Changes in Volatile Composition of Cabernet Sauvignon (Vitis vinifera L.) Grapes under Leaf Removal Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment and Sample Preparation
2.2. General Grape Parameters
2.3. Phenolic Compound Analysis
2.4. Volatile Compound Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Environmental Conditions and Fruit Zone Microclimate
3.2. Berry Growth
3.3. Phenol Contents
3.4. Profiles of Volatiles
3.4.1. Fatty Acid-Derived Volatiles
3.4.2. Amino Acid-Derived Volatiles
3.4.3. Isoprene-Derived Volatiles
3.5. The Degree of Influence of Leaf Removal Treatment and Year on Volatile Aroma Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teixeira, A.; Eiras-Dias, J.; Castellarin, S.D.; Gerós, H. Berry phenolics of grapevine under challenging environments. Int. J. Mol. Sci. 2013, 14, 18711–18739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baduca Campeanu, C.; Beleniuc, G.; Simionescu, V.; Panaitescu, L.; Grigorica, L. Climate change effects on ripening process and wine composition in Oltenia’s vineyards from Romania. Acta Horticult. 2012, 931, 47–54. [Google Scholar] [CrossRef]
- DeBolt, S.; Ristic, R.; Iland, P.G.; Ford, C.M. Altered Light Interception Reduces Grape Berry Weight and Modulates Organic Acid Biosynthesis During Development. Hortscience 2008, 43, 957–961. [Google Scholar] [CrossRef] [Green Version]
- Picone, G.; Trimigno, A.; Tessarin, P.; Donnini, S.; Rombolà, A.D.; Capozzi, F. 1H NMR foodomics reveals that the biodynamic and the organic cultivation managements produce different grape berries (Vitis vinifera L. cv. Sangiovese). Food Chem. 2016, 213, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Abbey, T.; Kozak, B.; Madilao, L.L.; Tindjau, R.; Del Nin, J.; Castellarin, S.D. Evolution over the growing season of volatile organic compounds in Viognier (Vitis vinifera L.) grapes under three irrigation regimes. Food Res. Int. 2019, 125, 108512. [Google Scholar] [CrossRef] [PubMed]
- Hickey, C.C.; Wolf, T.K. Intensive Fruit-zone Leaf Thinning Increases Vitis vinifera L. ‘Cabernet Sauvignon’ Berry Temperature and Berry Phenolics without Adversely Affecting Berry Anthocyanins in Virginia. HortScience 2019, 54, 1181–1189. [Google Scholar] [CrossRef] [Green Version]
- Zahavi, T.; Reuveni, M.; Scheglov, D.; Lavee, S. Effect of Grapevine Training Systems on Development of Powdery Mildew. Eur. J. Plant Pathol. 2001, 107, 495–501. [Google Scholar] [CrossRef]
- Caspari, H.W.; Lang, A.; Alspach, P. Effects of Girdling and Leaf Removal on Fruit Set and Vegetative Growth in Grape. Am. J. Enol. Vitic. 1998, 49, 359–366. [Google Scholar] [CrossRef]
- Poni, S.; Casalini, L.; Bernizzoni, F.; Civardi, S.; Intrieri, C. Effects of Early Defoliation on Shoot Photosynthesis, Yield Components, and Grape Composition. Am. J. Enol. Vitic. 2006, 57, 397–407. [Google Scholar] [CrossRef]
- Poni, S.; Bernizzoni, F.; Civard, S. The effect of early leaf removal on whole-canopy gas exchange and vine perfomance of Vitis vinifera L. Sangiovese. Vitis 2008, 47, 1–6. [Google Scholar]
- Poni, S.; Bernizzoni, F.; Civardi, S.; Libelli, N. Effects of pre-bloom leaf removal on growth of berry tissues and must composition in two red Vitis vinifera L. cultivars. Aust. J. Grape Wine Res. 2010, 15, 185–193. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Wardle, D.A. Impact of Various Canopy Manipulation Techniques on Growth, Yield, Fruit Composition, and Wine Quality of Gewürztraminer. Am. J. Enol. Vitic. 1989, 40, 121–129. [Google Scholar] [CrossRef]
- Diago, M.P.; Vilanova, M.; Tardaguila, J. Effects of timing of manual and mechanical early defoliation on the aroma of Vitis vinifera L. Tempranillo wine. Am. J. Enol. Viticult. 2010, 61, 382–391. [Google Scholar] [CrossRef]
