 | −3046.833333 | 5767.833333 | 1.081733 |
8 | 3 | −3352.0000 | 318.2017 | 2721.000000 | 2698.533333 | 8.480575 |
9 | 3 | −3329.5333 | 216.8396 | 22.466667 | 510.200000 | 2.352891 |
10 | 3 | −3817.2667 | 379.1792 | −487.733333 | NA | NA |
Sl. No | Locus (Marker) | Chromosome | F Value | p Value | R2 |
---|---|---|---|---|---|
1 | umc1294 | 4 | 84.350 | 0.000 | 0.764 |
2 | umc2182a | 8 | 12.750 | 0.001 | 0.329 |
3 | umc2182c | 8 | 9.069 | 0.006 | 0.259 |
4 | umc1171a | 5 | 8.574 | 0.007 | 0.248 |
5 | bnlg292 | 9 | 8.249 | 0.008 | 0.241 |
6 | phi091 | 7 | 7.960 | 0.009 | 0.234 |
7 | umc1171b | 5 | 7.515 | 0.010 | 0.224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varalakshmi, S.; Sahoo, S.; Singh, N.K.; Pareek, N.; Garkoti, P.; Senthilkumar, V.; Kashyap, S.; Jaiswal, J.P.; Jacob, S.R.; Nankar, A.N. Marker–Trait Association for Protein Content among Maize Wild Accessions and Coix Using SSR Markers. Agronomy 2023, 13, 2138. https://doi.org/10.3390/agronomy13082138
Varalakshmi S, Sahoo S, Singh NK, Pareek N, Garkoti P, Senthilkumar V, Kashyap S, Jaiswal JP, Jacob SR, Nankar AN. Marker–Trait Association for Protein Content among Maize Wild Accessions and Coix Using SSR Markers. Agronomy. 2023; 13(8):2138. https://doi.org/10.3390/agronomy13082138
Chicago/Turabian StyleVaralakshmi, Shankarappa, Smrutishree Sahoo, Narendra Kumar Singh, Navneet Pareek, Priya Garkoti, Velmurugan Senthilkumar, Shruti Kashyap, Jai Prakash Jaiswal, Sherry Rachel Jacob, and Amol N. Nankar. 2023. "Marker–Trait Association for Protein Content among Maize Wild Accessions and Coix Using SSR Markers" Agronomy 13, no. 8: 2138. https://doi.org/10.3390/agronomy13082138