Fast Determination of Amylose Content in Lotus Seeds Based on Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Hyperspectral Imaging System
2.3. Amylose Detection
2.4. Sample Partition
2.5. Spectral Preprocessing
2.6. Variables Selection
2.7. Partial Least Squares Regression (PLSR)
2.8. Data Analysis
2.9. Evaluation of Model Performance
3. Results
3.1. Spectra
3.2. Lotus Seeds
3.3. Spectral Preprocessing
3.4. Feature Variables Selection
3.5. PLSR Models
3.6. Visualization of Amylose Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, B.R.; Gautam, L.N.S.; Adhikari, D.; Karki, R. A Comprehensive Review on Chemical Profiling of Nelumbo Nucifera: Potential for Drug Development. Phytother. Res. 2017, 31, 3–26. [Google Scholar] [CrossRef]
- Zheng, Y.; Guo, Z.; Zheng, B.; Zeng, S.; Zeng, H. Insight into the Formation Mechanism of Lotus Seed Starch-Lecithin Complexes by Dynamic High-Pressure Homogenization. Food Chem. 2020, 315, 126245. [Google Scholar] [CrossRef] [PubMed]
- Okpala, N.E.; Aloryi, K.D.; An, T.; He, L.; Tang, X. The Roles of Starch Branching Enzymes and Starch Synthase in the Biosynthesis of Amylose in Rice. J. Cereal Sci. 2022, 104, 103393. [Google Scholar] [CrossRef]
- Dhull, S.B.; Chandak, A.; Collins, M.N.; Bangar, S.P.; Chawla, P.; Singh, A. Lotus Seed Starch: A Novel Functional Ingredient with Promising Properties and Applications in Food-A Review. Starch-Starke 2022, 74, 2200064. [Google Scholar] [CrossRef]
- Zheng, M.; Su, H.; You, Q.; Zeng, S.; Zheng, B.; Zhang, Y.; Zeng, H. An Insight into the Retrogradation Behaviors and Molecular Structures of Lotus Seed Starch-Hydrocolloid Blends. Food Chem. 2019, 295, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, J.; Song, H.; Yang, D.; Deng, X.; Liu, J.; Wang, Y.; Ma, J.; Xiong, Y.; Liu, Y.; et al. Comprehensive Analysis of AGPase Genes Uncovers Their Potential Roles in Starch Biosynthesis in Lotus Seed. BMC Plant Biol. 2020, 20, 457. [Google Scholar] [CrossRef]
- Duan, D.X.; Donner, E.; Liu, Q.; Smith, D.C.; Ravenelle, F. Potentiometric Titration for Determination of Amylose Content of Starch—A Comparison with Colorimetric Method. Food Chem. 2012, 130, 1142–1145. [Google Scholar] [CrossRef]
- Fertig, C.C.; Podczeck, F.; Jee, R.D.; Smith, M.R. Feasibility Study for the Rapid Determination of the Amylose Content in Starch by Near-Infrared Spectroscopy. Eur. J. Pharm. Sci. 2004, 21, 155–159. [Google Scholar] [CrossRef]
- Zhang, H.; Miao, Y.; Takahashi, H.; Chen, J.Y. Amylose Analysis of Rice Flour Using Near-Infrared Spectroscopy with Particle Size Compensation. FSTR 2011, 17, 361–367. [Google Scholar] [CrossRef]
- Peiris, K.H.S.; Wu, X.; Bean, S.R.; Perez-Fajardo, M.; Hayes, C.; Yerka, M.K.; Jagadish, S.V.K.; Ostmeyer, T.; Aramouni, F.M.; Tesso, T.; et al. Near Infrared Spectroscopic Evaluation of Starch Properties of Diverse Sorghum Populations. Processes 2021, 9, 1942. [Google Scholar] [CrossRef]
- Özdoğan, G.; Lin, X.; Sun, D.-W. Rapid and Noninvasive Sensory Analyses of Food Products by Hyperspectral Imaging: Recent Application Developments. Trends Food Sci. Technol. 2021, 111, 151–165. [Google Scholar] [CrossRef]
- Wei, X.; He, J.; Zheng, S.; Ye, D. Modeling for SSC and Firmness Detection of Persimmon Based on NIR Hyperspectral Imaging by Sample Partitioning and Variables Selection. Infrared Phys. Technol. 2020, 105, 103099. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Kim, H.-C.; Moon, K.-D. Geographical Origin Discriminant Analysis of Chia Seeds (Salvia Hispanica L.) Using Hyperspectral Imaging. J. Food Compos. Anal. 2021, 101, 103916. [Google Scholar] [CrossRef]
- Tschannerl, J.; Ren, J.; Jack, F.; Krause, J.; Zhao, H.; Huang, W.; Marshall, S. Potential of UV and SWIR Hyperspectral Imaging for Determination of Levels of Phenolic Flavour Compounds in Peated Barley Malt. Food Chem. 2019, 270, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Hu, X.; Tian, J.; Jiang, X.; Sun, T.; Luo, H.; Huang, D. Rapid and Nondestructive Prediction of Amylose and Amylopectin Contents in Sorghum Based on Hyperspectral Imaging. Food Chem. 2021, 359, 129954. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Song, Q.; Liu, Y.; Zeng, T.; Liu, S.; Jie, D.; Wei, X. Hyperspectral Imaging-Based Detection of Soluble Solids Content of Loquat from a Small Sample. Postharvest Biol. Technol. 2023, 204, 112454. [Google Scholar] [CrossRef]