- Risco, D.; Pérez, D.; Yeves, A.; Castel, J.; Intrigliolo, D. Early defoliation in a temperate warm and semi-arid Tempranillo vineyard: Vine performance and grape composition. Aust. J. Grape Wine Res. 2014, 20, 111–122. [Google Scholar] [CrossRef]
- Tardaguila, J.; De Toda, F.M.; Poni, S.; Diago, M.P. Impact of early leaf removal on yield and fruit and wine composition of Vitis vinifera L. Graciano and Carignan. Am. J. Enol. Viticult. 2010, 61, 372–381. [Google Scholar] [CrossRef]
- Kotseridis, Y.; Georgiadou, A.; Tikos, P.; Kallithraka, S.; Koundouras, S. Effects of severity of post-flowering leaf removal on berry growth and composition of three red Vitis vinifera L. cultivars grown under semiarid conditions. J. Agric Food Chem. 2010, 60, 6000–6010. [Google Scholar] [CrossRef]
- Diago, M.P.; Ayestarán, B.; Guadalupe, Z.; Poni, S.; Tardáguila, J. Impact of Prebloom and Fruit Set Basal Leaf Removal on the Flavonol and Anthocyanin Composition of Tempranillo Grapes. Am. J. Enol. Vitic. 2012, 63, 367–376. [Google Scholar] [CrossRef]
- Sternad Lemut, M.; Sivilotti, P.; Franceschi, P.; Wehrens, R.; Vrhovsek, U. Use of metabolic profiling to study grape skin polyphenol behavior as a result of canopy microclimate manipulation in a ‘Pinot noir’ vineyard. J. Agric Food Chem. 2013, 61, 8976–8986. [Google Scholar] [CrossRef]
- Vilanova, M.; Diago, M.P.; Genisheva, Z.; Oliveira, J.M.; Tardaguila, J. Early leaf removal impact on volatile composition of Tempranillo wines. J. Sci. Food Agric. 2012, 92, 935–942. [Google Scholar] [CrossRef] [Green Version]
- Sivilotti, P.; Falchi, R.; Herrera, J.C.; Škvarč, B.; Butinar, L.; Lemut, M.S.; Bubola, M.; Sabbatini, P.; Lisjak, K.; Vanzo, A. Combined Effects of Early Season Leaf Removal and Climatic Conditions on Aroma Precursors in Sauvignon Blanc Grapes. J. Agric. Food Chem. 2017, 65, 8426–8434. [Google Scholar] [CrossRef]
- Wilfried, S.; Rachel, D.R.; Efraim, L. Biosynthesis of plant-derived flavor compounds. Plant J. Cell Mol. Biol. 2010, 54, 712–732. [Google Scholar]
- Zoecklein, B.W.; Wolf, T.K.; Marcy, J.E.; Jasinski, Y. Effect of Fruit Zone Leaf Thinning on Total Glycosides and Selected Aglycone Concentrations of Riesling (Vitis vinifera L.) Grapes. Am. J. Enol. Vitic. 1998, 49, 35–43. [Google Scholar] [CrossRef]
- Arnold, R.A.; Bledsoe, A.M. The Effect of Various Leaf Removal Treatments on the Aroma and Flavor of Sauvignon blanc Wine. Am. J. Enol. Vitic. 1990, 41, 74–76. [Google Scholar] [CrossRef]
- Yue, X.; Ma, X.; Tang, Y.; Wang, Y.; Wu, B.; Jiao, X.; Zhang, Z.; Ju, Y. Effect of cluster zone leaf removal on monoterpene profiles of Sauvignon Blanc grapes and wines. Food Res. Int. 2020, 131, 109028. [Google Scholar] [CrossRef]
- Xie, S.; Lei, Y.; Wang, Y.; Wang, X.; Ren, R.; Zhang, Z. Influence of continental climates on the volatile profile of Cabernet Sauvignon grapes from five Chinese viticulture regions. Plant Growth Regul. 2019, 87, 83–92. [Google Scholar] [CrossRef]
- Feng, H.; Skinkis, P.A.; Qian, M.C. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal. Food Chem. 2017, 214, 736–744. [Google Scholar] [CrossRef]
- Hosu, A.; Cristea, V.-M.; Cimpoiu, C. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chem. 2014, 150, 113–118. [Google Scholar] [CrossRef]
- Sun, S.Y.; Jiang, W.G.; Zhao, Y.P. Comparison of aromatic and phenolic compounds in cherry wines with different cherry cultivars by HS-SPME-GC-MS and HPLC. Int. J. Food Sci. Technol. 2015, 47, 100–106. [Google Scholar] [CrossRef]
- Lee, J.; Skinkis, P.A. Oregon ‘Pinot noir’ grape anthocyanin enhancement by early leaf removal. Food Chem. 2013, 139, 893–901. [Google Scholar] [CrossRef]
- Pilati, S.; Perazzolli, M.; Malossini, A.; Cestaro, A.; Demattè, L.; Fontana, P.; Ri, A.D.; Viola, R.; Velasco, R.; Moser, C. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genom. 2007, 8, 428. [Google Scholar] [CrossRef] [Green Version]
