Multiple Traits Selection Strategies: A Proposal for Coffee Plant Breeding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variables Analyzed
2.2. Statistical Analyzes
2.2.1. Data Analysis
2.2.2. Selection Strategies
- i.
- The selection index of Mulamba and Mock [26], which consists of the sum of points (Imm) of the adjusted phenotypic means for each evaluated character. Two forms of weighting were assigned to this index. The first weighting (MM(PE)) consisted of economic weights, with weight one assigned to the VV, HS, YI, and PROD variables and the weight of 0.8 assigned to the SD, NB, and BES variables. The second weighting (MM(CVg)) was performed based on the coefficient of genetic variation of each trait.
- ii.
- FAI-BLUP index [6], which is based on factor analysis and the genotype-ideotype distance.
- iii.
- The index of the sum of standardized variables (ZI) [27]. The plot data were standardized, and then these values were subjected to a Scott-Knott test at 0.05 significance level.
2.2.3. Graphical Analysis Based on the Individual Heritability of Progeny
3. Results
3.1. Direct Selection
3.2. Selection Indices
3.3. Graphical Analysis
3.4. Comparison between Selection Strategies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramalho, M.A.P.; Carvalho, B.L.; Nunes, J.A.R. Perspectives for the Use of Quantitative Genetics in Breeding of Autogamous Plants. ISRN Genet. 2013, 2013, 718127. [Google Scholar] [CrossRef] [Green Version]
- Sera, T. Coffee Genetic Breeding at IAPAR. Crop. Breed. Appl. Biotechnol. 2001, 1, 179–199. [Google Scholar] [CrossRef]
- Pereira, T.B.; Carvalho, J.P.F.; Botelho, C.E.; De Resende, M.D.V.; de Rezende, J.C.; Mendes, A.N.G. Eficiência da seleção de progênies de café F4 pela metodologia de modelos mistos (REML/BLUP). Bragantia 2013, 72, 230–236. [Google Scholar] [CrossRef] [Green Version]
- De Resende, M.D.V.; Duarte, J.B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesq. Agropec. Trop. 2007, 37, 182–194. [Google Scholar]
- Martinez, D.T.; De Resende, M.D.V.; Higa, A.R.; da Costa, R.B. Procedimentos de predição e efeitos da heterogeneidade de variâncias residuais dentro de tratamentos genéticos. Pesqui. Florest. Bras. 2011, 67, 193–202. [Google Scholar] [CrossRef]
- do Amaral Santos de Carvalho Rocha, J.R.; Machado, J.C.; Carneiro, P.C.S. Multitrait index based on factor analysis and ideotype-design: Proposal and application on elephant grass breeding for bioenergy. Glob. Cheng. Biol. Bioenergy 2018, 10, 52–60. [Google Scholar] [CrossRef]
- Carvalho, H.F.; da Silva, F.L.; de Resende, M.D.V.; Bhering, L.L. Selection and genetic parameters for interpopulation hybrids between kouilou and robusta coffee. Bragantia 2019, 78, 52–59. [Google Scholar] [CrossRef]
- Silva, V.A.; Abrahão, J.C.d.R.; Reis, A.M.; Santos, M.d.O.; Pereira, A.A.; Botelho, C.E.; Carvalho, G.R.; Castro, E.M.d.; Barbosa, J.P.R.A.D.; Botega, G.P.; et al. Strategy for Selection of Drought-Tolerant Arabica Coffee Genotypes in Brazil. Agronomy 2022, 12, 2167. [Google Scholar] [CrossRef]
- Cruz, C.D.; Regazzi, A.J. Modelos Biométricos Aplicados ao Melhoramento Genético, 2nd ed.; UFV: Viçosa, Brazil, 1994; 390p. [Google Scholar]