- Coliban, R.-M.; Marincaş, M.; Hatfaludi, C.; Ivanovici, M. Linear and Non-Linear Models for Remotely-Sensed Hyperspectral Image Visualization. Remote Sens. 2020, 12, 2479. [Google Scholar] [CrossRef]
- ElMasry, G.; Wang, N.; ElSayed, A.; Ngadi, M. Hyperspectral Imaging for Nondestructive Determination of Some Quality Attributes for Strawberry. J. Food Eng. 2007, 81, 98–107. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, H.; Zhang, L.; Feng, D.; Zhang, F.; Jiang, M.; Sui, Q.; Jia, L. Fast Determination of Oxide Content in Cement Raw Meal Using NIR Spectroscopy with the SPXY Algorithm. Anal. Methods 2019, 11, 3936–3942. [Google Scholar] [CrossRef]
- Rinnan, A.; van den Berg, F.; Engelsen, S.B. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra. Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.-W. Advanced Applications of Hyperspectral Imaging Technology for Food Quality and Safety Analysis and Assessment: A Review—Part I: Fundamentals. Innov. Food Sci. Emerg. Technol. 2013, 19, 1–14. [Google Scholar] [CrossRef]
- Centner, V.; Massart, D.L.; de Noord, O.E.; de Jong, S.; Vandeginste, B.M.; Sterna, C. Elimination of Uninformative Variables for Multivariate Calibration. Anal Chem 1996, 68, 3851–3858. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-L.; Esquerre, C.; Sun, D.-W. Methods for Performing Dimensionality Reduction in Hyperspectral Image Classification. J. Near Infrared Spectrosc. 2018, 26, 61–75. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key Wavelengths Screening Using Competitive Adaptive Reweighted Sampling Method for Multivariate Calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, F.; Kong, W.W.; Cui, P.; He, Y.; Zhou, W.J. Estimation and Visualization of Soluble Sugar Content in Oilseed Rape Leaves Using Hyperspectral Imaging. Trans. ASABE 2016, 59, 1499–1505. [Google Scholar] [CrossRef]
- Jie, D.; Xie, L.; Rao, X.; Ying, Y. Using Visible and near Infrared Diffuse Transmittance Technique to Predict Soluble Solids Content of Watermelon in an On-Line Detection System. Postharvest Biol. Technol. 2014, 90, 1–6. [Google Scholar] [CrossRef]
- Tamaki, Y.; Mazza, G. Rapid Determination of Carbohydrates, Ash, and Extractives Contents of Straw Using Attenuated Total Reflectance Fourier Transform Mid-Infrared Spectroscopy. J. Agric. Food Chem. 2011, 59, 6346–6352. [Google Scholar] [CrossRef] [PubMed]
Item | NO. | Maximum | Minimum | Average | SD |
---|---|---|---|---|---|
Major axis (cm) | 120 | 2.132 | 1.811 | 1.986 | 0.25 |
Minor axis (cm) | 120 | 1.778 | 1.406 | 1.631 | 0.32 |
Weight (g) | 120 | 3.100 | 2.100 | 2.687 | 0.26 |
Amylose content | |||||
Calibration (mg g−1) | 80 | 216.748 | 46.238 | 132.695 | 37.116 |
Prediction (mg g−1) | 40 | 213.157 | 52.508 | 132.719 | 37.190 |
Pretreatment Method | Calibration Set | Prediction Set | ||
---|---|---|---|---|
Rc | RMSEC/mg g−1 | Rp | RMSEP/mg g−1 | |
Raw | 0.924 | 14.144 | 0.866 | 18.537 |
SG smoothing | 0.920 | 14.456 | 0.869 | 18.320 |
SNV | 0.900 | 16.085 | 0.792 | 22.608 |
First deviation | 0.921 | 14.357 | 0.869 | 18.391 |
MSC | 0.889 | 16.917 | 0.820 | 21.147 |
The Input Data | NO. of Variables | Calibration Set | Prediction Set | RPD | ||
---|---|---|---|---|---|---|
Rc | RMSEC/mg g−1 | Rp | RMSEP/mg g−1 | |||
Full | 472 | 0.920 | 14.456 | 0.869 | 18.320 | 2.021 |
SPA | 15 | 0.916 | 15.142 | 0.890 | 15.154 | 2.193 |
CARS | 56 | 0.930 | 13.867 | 0.857 | 17.080 | 1.941 |
UVE | 126 | 0.916 | 15.175 | 0.859 | 16.969 | 1.953 |
UVE–SPA | 15 | 0.912 | 15.515 | 0.888 | 15.265 | 2.175 |
UVE–CARS | 35 | 0.930 | 13.880 | 0.868 | 16.481 | 2.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Huang, L.; Li, S.; Gao, S.; Jie, D.; Guo, Z.; Zheng, B. Fast Determination of Amylose Content in Lotus Seeds Based on Hyperspectral Imaging. Agronomy 2023, 13, 2104. https://doi.org/10.3390/agronomy13082104
Wei X, Huang L, Li S, Gao S, Jie D, Guo Z, Zheng B. Fast Determination of Amylose Content in Lotus Seeds Based on Hyperspectral Imaging. Agronomy. 2023; 13(8):2104. https://doi.org/10.3390/agronomy13082104
Chicago/Turabian StyleWei, Xuan, Liang Huang, Siyi Li, Sheng Gao, Dengfei Jie, Zebin Guo, and Baodong Zheng. 2023. "Fast Determination of Amylose Content in Lotus Seeds Based on Hyperspectral Imaging" Agronomy 13, no. 8: 2104. https://doi.org/10.3390/agronomy13082104
APA StyleWei, X., Huang, L., Li, S., Gao, S., Jie, D., Guo, Z., & Zheng, B. (2023). Fast Determination of Amylose Content in Lotus Seeds Based on Hyperspectral Imaging. Agronomy, 13(8), 2104. https://doi.org/10.3390/agronomy13082104