- Sivilotti, P.; Herrera, J.C.; Lisjak, K.; Baša Česnik, H.; Sabbatini, P.; Peterlunger, E.; Castellarin, S.D. Impact of Leaf Removal, Applied Before and After Flowering, on Anthocyanin, Tannin, and Methoxypyrazine Concentrations in ‘Merlot’ (Vitis vinifera L.) Grapes and Wines. J. Agr. Food Chem. 2016, 64, 4487–4496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palliotti, A.; Gatti, M.; Poni, S. Early Leaf Removal to Improve Vineyard Efficiency: Gas Exchange, Source-to-Sink Balance, and Reserve Storage Responses. Am. J. Enol. Vitic. 2011, 62, 219–228. [Google Scholar] [CrossRef]
- Sternad Lemut, M.; Sivilotti, P.; Butinar, L.; Laganis, J.; Vrhovsek, U. Pre-flowering leaf removal alters grape microbial population and offers good potential for a more sustainable and cost-effective management of a Pinot Noir vineyard. Aust. J. Grape Wine Res. 2015, 21, 439–450. [Google Scholar] [CrossRef]
- Proestos, C.; Bakogiannis, A.; Psarianos, C.; Koutinas, A.A.; Kanellaki, M.; Komaitis, M. High performance liquid chromatography analysis of phenolic substances in Greek wines. Food Control 2005, 16, 319–323. [Google Scholar] [CrossRef]
- Song, J.; Smart, R.; Wang, H.; Dambergs, B.; Sparrow, A.; Qian, M.C. Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine. Food Chem. 2015, 173, 424–431. [Google Scholar] [CrossRef]
- He, L.; Xu, X.-Q.; Wang, Y.; Chen, W.-K.; Sun, R.-Z.; Cheng, G.; Bin Liu, B.; Chen, W.; Duan, C.-Q.; Wang, J.; et al. Modulation of volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot climate. BMC Plant Biol. 2020, 20, 59. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, X.; Li, Y.; Li, P.; Wang, H. Polyphenolic compounds and antioxidant properties of selected China wines. Food Chem. 2009, 112, 454–460. [Google Scholar] [CrossRef]
- Drenjančević, M.; Kujundžić, T.; Jukić, V.; Karnaš, M.; Braun, U.; Schwander, F.; Teklić, T.; Rastija, V. Impact of leaf removal as a source of stresses on grapevine yields, chemical characteristics, and anthocyanin content in the grapevine variety Babica. Ann. Appl. Biol. 2023, 183, 43–52. [Google Scholar] [CrossRef]
- Gardner, H.W. Recent investigations into the lipoxygenase pathway of plants. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1991, 1084, 221–239. [Google Scholar] [CrossRef]
- Verzera, A.; Tripodi, G.; Dima, G.; Condurso, C.; Scacco, A.; Cincotta, F.; Giglio, D.M.L.; Santangelo, T.; Sparacio, A. Leaf removal and wine composition of Vitis vinifera L. cv. Nero d’Avola: The volatile aroma constituents. J. Sci. Food. Agr. 2016, 96, 150–159. [Google Scholar] [CrossRef]
- Maoz, I.; Rikanati, R.D.; Schlesinger, D.; Bar, E.; Gonda, I.; Levin, E.; Kaplunov, T.; Sela, N.; Lichter, A.; Lewinsohn, E. Concealed ester formation and amino acid metabolism to volatile compounds in table grape (Vitis vinifera L.) berries. Plant Sci. 2018, 274, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Costantini, V.; Bellincontro, A.; De Santis, D.; Botondi, R.; Mencarelli, F. Metabolic changes of Malvasia grapes for wine production during postharvest drying. J. Agric Food Chem. 2006, 54, 3334–3340. [Google Scholar] [CrossRef] [PubMed]
- Alessandrini, M.; Battista, F.; Panighel, A.; Flamini, R.; Tomasi, D. Effect of pre-bloom leaf removal on grape aroma composition and wine sensory profile of Semillon cultivar. J. Sci. Food Agric. 2017, 98, 1674–1684. [Google Scholar] [CrossRef] [PubMed]
- Lončarić, A.; Patljak, M.; Blažević, A.; Jozinović, A.; Babić, J.; Šubarić, D.; Pichler, A.; Flanjak, I.; Kujundžić, T.; Miličević, B. Changes in Volatile Compounds during Grape Brandy Production from ‘Cabernet Sauvignon’ and ‘Syrah’ Grape Varieties. Processes 2022, 10, 988. [Google Scholar] [CrossRef]
- Koundouras, S.; Marinos, V.; Gkoulioti, A.; Kotseridis, Y.; van Leeuwen, C. Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. J. Agric. Food Chem. 2006, 54, 5077. [Google Scholar] [CrossRef] [PubMed]