- Santos, E.R.; Spehar, C.R.; Capone, A.; Santos, A.F. Agronomic characteristics of lypoxygenase-free soybean introduced in low latitudes of the state of tocantins. Nucleus 2017, 14, 289–300. [Google Scholar] [CrossRef] [Green Version]
- De Resende, M.D.V. Genética Biométrica e Estatística no Melhoramento de Plantas Perenes; Embrapa: Brasília, Brazil, 2002. [Google Scholar]
- Lin, C.Y. Index selection for genetic improvement of quantitative characters. Theor. Appl. Genet. 1978, 52, 49–56. [Google Scholar] [CrossRef]
- Martins, I.S.; Cruz, C.D.; Regazzi, A.J.; Pires, I.E. Eficiência da seleção univariada direta e indireta e de índices de seleção em Eucalyptus grandis. Revista Árvore 2003, 27, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Stephens, M.J.; Alspach, P.A.; Beatson, R.A.; Winefield, C.; Buck, E.J. 2012. Genetic Parameters and Development of a Selection Index for Breeding Red Raspberries for Processing. J. Am. Soc. Hortic. Sci. 2012, 137, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Prunier, J.G.; Colyn, M.; Legendre, X.; Nimon, K.F.; Flamand, M.C. Multicollinearity in spatial genetics: Separating the wheat from the chaff using commonality analyses. Mol. Ecol. 2015, 24, 263–283. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Petek, M.R.; Sera, T.; Fonseca, I.C.d.B. Exigências climáticas para o desenvolvimento e maturação dos frutos de cultivares de Coffea arabica. Bragantia 2009, 68, 169–181. [Google Scholar] [CrossRef]
- Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n° 8, de 11 de Junho de 2003; 20 ago. Seção 1; República Federativa do Brasil: Brasília, Brazil, 2003; pp. 22–29. [Google Scholar]
- Custódio, A.A.D.P.; Pozza, E.A.; Guimarães, S.d.S.C.; Koshikumo, É.S.M.; Hoyos, J.M.A.; de Souza, P.E. Comparison and validation of diagrammatic scales for brown eye spots in coffee tree leaves. Ciência Agrotecnologia 2011, 35, 1067–1076. [Google Scholar] [CrossRef] [Green Version]
- Shaner, G.; Finney, R.E. The effect of nitrogen fertilization on the expression of slow-mildewingresistance in Knox wheat. Phytopathology 1977, 67, 1051–1056. [Google Scholar] [CrossRef] [Green Version]
- De Resende, M.D.V. SELEGEN-REML/BLUP. In Sistema Estatístico e Seleção Genética Computadorizada via Modelos Lineares Mistos; Embrapa: Colombo, Brazil, 2007. [Google Scholar]
- Shapiro, A.S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Hartley, H.O. The maximum F-ratio as a short-cut test for heterogenity of variances. Biometrika 1950, 37, 308–312. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 1 October 2021).
- Cruz, C.D. GENES—A software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agron. 2013, 35, 271–276. [Google Scholar] [CrossRef]
- Mulamba, N.N.; Mock, J.J. Improvement of yield potential of Elo Blanco maize (Zea mays L.) population by breeding for plant traits. J. Genet. Cytol. 1978, 7, 40–51. [Google Scholar]
- Mendes, F.F.; Ramalho, M.A.P.; Abreu, Â.d.F.B. Índice de seleção para escolha de populações segregantes de feijoeiro-comum. Pesqui. Agropecuária Bras. 2009, 44, 1312–1318. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor Analysis. Sychometmka 1958, 3, 187–200. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 6th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Regazzi, A.J.; Cruz, C.D. Análise Multivariada Aplicada; UFV: Viçosa, Brazil, 2020. [Google Scholar]