Year | Month | Temperature (°C) | Precipitation (mm) | Sunshine Duration (h) | Relative Humidity (%) | ||
---|---|---|---|---|---|---|---|
Min. | Max. | Avg. | |||||
2017 | April | 8.3 | 18.1 | 12.8 | 42.2 | 242.9 | 54 |
May | 14.4 | 23.8 | 18.8 | 27.7 | 275.0 | 52 | |
June | 18.8 | 27.5 | 22.8 | 27.3 | 269.1 | 64 | |
July | 22.1 | 29.3 | 25.3 | 34.9 | 250.6 | 69 | |
August | 22.3 | 29.3 | 25.7 | 276.1 | 223.2 | 74 | |
September | 18.0 | 25.2 | 21.5 | 106.7 | 216.1 | 68 | |
October | 13.1 | 20.1 | 16.3 | 18.2 | 183.9 | 60 | |
2018 | April | 9.7 | 19.7 | 14.3 | 37.0 | 251.1 | 50 |
May | 13.8 | 24.1 | 18.7 | 58.1 | 237.1 | 55 | |
June | 19.2 | 28.2 | 23.4 | 71.7 | 265.3 | 62 | |
July | 22.8 | 30 | 25.9 | 130.4 | 227.5 | 77 | |
August | 20.7 | 27.1 | 23.9 | 129.0 | 210.5 | 63 | |
September | 18.2 | 25.4 | 21.6 | 25.6 | 225.6 | 72 | |
October | 12.5 | 19.3 | 15.5 | 35.1 | 162.8 | 69 | |
2019 | April | 9.9 | 19.4 | 14.3 | 20.8 | 240.5 | 52 |
May | 15.1 | 26.4 | 20.4 | 19.9 | 323.7 | 52 | |
June | 18.8 | 28.1 | 23.1 | 74.5 | 279.5 | 58 | |
July | 23.8 | 30.6 | 26.9 | 159.1 | 176.6 | 80 | |
August | 22.7 | 28.8 | 25.5 | 195.3 | 221.2 | 81 | |
September | 18.7 | 27 | 22.4 | 14.8 | 288.3 | 71 | |
October | 11.7 | 18.4 | 14.8 | 32.5 | 162.5 | 65 |
Year | Month | 16 June–15 July | 16 July–15 August | 16 August–15 September | 16 September–15 October | ||||
---|---|---|---|---|---|---|---|---|---|
CN | Leaf Removal | CN | Leaf Removal | CN | Leaf Removal | CN | Leaf Removal | ||
2017 | >35 °C (h) | 21 | 38 | 12 | 25 | 0 | 4 | 0 | 1 |
Ave. DMax (°C) | 33.84 | 36.65 | 32.57 | 34.31 | 29.92 | 32.48 | 25.81 | 29.71 | |
Ave. DMini (°C) | 20.12 | 19.46 | 20.00 | 20.15 | 17.44 | 17.30 | 12.27 | 12.41 | |
Ave. D (°C) | 26.46 | 27.02 | 24.98 | 25.60 | 22.77 | 23.19 | 18.57 | 19.32 | |
Ave. Ddifferent (°C) | 13.72 | 17.19 | 12.58 | 14.16 | 12.48 | 15.18 | 13.54 | 17.29 | |
2018 | >35 °C (h) | 25 | 52 | 33 | 35 | 1 | 3 | 0 | 0 |
Ave. DMax (°C) | 32.42 | 35.14 | 33.99 | 33.84 | 30.58 | 29.03 | 25.26 | 23.92 | |
Ave. DMini (°C) | 20.13 | 19.45 | 23.39 | 22.88 | 18.59 | 18.06 | 12.91 | 12.38 | |
Ave. D (°C) | 25.52 | 25.75 | 27.55 | 27.36 | 23.55 | 23.13 | 18.26 | 17.81 | |
Ave. Ddifferent (°C) | 12.29 | 15.68 | 10.60 | 10.96 | 11.99 | 10.97 | 12.35 | 11.54 | |
2019 | >35 ℃ (h) | 38 | 97 | 0 | 45 | 0 | 32 | 0 | 17 |
Ave. DMax (°C) | 32.29 | 37.82 | 29.51 | 35.46 | 27.84 | 35.11 | 24.48 | 29.41 | |
Ave. DMini (°C) | 21.05 | 21.42 | 21.65 | 22.69 | 17.41 | 18.70 | 11.70 | 12.23 | |
Ave. D (°C) | 26.08 | 27.39 | 24.86 | 26.87 | 22.04 | 24.38 | 17.40 | 18.77 | |
Ave. Ddifferent (°C) | 11.24 | 16.40 | 7.86 | 12.77 | 10.43 | 16.41 | 12.79 | 17.18 |
Wave Range (nm) | <390 | 390~435 | 435~450 | 450~492 | 492~577 | 577~596 | 597~622 | 622~760 | >760 | Total | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Light Quality | Ultraviolet | Purple | Blue | Cyan | Green | Yellow | Orange | Red | Infrared | |||
LR-BF | CN | Light intensity (Lux) | 32.6 | 158.3 | 94 | 344.9 | 1440 | 4022.4 | 328.7 | 3708.4 | 10,879.9 | 21,009.1 |
Percentage (%) | 0.15 | 0.75 | 0.45 | 1.64 | 6.85 | 19.14 | 1.56 | 17.65 | 51.79 | 100 | ||
Leaf removal | Light intensity (Lux) | 326.8 | 1251.4 | 609.2 | 1602.6 | 2610.5 | 6938.7 | 722 | 6244.7 | 15,100.7 | 35,406.6 | |
Percentage (%) | 0.92 | 3.49 | 1.71 | 4.55 | 7.48 | 19.83 | 2.07 | 17.83 | 42.11 | 100 | ||
LR-AF | CN | Light intensity (Lux) | 18.63 | 109.29 | 57.85 | 186.79 | 504.69 | 1257.17 | 90.82 | 1169.64 | 3443.02 | 6837.9 |
Percentage (%) | 0.267 | 1.583 | 0.837 | 2.713 | 7.347 | 18.37 | 1.323 | 17.1 | 50.463 | 100 | ||
Leaf removal | Light intensity (Lux) | 449.23 | 1911.38 | 825.64 | 1873.45 | 2660.29 | 7049.86 | 722.13 | 6360.21 | 25,953.71 | 47,805.89 | |
Percentage (%) | 0.94 | 3.997 | 1.727 | 3.917 | 5.563 | 14.747 | 1.51 | 13.303 | 54.287 | 100 | ||
LR-V | CN | Light intensity (Lux) | 0.55 | 3.99 | 3.31 | 20.57 | 301.3 | 2703.59 | 56.66 | 2654.3 | 6274.91 | 12,019.16 |
Percentage (%) | 0 | 0.03 | 0.03 | 0.17 | 2.51 | 22.49 | 0.47 | 22.08 | 52.21 | 100 | ||
Leaf removal | Light intensity (Lux) | 8.59 | 62.49 | 50.19 | 309.1 | 2682.09 | 12,495.98 | 634.53 | 11,887.13 | 16,865.88 | 44,995.95 | |
Percentage (%) | 0.015 | 0.13 | 0.105 | 0.66 | 5.805 | 27.61 | 1.375 | 26.295 | 38 | 100 |
2017 | 2018 | 2019 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds (μg/L) | CN | LR-BF | LR-AF | LR-V | CN | LR-BF | LR-AF | LR-V | CN | LR-BF | LR-AF | LR-V |
Straight-chain alcohols | ||||||||||||
1-Propanol | 19.75 ± 1.49 c | 35.87 ± 2.83 a | 22.33 ± 1.47 c | 29.15 ± 1.52 b | 164.95 ± 2.63 a | 160.45 ± 6.41 a | 162.68 ± 6.86 a | 156.93 ± 7.08 a | - | - | - | - |
1-Heptanol | 127.88 ± 7.72 a | 125.85 ± 4.15 a | 127.76 ± 1.71 a | 119.07 ± 12.62 a | 102.22 ± 7.88 a | 109.33 ± 6.15 a | 132.80 ± 13.70 a | 118.84 ± 7.91 a | 26.02 ± 0.65 a | 16.64 ± 1.36 b | 20.94 ± 0.94 b | 22.36 ± 0.28 b |
2-Heptanol | 72.14 ± 10.17 a | 74.84 ± 2.84 a | 74.6 ± 2.14 a | 77.06 ± 3.20 a | 113.77 ± 8.02 a | 86.41 ± 2.68 b | 110.15 ± 5.44 a | 89.65 ± 2.20 b | - | - | - | - |
1-Pentanol | 51.25 ± 7.67 a | 44.39 ± 3.01 a | 33.56 ± 0.86 a | 40.81 ± 8.50 a | 58.18 ± 6.41 b | 90.49 ± 3.62 a | 40.47 ± 0.10 c | 53.14 ± 3.18 b | 14.77 ± 2.15 b | 18.64 ± 0.16 a | 16.24 ± 1.28 b | 17.00 ± 0.64 b |
2-Penten-1-ol | 54.36 ± 2.80 a | 56.39 ± 1.99 a | 56.20 ± 2.01 a | 57.04 ± 1.81 a | 68.71 ± 1.52 a | 47.07 ± 0.91 c | 51.48 ± 1.33 b | 46.06 ± 0.70 c | 17.34 ± 0.29 a | 15.67 ± 0.28 b | 15.14 ± 0.68 b | 15.91 ± 0.58 b |
1-Hexanol | 6773.1 ± 211.27 c | 9868.53 ± 92.33 a | 8963.71 ± 87.06 a | 8863.62 ± 102.00 b | 8855.95 ± 75.57 b | 9720.69 ± 88.03 a | 7765.65 ± 88.34 c | 7891.73 ± 94.13 c | 7514.45 ± 40.67 a | 4668.4 ± 50.28 d | 5569.75 ± 76.43 b | 5082.95 ± 13.17 c |
2-Hexen-1-ol | 2418.74 ± 11.17 c | 2805.73 ± 21.43 b | 3591.93 ± 13.22 a | 1030.78 ± 7.58 d | 128.75 ± 13.53 a | 75.56 ± 1.01 b | 66.68 ± 1.83 b | 71.69 ± 4.33 b | 4462.67 ± 84.20 a | 3217.66 ± 52.23 b | 2865.61 ± 22.48 b | 2453.03 ± 11.63 c |
3-Hexen-1-ol | 312.56 ± 12.56 a | 303.11 ± 9.26 a | 305.13 ± 2.53 a | 300.24 ± 2.72 a | 326.18 ± 7.32 a | 334.09 ± 6.33 a | 327.32 ± 2.66 a | 314.56 ± 4.54 a | 118.41 ± 3.36 a | 85.70 ± 5.76 b | 92.68 ± 2.32 b | 89.22 ± 1.65 b |
1-Nonanol | 63.18 ± 1.05 b | 133.38 ± 5.98 a | 113.46 ± 1.79 a | 140.22 ± 7.37 a | 441.89 ± 5.92 a | 460.07 ± 5.38 a | 495.21 ± 2.91 a | 263.52 ± 9.04 b | 30.5 ± 1.87 a | 31.77 ± 0.73 a | 28.2 ± 3.10 a | 29.01 ± 1.36 a |
2-Nonanol | 27.26 ± 1.83 d | 40.51 ± 2.94 a | 16.45 ± 1.11 c | 26.41 ± 1.46 b | 155.95 ± 2.94 b | 225.97 ± 9.52 a | 175.46 ± 8.11 b | 143.44 ± 8.40 b | 5.53 ± 0.03 c | 9.23 ± 0.85 a | 4.24 ± 0.32 d | 6.37 ± 0.22 b |
2-Octanol | 55.41 ± 2.75 a | 49.54 ± 1.39 a | 52.56 ± 2.96 a | 54.26 ± 1.08 a | 41.07 ± 0.40 b | 84.81 ± 1.69 a | 78.84 ± 1.82 a | 72.57 ± 1.32 a | 18.34 ± 1.02 a | 20.53 ± 1.66 a | 16.33 ± 2.10 a | 19.36 ± 1.09 a |
1-Octen-3-ol | 136.8 ± 1.72 a | 100.81 ± 8.46 a | 114.56 ± 2.23 a | 98.56 ± 7.75 a | 82.82 ± 2.33 b | 105.08 ± 1.35 a | 95.98 ± 1.55 b | 122.58 ± 3.35 a | 157.58 ± 3.89 a | 105.57 ± 1.97 b | 111.96 ± 3.41 b | 93.25 ± 1.09 c |
3-Nonen-1-ol | - | - | - | - | 46.31 ± 3.16 b | 58.85 ± 1.96 a | 50.15 ± 2.22 b | 55.33 ± 3.52 a | 4.24 ± 0.22 a | 3.53 ± 0.05 b | 3.69 ± 0.11 b | 3.46 ± 0.34 b |
(6 Z)-Nonen-1-ol | 51.14 ± 2.19 a | 52.72 ± 1.26 a | 52.68 ± 1.13 a | 52.09 ± 6.14 a | 286.45 ± 22.67 a | 249.33 ± 15.23 b | 200.71 ± 24.29 b | 180.33 ± 1.14 c | 5.91 ± 0.25 b | 6.56 ± 0.13 a | 6.02 ± 0.38 b | 6.44 ± 0.37 b |
Subtotal | 10,163.57 ± 274.39 c | 13,691.68 ± 157.87 a | 13,524.92 ± 120.31 a | 10,883.9 ± 163.75 b | 10,873.2 ± 160.30 a | 11,808.18 ± 150.27 a | 9753.59 ± 161.16 b | 9580.37 ± 150.84 b | 12,375.14 ± 138.57 a | 8199.94 ± 115.46 c | 8750.78 ± 113.55 b | 7838.37 ± 32.42 d |