- Revelle, W.; Elleman, L.G.; Hall, A. Statistical Analyses and Computer Programming in Personality. In The Cambridge University Press Handbook of Personality; Corr, P.J., Ed.; Cambridge University Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef] [Green Version]
- Murakami, D.M.; Cruz, C.D. Proposal of methodologies for environment stratification and analysis of genotype adaptability. Crop Breed. Appl. Biotechnol. 2004, 4, 7–11. [Google Scholar] [CrossRef] [Green Version]
- da Fonseca, A.F.A.; Sediyama, T.; Cruz, C.D.; Sakaiyama, N.S.; Ferrão, M.A.G.; Ferrão, R.G.; Bragança, S.M. Divergência genética em café conilon. Pesqui. Agropecuária Bras. 2006, 41, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Ramalho, M.A.P.; Abreu, A.D.F.B.; Dos Santos, J.B.; Nunes, J.A.R. Aplicações da Genética Quantitativa No Melhoramento de Plantas Autógamas; UFLA: Lavras, Brazil, 2012. [Google Scholar]
- Carvalho, G.R.; Mendes, A.N.G.; Bartholo, G.F.; Amaral, M.A. Avaliação e seleção de progênies resultantes do cruzamento de cultivares de café catuaí com mundo novo. Ciência Agrotecnologia 2006, 30, 844–852. [Google Scholar] [CrossRef]
- Garrick, D.J.; Van Vleck, L.D. Aspects of Selection for Performance in Several Environments with Heterogeneous Variances. J. Anim. Sci. 1987, 65, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Vinson, W.E. Potential Bias in Genetic Evaluations from Differences in Variation Within Herds. J. Dairy Sci. 1987, 70, 2450–2455. [Google Scholar] [CrossRef]
- Matos, D.A.S.; Rodrigues, E.C. Análise fatorial; Enap: Brasília, Brazil, 2019. [Google Scholar]
- Paixão, P.T.M.; Nascimento, A.C.C.; Nascimento, M.; Azevedo, C.F.; Oliveira, G.F.; da Silva, F.L.; Caixeta, E.T. Factor analysis applied in genomic selection studies in the breeding of Coffea canephora. Euphytica 2022, 218, 42. [Google Scholar] [CrossRef]
- Sousa, T.V.; Caixeta, E.T.; Alkimim, E.R.; Oliveira, A.C.B.; Pereira, A.A.; Sakiyama, N.S.; Zambolim, L.; Resende, M.D.V. Early selection enabled by the implementation of genomic selection in Coffea arábica breeding. Front. Plant Sci. 2019, 9, 1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhering, L.L.; Laviola, B.G.; Salgado, C.C.; Sanchez, C.F.B.; Rosado, T.B.; Alves, A.A. Genetic gains in physic nut using selection indexes. Pesqui. Agropecuária Bras. 2012, 47, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Cazassa, R.S.; Tomé, L.M.; Lima, I.P.; Botelho, F.B.S.; Moura, A.M.; Reis, M.D.S.; Silva, G.A.D.M.; Oliveira, T.V.S. Herdabilidade como peso econômico na aplicação de índices de seleção no melhoramento de arroz. Braz. J. Dev. 2019, 5, 14644–14651. [Google Scholar] [CrossRef]
Parameter | SD | BN | VV | HS | YI | PROD | BES |
---|---|---|---|---|---|---|---|
𝜇 | 11.78 | 45.98 | 6.63 | 47.57 | 3.02 | 3.04 | 17.02 |
16.44 | 22.19 | 0.23 | 26.69 | 0.10 | 0.18 | 18.43 | |
74.90 | 59.40 | 53.10 | 41.80 | 61.70 | 52.80 | 47.40 | |
𝑟𝑎𝑝 | 0.85 | 0.76 | 0.72 | 0.64 | 0.77 | 0.72 | 0.68 |
CVg | 11.24 | 10.02 | 7.77 | 12.20 | 19.78 | 32.01 | 25.24 |
LRT | 19.99 * | 8.44 * | 5.90 * | 3.96 * | 9.53 * | 5.81 * | 4.33 * |
R | SD | BN | VV | HS | YI | PROD | BES |
---|---|---|---|---|---|---|---|
1 | P19 | P14 | P19 | P3 | P7 | P26 | P23 |
2 | P24 | P1 | P3 | P29 | P23 | P19 | P16 |
3 | P26 | P18 | P14 | P2 | P2 | P24 | P18 |