Straight-chain esters | ||||||||||||
Acetic acid, hexyl ester | 238.53 ± 15.29 a | 253.75 ± 4.50 a | 214.13 ± 29.17 a | 171.33 ± 5.00 a | 60.23 ± 7.24 b | 74.26 ± 3.17 a | 69.54 ± 8.54 b | 68.25 ± 5.56 b | 8.64 ± 0.93 a | 5.61 ± 0.05 b | 5.92 ± 0.14 b | 4.31 ± 0.06 c |
Acetic acid, nonyl ester | 10.79 ± 1.45 a | 8.74 ± 0.36 b | 11.25 ± 0.71 a | 15.63 ± 7.45 a | 108.17 ± 11.19 a | 123.77 ± 12.67 a | 123.89 ± 13.45 a | 109.83 ± 8.33 a | 5.82 ± 0.31 b | 6.83 ± 0.22 a | 5.22 ± 0.37 b | 5.98 ± 0.46 b |
Acetic acid, 2-phenylethyl ester | - | - | - | - | 6608.4 ± 337.17 a | 3212.76 ± 113.67 b | 3041.27 ± 111.92 b | 2847.44 ± 12.35 c | - | - | - | - |
Acetic acid, decyl ester | - | - | - | - | 43.2 ± 4.62 b | 34.08 ± 2.79 c | 53.05 ± 3.33 a | 41.27 ± 2.24 b | - | - | - | - |
Acetic acid, methyl ester | 199.26 ± 10.24 b | 266.54 ± 19.26 a | 245.33 ± 11.25 a | 249.26 ± 13.32 a | 263.93 ± 12.65 a | 274.44 ± 14.22 a | 238.94 ± 13.45 a | 251.70 ± 11.25 a | - | - | - | - |
Acetic acid, octyl ester | - | - | - | - | 448.56 ± 21.31 a | 447.3 ± 2.13 a | 400.92 ± 5.70 b | 416.23 ± 9.83 b | - | - | - | - |
Acetic acid, pentyl ester | - | - | - | - | 266.28 ± 7.77 a | 242.5 ± 15.17 a | 256.14 ± 11.11 a | 263.52 ± 8.42 a | - | - | - | - |
Hexanoic acid, ethyl ester | 16.89 ± 1.50 a | 15.77 ± 0.83 a | 16.46 ± 0.66 a | 18.25 ± 2.05 a | 45.29 ± 3.06 c | 197.08 ± 6.34 a | 176.13 ± 9.87 a | 96.5 ± 8.73 b | 10.52 ± 1.15 a | 6.44 ± 0.21 b | 5.96 ± 0.45 b | 6.65 ± 0.21 b |
3-Hexen-1-ol, acetate | - | - | - | - | 173.01 ± 12.80 a | 171.61 ± 8.08 a | 159.59 ± 8.21 a | 120.09 ± 6.35 b | - | - | - | - |
Subtotal | 465.47 ± 28.48 b | 544.81 ± 24.95 a | 470.71 ± 41.79 b | 454.47 ± 27.82 b | 8017.07 ± 417.81 a | 4777.8 ± 178.24 b | 4519.48 ± 185.58 b | 4214.83 ± 73.06 b | 24.99 ± 2.39 a | 18.87 ± 0.48 b | 17.10 ± 0.96 b | 16.95 ± 0.73 b |
Straight-chain carbonyls | ||||||||||||
2-Pentanone | 115.44 ± 5.39 c | 139.35 ± 5.35 b | 93.28 ± 5.31 d | 168.53 ± 4.89 a | - | - | - | - | 14.97 ± 0.97 c | 23.23 ± 1.28 a | 23.55 ± 1.99 a | 19.32 ± 1.20 b |
Hexanal | 30.8 ± 1.44 c | 45.25 ± 1.48 a | 37.95 ± 1.44 b | 43.45 ± 1.83 a | 51.16 ± 1.87 b | 46.03 ± 3.22 b | 41.18 ± 1.11 b | 65.39 ± 7.50 a | 17.46 ± 1.21 a | 14.86 ± 1.37 bc | 13.47 ± 0.24 c | 15.65 ± 0.45 b |
2-Hexenal | 452.4 ± 14.25 a | 462.23 ± 13.57 a | 485.67 ± 6.04 a | 423.54 ± 40.66 a | 174.58 ± 10.19 a | 192.2 ± 11.26 a | 190.32 ± 13.37 a | 180.02 ± 8.32 a | 494.25 ± 4.08 a | 279.24 ± 6.55 c | 415.22 ± 3.39 b | 187.84 ± 7.24 d |
3-Hexanone | - | - | - | - | 125.67 ± 2.32 a | 140.22 ± 3.14 a | 94.82 ± 7.44 b | 94.19 ± 2.68 b | - | - | - | - |
2-Octanone | 54.31 ± 1.90 b | 81.18 ± 1.32 a | 66.29 ± 1.16 a | 89.99 ± 1.61 a | 40.69 ± 3.51 a | 36.91 ± 1.55 a | 26.56 ± 1.78 b | 32.22 ± 2.22 b | 12.65 ± 4.72 a | 13.22 ± 0.52 a | 12.20 ± 1.22 a | 11.26 ± 0.80 a |
3-Octanone | 77.27 ± 2.44 a | 47.67 ± 0.83 b | 56.6 ± 1.94 b | 48.09 ± 0.88 b | 51.38 ± 3.35 a | 44.22 ± 2.24 b | 49.33 ± 1.11 a | 46.26 ± 1.33 b | 30.24 ± 0.49 a | 17.58 ± 1.32 c | 22.26 ± 0.33 b | 14.07 ± 1.00 d |
Subtotal | 730.23 ± 25.42 a | 775.69 ± 22.55 a | 739.81 ± 15.89 a | 773.59 ± 49.87 a | 443.49 ± 21.24 a | 459.57 ± 21.41 a | 402.21 ± 24.81 a | 418.07 ± 22.05 a | 569.56 ± 11.47 a | 348.13 ± 11.04 c | 486.71 ± 7.17 b | 248.14 ± 10.69 d |
Straight-chain acids | ||||||||||||
Acetic acid | 61.56 ± 3.67 b | 84.37 ± 3.27 a | 78.76 ± 1.14 b | 87.42 ± 0.62 a | 1045.01 ± 87.46 c | 1825.7 ± 26.28 a | 1450.44 ± 89.67 b | 931.88 ± 16.20 c | 10.28 ± 0.55 a | 5.30 ± 0.35 a | 9.44 ± 0.51 a | 6.62 ± 0.22 a |
Hexanoic acid | 20.37 ± 3.09 b | 9.90 ± 0.19 c | 17.06 ± 0.29 b | 59.44 ± 1.54 a | 45.29 ± 1.06 c | 197.08 ± 1.34 a | 176.13 ± 2.87 a | 96.50 ± 1.73 b | 71.46 ± 1.50 a | 26.65 ± 1.14 b | 22.37 ± 0.32 c | 18.89 ± 0.51 d |
Subtotal | 81.94 ± 6.76 b | 94.27 ± 3.46 b | 95.81 ± 1.43 b | 146.85 ± 2.16 a | 1090.3 ± 88.52 b | 2022.77 ± 27.62 a | 1626.58 ± 92.54 a | 1028.38 ± 17.93 b | 81.74 ± 2.05 a | 31.96 ± 1.49 b | 31.81 ± 0.83 b | 25.51 ± 0.73 b |
Total | 11,441.21 ± 335.05 c | 15,106.44 ± 208.83 a | 14,847.71 ± 179.42 a | 12,258.81 ± 243.60 b | 20,424.06 ± 687.87 a | 19,068.33 ± 377.54 b | 16,301.85 ± 464.09 c | 15,241.65 ± 263.88 d | 13,051.44 ± 154.48 a | 8598.89 ± 128.47 c | 9286.40 ± 122.51 b | 8128.97 ± 44.57 d |
2017 | 2018 | 2019 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds (μg/L) | CN | LR-BF | LR-AF | LR-V | CN | LR-BF | LR-AF | LR-V | CN | LR-BF | LR-AF | LR-V |
Branch-chain alphatic volatiles | ||||||||||||
2-Methyl-1-propanol | 19.75 ± 1.89 c | 35.87 ± 2.27 b | 12.33 ± 0.65 d | 69.15 ± 2.17 a | 131.32 ± 3.40 a | 128.29 ± 3.17 a | 125.94 ± 6.48 a | 129.92 ± 5.13 a | - | - | - | - |
4-Methyl-2-pentyl acetate | 20.91 ± 2.62 c | 36.04 ± 2.83 a | 27.49 ± 1.43 b | 28.15 ± 0.54 b | 77.13 ± 1.09 a | 64.61 ± 3.89 a | 65.64 ± 1.33 a | 50.07 ± 1.14 b | - | - | - | - |
3-Methyl-1-butanol | 168.93 ± 13.22 a | 188.99 ± 10.52 a | 192.33 ± 9.37 a | 201.25 ± 3.56 a | 286.45 ± 22.67 a | 249.33 ± 15.21 a | 200.71 ± 14.29 a | 180.33 ± 1.14 b | 23.94 ± 1.73 a | 15.22 ± 0.68 b | 14.16 ± 1.47 b | 13.77 ± 8.77 b |
2-Ethyl-1-hexanol | 228.41 ± 15.41 a | 226.77 ± 1.40 a | 238.12 ± 9.69 a | 187.28 ± 2.70 b | 3410.87 ± 69.03 b | 4715.85 ± 51.29 a | 4709.98 ± 30.65 a | 2098.03 ± 16.75 c | 134.45 ± 3.47 a | 115.38 ± 1.30 a | 122.21 ± 1.46 a | 106.91 ± 3.00 b |
4-Methyl-3-penten-2-one | 17.7 ± 0.30 b | 36.04 ± 2.83 a | 30.49 ± 1.05 a | 32.17 ± 1.32 a | - | - | - | - | 6.45 ± 0.97 b | 15.23 ± 1.33 a | 12.36 ± 0.32 a | 13.33 ± 1.11 a |
4-Methyl-2-pentyl acetate | 24.24 ± 1.27 a | 21.13 ± 1.21 a | 17.49 ± 1.43 b | 19.22 ± 0.85 b | 677.13 ± 19.09 a | 464.61 ± 13.89 b | 521.09 ± 36.23 b | 501.07 ± 18.14 b | - | - | - | - |
6-Methyl-5-hepten-2-ol | 51.19 ± 2.39 a | 38.29 ± 1.98 b | 46.41 ± 1.61 a | 39.43 ± 0.60 b | 21.15 ± 0.41 b | 31.47 ± 1.22 a | 28.65 ± 0.93 a | 25.5 ± 0.90 b | - | - | - | - |
6-Methyl-5-hepten-2-one | 55.71 ± 3.88 b | 68.43 ± 1.19 a | 59.33 ± 2.35 b | 55.25 ± 1.33 b | 89.56 ± 3.45 a | 93.26 ± 3.38 a | 91.16 ± 6.26 a | 88.39 ± 2.61 a | 26.32 ± 1.23 a | 29.24 ± 1.33 a | 28.24 ± 1.22 a | 26.22 ± 1.19 a |
6-Nonen-1-ol, acetate | 25.44 ± 0.68 a | 27.33 ± 1.22 a | 26.33 ± 1.02 a | 24.23 ± 0.28 a | 120.39 ± 8.92 b | 139.16 ± 2.05 b | 307.14 ± 13.65 a | 113.87 ± 6.27 b | - | - | - | - |
1-Methyl-cyclohexene | 46.20 ± 1.41 a | 49.26 ± 2.24 a | 47.26 ± 1.26 a | 45.26 ± 1.02 a | 33.76 ± 1.05 a | 35.09 ± 0.69 a | 34.57 ± 0.98 a | 36.37 ± 0.22 a | - | - | - | - |
Subtotal | 658.47 ± 49.54 a | 728.14 ± 27.71 a | 697.56 ± 29.85 a | 701.37 ± 14.39 a | 4847.78 ± 129.11 b | 5921.64 ± 94.78 a | 6084.88 ± 110.79 a | 3223.56 ± 59.33 b | 191.16 ± 7.41 a | 175.08 ± 4.64 a | 176.97 ± 4.47 b | 160.23 ± 14.07 a |
Others | ||||||||||||
2,4-Di-tert-butylphenol | 46.8 ± 1.70 b | 59.11 ± 2.04 a | 34.78 ± 0.91 c | 64.07 ± 1.33 a | 34.92 ± 1.65 c | 97.81 ± 1.31 a | 75.72 ± 1.57 b | 71.12 ± 1.87 b | 10.42 ± 0.25 b | 12.64 ± 0.15 a | 12.21 ± 0.51 a | 11.84 ± 0.41 a |
Benzyl alcohol | 38.29 ± 0.16 b | 68.71 ± 1.40 a | 63.79 ± 1.48 a | 68.01 ± 2.70 a | 137.71 ± 11.19 d | 204.82 ± 10.16 b | 303.44 ± 3.68 a | 163.52 ± 8.42 c | 42.75 ± 2.96 a | 24.67 ± 0.27 c | 31.18 ± 1.84 b | 29.37 ± 1.22 b |
Phenylethyl alcohol | 136.5 ± 4.63 b | 203.44 ± 10.56 a | 181.64 ± 8.93 a | 178.05 ± 11.22 a | 2592.75 ± 65.71 c | 5312.31 ± 54.26 b | 7584.51 ± 72.60 a | 1717.49 ± 13.38 d | - | - | - | - |
Subtotal | 221.59 ± 6.48 c | 331.26 ± 14.00 a | 280.21 ± 11.32 b | 310.13 ± 15.25 a | 2765.38 ± 78.56 b | 5614.94 ± 65.73 a | 7963.67 ± 77.85 a | 1952.13 ± 23.67 b | 53.17 ± 3.21 a | 37.31 ± 0.42 c | 43.39 ± 2.35 b | 41.21 ± 1.63 b |