4 | P27 | P16 | P21 | P4 | P21 | P20 | P14 |
5 | P20 | P13 | P17 | P30 | P25 | P21 | P7 |
6 | P14 | P20 | P16 | P16 | P11 | P3 | P2 |
Mean Prog. | 39.726 | 64.269 | 6.617 | 46.905 | 587.142 | 33.164 | 16.527 |
Mean Check | 37.042 | 66.427 | 7.096 | 57.995 | 623.313 | 41.496 | 23.842 |
Mean SD | 45.721 | 72.786 | 7.350 | 57.144 | 413.142 | 51.516 | 10.326 |
0.749 | 0.594 | 0.531 | 0.418 | 0.617 | 0.528 | 0.474 | |
GDS(p)—% | 11.30 | 7.87 | 5.89 | 9.12 | −18.28 | 29.22 | −17.78 |
GDS(t)—% | 17.55 | 5.69 | 1.90 | −0.61 | −20.80 | 12.75 | −26.87 |
R | MM(PE) | MM(CVg) | FAI-BLUP | IZ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | C | IV | P | C | IV | P | C | IV | P | C | IV | |
1 | P3 | 3 | 41.60 | P3 | 3 | 860.96 | P19 | 3 | 0.36 | P3 | 3 | 5.98 a* |
2 | P1 | 1 | 61.40 | P1 | 1 | 1098.93 | P24 | 2 | 0.35 | P19 | 3 | 5.90 a |
3 | P20 | 3 | 65.00 | P24 | 2 | 1100.05 | P21 | 3 | 0.27 | P24 | 2 | 5.42 a |
4 | P21 | 3 | 65.40 | P20 | 3 | 1123.65 | P20 | 3 | 0.26 | P21 | 3 | 5.10 a |
5 | P16 | 4 | 65.60 | P21 | 3 | 1186.61 | P26 | 2 | 0.24 | P1 | 1 | 4.58 a |
6 | P19 | 3 | 66.60 | P19 | 3 | 1282.99 | P27 | 1 | 0.22 | P20 | 3 | 3.66 a |
Parameters | SD | NB | VV | HS | YI | PROD | BES | |
---|---|---|---|---|---|---|---|---|
GA | Mean S. | 38.111 | 61.792 | 6.417 | 45.459 | 548.542 | 34.247 | 12.304 |
GS—% | −3.05 | −2.29 | −1.60 | −1.29 | −4.06 | 1.72 | −12.11 | |
MM(PE) | Mean S. | 38.110 | 64.065 | 6.615 | 52.897 | 570.148 | 38.694 | 14.259 |
GS—% | −3.05 | −0.19 | −0.02 | 5.34 | −1.79 | 8.81 | −6.50 | |
MM(CVg) | Mean S. | 37.777 | 62.353 | 6.504 | 51.981 | 538.552 | 38.052 | 14.724 |
GS—% | −3.68 | −1.77 | −0.91 | 4.52 | −5.11 | 7.78 | −5.17 | |
FAI-BLUP | Mean S. | 40.000 | 64.093 | 6.563 | 52.307 | 570.786 | 36.235 | 16.157 |
GS—% | 0.52 | −0.16 | −0.43 | 4.81 | −1.72 | 4.89 | −1.06 | |
ZI | Mean S. | 37.778 | 62.353 | 6.504 | 51.981 | 538.552 | 38.052 | 14.724 |
GS—% | −3.67 | −1.77 | −0.91 | 4.52 | −5.11 | 7.78 | −5.17 | |
ha2 | 0.749 | 0.594 | 0.531 | 0.418 | 0.617 | 0.528 | 0.474 | |
Mean P | 39.726 | 64.269 | 6.617 | 46.905 | 587.142 | 33.164 | 16.527 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piza, M.R.; Luz, S.R.O.T.d.; Andrade, V.T.; Figueiredo, V.C.; Abrahão, J.C.d.R.; Bruzi, A.T.; Botelho, C.E. Multiple Traits Selection Strategies: A Proposal for Coffee Plant Breeding. Agronomy 2023, 13, 2033. https://doi.org/10.3390/agronomy13082033
Piza MR, Luz SROTd, Andrade VT, Figueiredo VC, Abrahão JCdR, Bruzi AT, Botelho CE. Multiple Traits Selection Strategies: A Proposal for Coffee Plant Breeding. Agronomy. 2023; 13(8):2033. https://doi.org/10.3390/agronomy13082033
Chicago/Turabian StylePiza, Mateus Ribeiro, Silvana Ramlow Otto Teixeira da Luz, Vinicius Teixeira Andrade, Vanessa Castro Figueiredo, Juliana Costa de Rezende Abrahão, Adriano Teodoro Bruzi, and Cesar Elias Botelho. 2023. "Multiple Traits Selection Strategies: A Proposal for Coffee Plant Breeding" Agronomy 13, no. 8: 2033. https://doi.org/10.3390/agronomy13082033
APA StylePiza, M. R., Luz, S. R. O. T. d., Andrade, V. T., Figueiredo, V. C., Abrahão, J. C. d. R., Bruzi, A. T., & Botelho, C. E. (2023). Multiple Traits Selection Strategies: A Proposal for Coffee Plant Breeding. Agronomy, 13(8), 2033. https://doi.org/10.3390/agronomy13082033