Total | 880.06 ± 49.54 a | 1059.40 ± 41.71 a | 977.76 ± 41.17 a | 1011.50 ± 29.64 a | 7613.16 ± 207.67 b | 11,536.59 ± 160.51 a | 14,048.55 ± 188.64 a | 5175.70 ± 83.00 b | 244.33 ± 10.61 a | 212.39 ± 5.07 b | 220.37 ± 6.82 c | 201.45 ± 15.70 a |
2017 | 2018 | 2019 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds (μg/L) | CN | LR-BF | LR-AF | LR-V | CN | LR-BF | LR-AF | LR-V | CN | LR-BF | LR-AF | LR-V |
Norisoprenoids | ||||||||||||
β-ionone | 6.30 ± 0.33 b | 9.26 ± 0.30 a | 6.23 ± 0.45 b | 7.03 ± 0.57 b | 6.58 ± 0.93 b | 11.77 ± 0.38 a | 7.94 ± 0.29 b | 6.89 ± 0.33 b | 6.02 ± 0.23 b | 9.23 ± 0.13 a | 8.33 ± 0.36 a | 7.90 ± 0.65 a |
β-damascenone | 118.99 ± 9.85 b | 159.37 ± 10.06 a | 131.07 ± 8.16 b | 127.79 ± 3.07 b | 118.27 ± 3.10 b | 159.33 ± 4.33 a | 142.91 ± 10.50 a | 128.01 ± 2.39 b | 113.74 ± 7.66 c | 182.33 ± 9.25 a | 160.21 ± 6.33 b | 140.33 ± 6.23 b |
Subtotal | 125.29 ± 10.17 b | 168.63 ± 10.36 a | 137.29 ± 8.61 b | 134.82 ± 3.63 b | 124.85 ± 4.03 c | 171.10 ± 4.71 a | 150.85 ± 10.79 b | 134.9 ± 2.71 c | 119.76 ± 7.89 c | 191.56 ± 9.38 a | 168.55 ± 6.68 b | 148.22 ± 6.89 b |
Terpenes | ||||||||||||
Geraniol | 24.35 ± 1.15 b | 41.30 ± 1.74 a | 22.63 ± 1.57 b | 16.73 ± 0.96 c | 11.97 ± 0.19 b | 47.27 ± 2.41 a | 44.26 ± 2.00 a | 42.43 ± 2.98 a | - | - | - | - |
Linalool | 40.52 ± 1.39 b | 54.95 ± 1.85 a | 58.37 ± 1.38 a | 32.14 ± 0.63 c | 22.3 ± 0.48 c | 45.54 ± 1.16 b | 54.65 ± 0.28 a | 27.04 ± 0.46 c | 8.53 ± 0.16 b | 13.25 ± 0.66 a | 11.22 ± 0.13 a | 8.95 ± 0.23 b |
α-Terpineol | 11.85 ± 0.25 c | 23.32 ± 0.27 a | 19.03 ± 0.34 b | 17.34 ± 0.22 b | - | - | - | - | - | - | - | - |
Menthol | 12.68 ± 0.88 a | 10.83 ± 0.13 a | 11.22 ± 0.23 a | 11.99 ± 0.10 a | - | - | - | - | - | - | - | - |
Citral | 38.36 ± 1.54 c | 65.26 ± 1.25 a | 46.26 ± 1.26 b | 44.26 ± 1.16 b | - | - | - | - | - | - | - | - |
D-Limonene | 14.7 ± 0.68 c | 32.26 ± 1.26 a | 28.26 ± 0.95 b | 28.34 ± 0.62 b | - | - | - | - | - | - | - | - |
p-Xylene | - | - | - | - | 13.61 ± 0.40 a | 14.33 ± 0.24 a | 13.56 ± 0.10 a | 13.72 ± 0.24 a | 11.17 ± 0.05 c | 13.20 ± 0.21 a | 12.21 ± 0.33 b | 11.26 ± 0.22 c |
Furan, 2-pentyl- | 17.63 ± 0.49 b | 16.85 ± 0.69 b | 24.25 ± 0.46 a | 19.55 ± 0.47 b | 52.30 ± 1.70 | 53.25 ± 1.21 | 55.21 ± 2.00 | 55.57 ± 0.59 | 9.26 ± 0.21 b | 14.24 ± 0.22 a | 11.26 ± 0.25 a | 13.72 ± 0.56 a |
Subtotal | 160.08 ± 6.39 b | 244.76 ± 7.17 a | 180.01 ± 6.18 b | 170.35 ± 4.16 b | 100.18 ± 2.77 c | 160.38 ± 5.02 a | 167.68 ± 4.37 a | 138.76 ± 4.27 b | 28.97 ± 0.43 b | 40.70 ± 1.10 a | 34.69 ± 0.71 b | 33.93 ± 1.01 b |
Total | 285.37 ± 16.56 b | 413.39 ± 17.53 a | 317.30 ± 14.79 b | 305.17 ± 7.79 b | 225.03 ± 6.80 c | 331.48 ± 9.73 a | 318.52 ± 15.17 a | 273.66 ± 6.98 b | 148.73 ± 8.32 d | 232.26 ± 10.47 a | 203.23 ± 7.39 b | 182.15 ± 7.89 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yang, D.; Guan, X.; Sun, Y.; Wang, J. Changes in Volatile Composition of Cabernet Sauvignon (Vitis vinifera L.) Grapes under Leaf Removal Treatment. Agronomy 2023, 13, 1888. https://doi.org/10.3390/agronomy13071888
Li Z, Yang D, Guan X, Sun Y, Wang J. Changes in Volatile Composition of Cabernet Sauvignon (Vitis vinifera L.) Grapes under Leaf Removal Treatment. Agronomy. 2023; 13(7):1888. https://doi.org/10.3390/agronomy13071888
Chicago/Turabian StyleLi, Zhiyu, Dongyue Yang, Xueqiang Guan, Yuxia Sun, and Junfang Wang. 2023. "Changes in Volatile Composition of Cabernet Sauvignon (Vitis vinifera L.) Grapes under Leaf Removal Treatment" Agronomy 13, no. 7: 1888. https://doi.org/10.3390/agronomy13071888
APA StyleLi, Z., Yang, D., Guan, X., Sun, Y., & Wang, J. (2023). Changes in Volatile Composition of Cabernet Sauvignon (Vitis vinifera L.) Grapes under Leaf Removal Treatment. Agronomy, 13(7), 1888. https://doi.org/10.3390/agronomy13071888